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ABSTRACT

Locking nuts are widely used in industry and any defects from their manufacturing may cause loosening of the
connection during their service life. In this study, simulations of the folding process of a nut’s flangemade fromAISI
1040 steel are performed. Besides the bilinear isotropic hardening rule, Chaboche’s nonlinear kinematic hardening
rule is employed with associated flow rule and Hill48 yield criterion to set a plasticity model. The bilinear isotropic
hardening rule’s parameters are determined by means of a monotonic tensile test. The Chaboche’s parameters
are determined by using a low cycle tension/compression test by applying curve fitting methods on the low cycle
fatigue loop. Furthermore, the parameter calibrations are performed in the finite element simulations by using
an optimization approach based on the inverse analysis. Dimensional accuracy for the nut is of primary concern
due to the tolerance constraints of the nut manufacturers. Experimental diameter and height measurements of the
folded locking nut are compared with those obtained from the optimized model. The results reveal that the folding
dimensions can be predicted more accurately when the model parameters are determined by using the combined
hardening rule. The calibrated parameters are presented for the folding and cycling deformation processes.
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1 Introduction

Nylock nuts have very intensive usage areas among other lock nuts especially in the auto-
motive industry [1,2]. They have better performance than regular nuts which loosen when the
vibration level is high under severe service conditions. They block the connection against loosening
by producing higher friction between the threads. There are a few kinds of lock nuts. One of them
is the “nylock nut” where a ring is embedded as a higher frictional member. The ring material
is polyamide (PA6), which is a type of nylon. Nut material is AISI 1040 (C40) steel. The ring is
embedded by bending and folding of the nut’s flange towards the ring after the nylon ring is
inserted to its nest in the nut. The ring must stay tightened in its nest after the folding. Excessive
folding causes the ring to rupture, while uncompleted contact may cause loosening during service
life. An accurate prediction of the final dimensions is a problematic case due to uncertainties in
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the large plastic deformation and tool-part contact seen during material flow where the direction
of the stresses changes during the folding process. Also designing a new die and punch curvature
to overcome these defects requires additional time and expertise costs for the nut manufacturers.
Trial and error or inverse engineering are not cost effective methods.

Although finite element (FE) simulation with suitable model and parameters is a useful tool
for the plastic deformation prediction, their prediction performances are still dependant on the
elastic and inelastic models to be used. A yield function, a hardening rule, and a flow rule must
be combined to set a plasticity model. Lots of functions and rules for plasticity were presented
in the literature. Thus, composing a suitable model for the case is another handicap. No unique
method has been developed yet for selection of a model and determination of its parameters. It
depends on the material type and deformation process strictly.

One of the solutions to the problems above is to calibrate the material parameters or change
the model with a more advanced one. The complex nature of the advanced models may cause
much more time-consumption during their implementation. Inverse analysis is a widely used
method for parameter calibration [3–5]. Two basic methods known as the direct and inverse
method are employed in engineering. In the direct method, the outputs of the problem are found
depending on the inputs, while the inputs are estimated on the basis of the outputs in the inverse
method. Optimization is a useful tool for the inverse method applications [5–8].

During any plastic deformation process, hardening or softening occurs due to locking or
releasing of dislocation movements when yield starts. While the isotropic hardening rule governs
the evolution of the expansion or contraction of the yield surface, the kinematic hardening rule
controls the evolution of the back stress αij which causes the center point of the yield surface
to shift. Linear kinematic hardening was included into simulations by Prager’s hardening rule [9]
firstly and then it was modified by Ziegler [10]. A linear hardening rule has only the ability to
simulate a plastic deformation process performed under tensile or compression load in one step.
But it is not sufficient to predict the Baushinger effect, springback, ratcheting, and shakedown that
are common issues seen in the multiaxial or reversal loadings [11,12]. Armstrong et al. [13] model
includes a nonlinear recovery term besides the strain hardening term. Nonlinear kinematic models
were started to develop based on Armstrong and Frederick’s equation and afterwards, based on
the modification of the recovery term, many hardening rules are developed such as Chaboche
kinematic hardening rule [14,15]. If any material failure is also expected in the deformation,
damage initiation and evolution criteria [16–18] must be used to catch the material degradation,
besides the constitutive models. These rules includes some coefficients to characterize the material
hardening behaviour [19]. The coefficients can be initialized by using curve fitting algorithms based
on nonlinear regression on the data obtained from strain/stress controlled tension-compression
tests, symmetrical/unsymmetrical cyclic loaded at different stress/strain amplitudes. Then they are
optimized for calibration.

The aim of this study is to investigate a suitable model and its parameters for the nut flange
deformation process leading to an improved dimensional prediction and accurate simulating of
the hysteresis loop. The Chaboche kinematic hardening rule (CHAB) and bilinear isotropic (BISO)
hardening rule commonly used in the literature are implemented. The novelty of the work is that
the models are combined for the nut flange folding simulations which have importance for the
manufacturing industry. Then their calibrations are performed in the FE simulations by using
an optimization approach based on the inverse analysis. Dimensional accuracy for the nut is
of primary concern due to the tolerance constraints of the nut manufacturers. Therefore, the
parameters are optimized based on nut’s diameter and length measurements. Finally, the nut flange
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folding behaviour of AISI 1040 has been simulated by using the optimized material parameters.
The investigation shows that the rule’s parameters determined experimentally from a series of
strain controlled low cycle uniaxial tension-compression tests can be used instead of more complex
deformation processes. Validations are done by checking the dimension and hysteresis loop shapes
from experiments and predictions.

2 Materials and Methods

2.1 Uniaxial Tensile Test
The tensile tests were carried out using the specimens given in Fig. 1 to obtain the mechanical

properties in Tab. 1. A Shimadzu Autograph 100 kN testing machine with a video type exten-
someter system was used to perform the tests. The data was obtained in the linear coordinate
system, strain ε and stress σ . The specimens were prepared following the ASTM B557 M 02A
standard for AISI 1040 steel and ASTM E7 for the PA6 ring. The thickness is 2 mm for plate
specimens. The tests were performed at a 25 mm/min strain rate. The stress-strain curves are given
in Fig. 2.

Table 1: Linear elastic material properties

The nut (AISI 1040) The ring (PA6)

Density [20] 7.85 gr/cm3 0.952 gr/cm3

Young’s Modulus [20] 207 GPa 1100 MPa
Poisson ratio [20] 0.28 0.42
Yield strength, YS 415 MPa 26.2 MPa
Maximum strength 651.84 MPa 72.81 MPa
Tangent modulus, TM 2014.21 MPa 1070 MPa
r0 [21] 1.11 –
r45 [21] 1.01 –
r90 [21] 1.27 –

(a)

(b)

Figure 1: Specimen dimensions (units are in mm) according to (a) ASTM E7 (b) ASTM
B557 M 02A
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Figure 2: Monotonic uniaxial tensile curves for AISI 1040 steel and PA6

True stress-strain data was used for calculations. Kacar and Kılıç explained how to remove
the elastic strain in detail [22]. The parameters of BISO model are yield strength YS and tangent
modulus TM. Both were determined by using the true plastic curve [23]. Thus, the stress or strain
means true stress or true strain throughout this paper.

BISO is good at modelling the material behaviour subjected to any plastic deformation
in which just a monotonic loading and elastic unloading case are seen. However, it may be
not enough by itself when reversal loads arise. Therefore, it is combined with CHAB. CHAB’s
parameters are determined by using a hysteresis loop obtained from the low cycle fatigue
testing [6].

2.2 Low Cycle Fatigue Behaviour
A low cycle fatigue test with tension-compression loads in which the strain is symmetric gives

the hysteresis loops as seen in Fig. 3 for AISI 1040 steel at room temperature (full range of
strains). Three strain ranges are applied as ±0.005, ±0.0075, and ±0.01 (strain ratio R = −1).
Test are performed at a 25 mm/min strain rate. The strain was kept in the range ±0.01 which
corresponds the strain in the folding process. To determine CHAB’s parameters, a curve-fitting
algorithm based on a nonlinear regression is applied on the loops.

Figure 3: The loops for AISI 1040 steel
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The maximum stress value in the tensile course is different in the compression course in one
loop. Also it is seen that the stress level increases when the cycle is getting closer to the end. The
Bauschinger effect and the strain hardening lead to these behaviours. In the compression course,
it is very hard to keep the deformation in-plane due to buckling [24]. Therefore, Kacar et al.
developed an experimental rig system by revising the grippers and specimen as in Fig. 4. So the
buckling modes are sufficiently postponed [25].

Figure 4: (a) The grippers for monotonic/cyclic tests (b) The specimens

2.3 Constitutive Equations for FE Simulations
In the simulation, the material’s nonlinear mechanical behaviour is set up by using a consti-

tutive model. The Hill48 yield criterion is used in the constitutive model [26]. The hardening rules
are embedded inside the yield criterion.

A stress state can be transformed to an equivalent stress value by means of a yield criterion’s
equation. Thus, it is a convenient tool to compare any stress state to the material’s yield strength
to determine whether plastic deformation has started or not. A general comparison formula is
given in Eq. (1).

σ
(
σij

)− σ0 = 0 (1)

where σ0 is initial size of the yield surface. σ is a yield equation and it gives a scalar equivalent
of the deviatoric part of the stress state. While the elastic domain is defined by σ

(
σij

)− σ0 ≤ 0,

the inelastic domain is defined by σ
(
σij

)−σ0 > 0. These statements do not contain any hardening
term yet. σ equation defined by the Hill48 criterion is given in Eq. (2) for a general stress state.

σ 2 = F(σyy− σzz)
2+G(σzz− σxx)

2+H(σxx− σyy)
2+ 2Lσ 2

yz+ 2Mσ 2
zx+ 2Nσ 2

xy (2)

where σij shows the generalized stress state for i, j= x, y, z. This formula can be rewritten in terms
of the principle stresses σ1, σ2, σ3 as in Eq. (3).

σ 2 = F(σ2 − σ3)
2+G(σ3− σ1)

2+H(σ1 − σ2)
2 (3)
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where G, H, F, L, M, and N are the coefficients and depend on the anisotropy values, r0, r45,
and r90 at 0◦, 45◦, and 90◦ with reference to the main axis. The coefficients can be calculated by
formulas as in Eq. (4).

F = r0
r90 (r0+ 1)

, G= 1
r0+ 1

, H = r0
r0+ 1

, N = (r0+ r90)(1+ 2r45)
2r90(1+ r0)

(4)

Therefore, F = 0.418, G = 0.474, H = 0.526, N = 1.341 when r0 = 1.11, r45 = 1.01, r90 =
1.27. Note that F and G are smaller than 0.5. Note that when F = 1/2, G = 1/2, H = 1/2, the
Hill48 equation turns to the Von Mises equation which is another well-known yield criterion.

The isotropic term and the back stress term representing the kinematic rule are added to the
comparison equation of the yield criterion as in Eq. (5). It includes both rules.

σ
(
σij−αij

)− σh= 0 (5)

where σh is the isotropic hardening rule, αij is the back stress term which comes from
the kinematic rule. Some αij functions are defined by Prager, Armstrong-Frederic, Chaboche,
Yoshida-Uemori. BISO and CHAB rules used are given in Eqs. (6), (7), respectively [23,27].

σh=YS+TM
(
εp

)
(6)

where YS is yield strength, TM is the tangent modulus, εp shows the effective plastic strain
increment, and the subscript h represents the isotropic hardening.

(α̇ij)m = 2
3
Cmε̇

p
ij︸ ︷︷ ︸

linear term

− γm(αij)m

√
2
3
ε̇
p
ij : ε̇

p
ij︸ ︷︷ ︸

the plastic strain range
memorization term

+ 1
Cm

∂Cm
∂T

(αij)mṪ︸ ︷︷ ︸
heat rate term

where m= 1, 2, . . . , n (7)

where n is the total term number to be decomposed, T is the temperature. Cm is the hardening
module for mth term. It also refers to the saturation rate. γm is the decrease rate for mth term.
These parameters may become dissimilar for each αij term. ε̇

p
ij is the accumulated plastic strain

rate and will be provided by the flow rule, which will be explained in the subsequent section. All
of these parameters can be determined by the nonlinear regression process.

The back stress in Eq. (7) is a first order ordinary differential equation. The heat rate term
can be neglected due to no temperature change during the folding process. Therefore, the equation
is solved by integrating explicitly with respect to ε

p
ij as in Eq. (8).

α = ϕ
C
γ
+

(
α0 −ϕ

C
γ

)
e−ϕγ

(
εp−ε

p
0

)
(8)

where α0 is the initial back stress, ε
p
0 is the plastic deformation value in the beginning, ϕ is the

normalized load direction and calculated by ϕ = sgn (σ −α) =±1. For uniaxial tensile ϕ = 1 and
for compression ϕ =−1. Because the material does not include any pre-strain in the beginning of
the folding process, the initial back stress α0 = 0 and the initial plastic deformation ε

p
0 = 0. So the

back stress equation will transform into Eq. (9).

α = C
γ

(
1− e−γ (εp)

)
for tension case (9a)
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α = C
γ

(
−1+ eγ (εp)

)
for compression case (9b)

Now, α can be substituted into the yield equation. For the uniaxial tensile test, the maximum
stress σx is seen at the tensile axis, x. So the comparison equation with hardening terms can be
rewritten as in Eq. (10).

σ (σx−αx)− σh = 0 (10a)

σx−αx− σh = 0 (10b)

When substituting Eq. (9) into Eq. (10), the yield criterion will now include BISO and CHAB
rules together as seen in Eq. (11).

(σx)tension= σh+
C
γ

(
1− e−γ

(
ε
p
x
))

for tension (11a)

(σx)compression=−σh+
C
γ

(
−1+ eγ

(
ε
p
x
))

for compression (11b)

Similarly, it is rewritten for three back stress terms,

α =
3∑

m=1

(α)m = (α)1+ (α)2+ (α)3 (12)

α1 = C1

γ1

(
1− 2e−γ1

(
εp−ε

p
L

))

α2 = C2

γ2

(
1− 2e−γ2

(
εp−ε

p
L

))

α3 =C3ε
p
Lx

for tension (13a)

α1 = C1

γ1

(
−1+ 2eγ1

(
εp−ε

p
L

))

α2 = C2

γ2

(
−1+ 2eγ2

(
εp−ε

p
L

))

α3 =−C3ε
p
Lx

for compression (13b)

Actually, γ3 does not enter into the closed-form equations. A stabilized hysteresis strain-
controlled loop is not enough to estimate this term. Another stress-controlled experiment is needed
to determine γ3. It is used for ratcheting predictions which are out of this study’s scope. Therefore,
γ3 can be given a small positive value generally [28,29]. When substituting Eq. (13) into Eq. (10),
the combined model will be given by Eq. (14).

(σx)t, c =±σh±
C1

γ1

(
±1∓ 2e∓γ1

(
εp−ε

p
L

))
± C2

γ2

(
±1∓ 2e∓γ2

(
εp−ε

p
L

))
±C3ε

p
Lx (14)
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where t, c subscripts show tension, compression cases, respectively.

While the relationships between the strain and stress can be described by Hooke’s law for
elastic behaviour, it is determined by a flow rule for plastic behaviour. A flow rule gives the rela-

tionship between the stress and the plastic deformation (ε
p
ij). Its general equation is dε

p
ij = dλ

∂f
∂σij

where λ is the plastic multiplier, dε
p
ij or ε̇

p
ij is the cumulative amount of plastic deformation, and f

is a scalar function called “plastic potential.” When f = σ , it is called the associated flow rule. In
this study, the yield criterion’s function is taken as a plastic potential function. This is common
practice for metallic materials [27]. It implies the normality of the plastic strain increment vector
to the yield surface.

2.4 FE Implementation of the Constitutive Model
FE simulations were performed for the folding and cyclic loading processes. Both models were

used in the optimization. The final diameter and height of the locking nut were probed in addition
to the stress and deformation results. The proposed optimum parameters were re-simulated in the
folding process to obtain results for the diameter, height, and stress state. The simulation results
were compared to experimental measurements for validation.

2.5 Optimization for Parameter Calibration
One of the techniques for calibration of just initialized material constants to obtain improve-

ment on the general fit of the model prediction to experimental data is to use the optimization
method [27,30,31]. The initially estimated material constants YS, TM, C1, γ1, C2, γ2, C3, γ3 were
set as input design variables for a starting point of the optimization process. The initial values
also help to inspect the lower and upper limits of variables to be studied.

An objective function was set as in Eq. (15a). By creating combinations of the design variables
between lower and upper bounds in Eqs. (15b), (15c), the best-fitted parameters among them were
selected by considering an objective function and constraints.

F (x)= φ (x)pred −φexp →min

F (x)= h(x)pred − hexp →min
(15a)

Lower bound ≤ x≤Upper bound

(x ∈R)
(15b)

{x} = {YS, TM, C1, γ1, C2, γ2, C3, γ3} (15c)

where F(x) is the objective function, {x} is the design variable set, which consists of the full
set of the model parameters. In this case, the prediction for the inner diameter φ(x)pred and the
height h(x)pred were compared with their experimental values φexp, hexp. FE analysis software was
used for both simulation and optimization [32]. The genetic algorithm (GA) method was used as
the optimization method. Its parameters are given in Tab. 2. The GA is the newest optimization
method for better calibration of the plasticity models. In this study, a multi-objective genetic
algorithm (MOGA-II) was used [33–35]. The MOGA-II method is a variant of MOGA [6] based
on a smart multi search elitism concept. The method supports multiple objectives and constrains.
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Table 2: GA parameters used in the study

Parameters Value

Estimated number of evaluation 2000
Number of initial samples 100
Number of samples per iteration 100
Maximum allowable pareto percentage 70%
Convergence stability percentage 2%
Maximum number of iterations 20

The best parameters will be the values which lead the simulation results to (almost) match the
experimental results. Our goal is to minimize the difference between the measured and predicted
dimensions. The goal function is set 0.5% as the convergence stability criterion. Although maxi-
mum iterations are limited to 100 as a stopping criterion for the optimization process, the most
probable and physically possible points are found within 20 iterations. The convergence status
during the optimization process is given in Fig. 5. 26774 evaluations are performed for the folding
simulations while 11348 for the cyclic case.
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Figure 5: The goal function during iterations of the optimization process

Once the simulations are completed on all design of experiment (DOE) points, now a function
which will give the relations between input and output variables is fitted by means of response
surfaces in the optimization module. These functions will be used to catch the optimum values
along any extra points besides DOEs.

A convergence and mesh independence study was conducted in order to improve the computa-
tional efficiency as seen in Tab. 3. The mesh convergence study verifies that an accurate calculation
with a minimum computation time was accomplished with a mesh having 6240 elements. Thus,
the change on the results will be under 0.009%. The total computing time during the optimization
for 8537 converged points takes 57 days by a computer having 3.40 GHz quad core CPU, 8 GB
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RAM. Totally 8 parameters, {x} = {YS, TM, C1, γ1, C2, γ2, C3, γ3}, were optimized for both
the nut flange folding and the cyclic loading processes.

Table 3: Number of meshes and time of computation for various mesh sizes

Number of
elements

Change (%) Flange
diameter (mm)

Computation
time

Result file
size (MB)

Memory
(MB)

1890 – 30.0273 2min 29s 115.83 512
2514 0.64369 30.0411 8min 21s 129.63 524
3756 −0.040609 30.0402 9min 40s 162.63 528
6240 −0.0099883 30.0400 10min 53s 198.88 532
11208 −0.0011667 30.0400 17min 50s 226.13 540
21144 0.0005333 30.0400 43min 28s 668.38 556
41016 0.0009889 30.0400 2h 17min 894.17 578

3 Results and Discussions

3.1 Identification of the Model Parameters
The Chaboche’s α equation has three types of parameters as YS, Cm, γm. The number of

Cm and γm depends on the number of terms to be decomposed. More Chaboche terms give
a more precise modelling ability [36]. The nonlinear regression analysis process to fit data is
performed by using specific software [29,32]. Initial parameters are taken as 1 for the regression.
For the regression, 1000 iterations are performed. A step by step regression procedure is given
in literature [22,27]. The results are listed in Tabs. 4 and 5 for AISI1040. It is seen that the
coefficients are different for monotonic and cyclic cases. These are initially fitted parameters. They
will be calibrated by modifying in the optimization.

Table 4: Initial estimations from the curve fit on the monotonic true stress true plastic strain

Models Parameters

BISO (initial) CHAB (initial)

TM (MPa) YS (MPa) C1 (MPa) γ1 C2 (MPa) γ2 C3 (MPa) γ3

Bilinear 2014.21 522.12 – – – – – –
Chaboche – 394.82 2632.97 18.51 2632.96 18.87 2632.97 18.54
Combined 489.17 431.87 1869.90 17.63 1869.90 17.63 1869.86 17.33

3.2 Optimal Parameters from Folding Simulations
The optimization process modifies the model parameters to get the more accurate folding

predictions. For this purpose, a finite element model is prepared. Instead of a 3D model, an axial
symmetric 2D model is used to avoid time consuming computations. A cylindrical coordinate
system (x, θ , z) is located at the center point of the nut. While the axial symmetry axis is placed
on the y direction, the radial direction corresponds to the x direction. The cross-section of the
geometry is located at the positive side at the x axis as seen in Fig. 6. No thread is added on the
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FE model of the nut. Its hexagonal body is assumed cylindrical. Permanent deformation happens
only at its flange.

Table 5: Initial estimations from the curve fit on the low cycle hysteresis loop

Models Parameters

BISO (initial) CHAB (initial)

TM (MPa) YS (MPa) C1 (MPa) γ1 C2 (MPa) γ2 C3 (MPa) γ3

Bilinear −1245.8 667.64 – – – – – –
Chaboche – 669.66 12274.32 63.20 12274.43 62.95 12274.64 63.20
Combined −1354.5 697.12 12112.15 63.05 12112.18 67.02 12111.76 62.99

(a) (b)

X

X

X

Z

Z

Z

Y

Y

Y

Figure 6: (a) Axial symmetric FE model of the folding process and (b) its 3D cross-section with
meshes

The Coulomb friction coefficient at the tool and sample interface is assumed to be constant
and taken as 0.125 for the AISI 1040 steel [37]. While the punch is modelled as a rigid body,
the nut and ring are modelled as flexible bodies by assigning AISI 1040 and PA6 materials,
respectively. While linear elastic material properties are applied fixed, the hardening models and
their parameters in the inelastic properties are selected as design variables to the optimization.
Quadrilateral planar Shell163 elements are used to create an element mesh for the nut, ring, and
tool geometries. These elements have a Belytschko-TSAY element formulation with five integra-
tion points. Adaptive mesh feature has been applied to the nut to eliminate convergence errors,
excessive element distortions and increase the accuracy of the simulations. Smaller elements are
used on the contact edges by mesh refinement. The size of the elements gets bigger towards the
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outer side. The nut’s bottom edge is fixed. Similarly, the ring’s bottom surface is fixed connected
to its nest. While the punch’s radial movement is constrained, a 40-stepped displacement history
is applied as the load steps towards the axial direction as in Fig. 7 where a combined model with
the initial parameters are used. In the beginning, the vertical gap between the punch and the nut’s
flange is set as 0.6 mm. An additional 3 mm movement is provided after contact is established
to ensure the strain is 0.01. The punch moves linearly towards the flange and ring. It is retracted
more slowly for returning after folding.

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

0 10 20 30 40
19.0

19.5

20.0

20.5

21.0

21.5

22.0

P
u

n
ch

 m
o

ve
m

en
t 

(m
m

)

Load steps

H
ei

g
h

t 
(m

m
)

Height (mm)

Punch movement (mm)

Figure 7: Applied load steps to the punch and the height of the nut

Permanent deformation of the nut is seen after the punch goes away. When the punch starts to
turn back after 20nd solution step, the height also returns from 18.2996 to 18.3918 mm because of
the springback (0.5%) due to the recovery of the elastic deformation. It is seen that the springback
is one of the important phenomenon on the AISI 1040 steels.

In the optimization, the folding simulations for the nut M20 × 1.5 was used. Finally, the
calibrated model parameters were used in another folding simulation for the nut M24 × 1.5 for
validation of the calibrated model. Validations on the real components are more reliable since they
reflect the deformation conditions the best. The simulated and experimentally measured diameter
and height of the nut are compared. Also the stress and strain response of the material at
the scoped point are compared with the experimental hardening curve’s shape to investigate the
similarity between the material response from the folding and uniaxial test. Fig. 8 shows the nut’s
dimensions and scoped point. The measured values are listed in Tab. 6.

Figure 8: (a) Design variables of the nylock nut and (b) its cross-section (without the ring)
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The folded height and diameter of the flange are predicted as the output. The difference
between the measured and predicted dimensions will be minimized as the goal function. The
constrains are applied as:

• no constraint for C, γ , and YS,
• the target for the diameter has been specified between 23.5 to 24 mm,
• the target for the nylock nut’s height has been specified between 18.5 to 19 mm after folding,
• the maximum absolute stress has been specified 1016.17 MPa for the cyclic case.

Table 6: Measurements before and after folding

Nut size Before folding After folding

Inner diameter (mm) Height (mm) Inner diameter (mm) Height (mm)

M20 × 1.5 25.51 22.51 23.96 18.86
M20 × 1.5 25.53 22.55 23.96 18.85
M20 × 1.5 25.51 22.50 23.96 18.79
M24 × 1.5 30.05 25.03 28.46 21.18
M24 × 1.5 30.02 25.00 28.41 21.18
M24 × 1.5 30.05 25.11 28.44 21.30

The variables’ lower and upper limits are listed in Tab. 7. 10 000 DOE points were created
between these limits. The solutions were found for 8537 points. The remaining points did not
converge due to inappropriate material parameter.

Table 7: Lower and upper boundaries of the parameters for the folding and the cyclic case in
parenthesis

TM (MPa) YS (MPa) C1, C2, C3 (MPa) γ1, γ2, γ3

Lower 0 (0) 300 (0) 1000 (0) 0 (0)
Upper 4000 (20000) 600 (1200) 200000 (300000) 30000 (30000)

The optimization module suggests the optimum values as in Tab. 8.

Table 8: Optimal parameters for the folding process

Models Parameters Outputs

TM
(MPa)

YS
(MPa)

C1
(MPa)

γ1 C2
(MPa)

γ2 C3
(MPa)

γ3 Diameter
(mm)

Height
(mm)

Bilinear 4000 300 – – – – – – 23.388 18.289
Chaboche 302.2 89331.8 24389.5 153625.1 23200.7 59112.1 19874.1 23.171 18.311
Combined 4000 300 40931.4 18207.5 18734.8 18072.1 1000 30000 23.337 18.289

3.3 Optimal Parameters from Cyclic Simulations
In addition to the folding simulations, the tension-compression test is also simulated to deter-

mine the model parameters for cyclic plasticity. A unit cylindrical model is used [38] in which no
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contact is required. A 25-stepped displacement history including both positive and negative values
is applied as the load history. While linear elastic material properties of the AISI1040 steel are
constant, the hardening model parameters are selected as design variables to the optimization. To
be able to ensure that the plastic strain stays in the range of ±0.01, the reversal displacements are
limited between 1.14 and −1.1 mm. The shape of the hardening loops probed from the simulation
is compared with the experimental loop shape for validation. Fig. 9 shows the FE model, load
history applied, and plastic strain response taken.
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Figure 9: FE model and displacement steps for cyclic loading

The optimization module suggests the optimum values as in Tab. 9.

Table 9: Optimal parameters for cyclic loading process

Models Parameters Output

TM (MPa) YS (MPa) C1 (MPa) γ1 C2 (MPa) γ2 C3 (MPa) γ3 Hill48 (MPa)

Bilinear 15082.8 650.26 – – – – – – 987.98
Chaboche – – 297120.2 77038.95 127692.12 109.1 38490.2 11 1014.97
Combined 10.4 21.1 276848.4 75568.15 118846.27 101.8 34691.4 11 998.40

The proposed optimum values are re-simulated for verification. The percent true relative errors

of the verified outputs are calculated using ε =
∣∣∣∣experimental− verified

experimental

∣∣∣∣ ∗ 100 as seen in Tab. 10.

The diameter and height are predicted within a 2%–2.94% range for the folding case. For the
cyclic case, the stress levels are predicted up to 1.17% accuracy.

For validation, a new folding simulation is performed for the nut M24 × 1.5 whose nominal
diameter is φ 24 mm. The diameter and height solutions are given as seen in Tab. 11. They are
compared with the experimental means. Predicted dimensions are in the range of 0.07%–2.95% of
the percent relative error while earlier studies by Ramezansefat et al. [39] had a 4% error, and the
study by Hassan et al. [7] with a 3% deviation.
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Table 10: Verification of the proposed optimums for the nut M20 × 1.5

Output Models Proposed optimum Verified Experimental Error (%)

Diameter (mm) BISO 23.381 23.387 23.96 2.39
CHAB 23.271 23.274 23.96 2.86
Combined 23.337 23.348 23.96 2.55

Height (mm) BISO 18.489 18.478 18.86 2.03
CHAB 18.311 18.305 18.86 2.94
Combined 18.383 18.483 18.86 2.00

Stress (MPa) BISO 987.98 1004.24 1016.17 1.17
CHAB 1014.97 1015.47 1016.17 0.07
Combined 998.40 1016.69 1016.17 0.05

Table 11: Validation of the verified models on the nut M24 × 1.5

Output Models Model predictions Experimental Error (%)

Diameter (mm) BISO 30.89 30.04 2.83
CHAB 29.17 30.04 2.90
Combined 30.02 30.04 0.07

Height (mm) BISO 25.74 25.05 2.75
CHAB 25.79 25.05 2.95
Combined 25.08 25.05 0.12

3.4 Relations between the Parameters and the Nut Size
The relationships between the parameters and the goals are obtained by means of response

surface graphics created based on the Kriging method [40]. Fig. 10 shows the relations for the
folding process with the combined model. Horizontal axis is normalized considering upper and
lower limits of the parameters. It is seen that YS, TM, C3, and γ3 are conspicuous parameters on
the diameter and height for the folding process. Increasing YS and TM leads to decrease in the
deformability. C3 and γ3 have an inverse behaviour on the diameter and height.
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3.5 Stress and Deformation Results
When the calibrated parameters for the combined model are used in the folding simulation,

the stress and deformation results are obtained as seen in Fig. 11. The graphs show the solution
at the last sub step of the last step. As can be seen from the stress history, the nut undergoes
plastic deformation, while the ring has only been exposed to the linear elastic deformation. The
reason for the constant residual stress seen on the ring after deformation is that the contact is
confirmed.
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Figure 11: The stress and deformation results on the ring and nut during deformation

The Hill48 stress distribution is compared with that of the Von Mises equivalent stress. The
Hill48 stress is slightly less than the Von Mises stress because F and G are smaller than 0.5. While
the punch is returning after the 20th step, residual stress is seen on the nut. The nut’s body is not
subjected to any plastic deformation.

3.6 Hardening Curves
Comparison of the hardening curves is the best way for validation of the parameters. The

curves are compared with experimental points in reference with shape and the peak stress as seen
in Figs. 12 and 13 for the AISI 1040 steel. The fitted and calibrated model predictions are also
given.

The BISO model provides a linear line for hardening both before and after calibration, as
expected. This linearity starts from the yield point and continues to increase with the constant
slope at increasing strain values. However, the experimental behaviour of the material shows that
it has a significant curvature after the yield point. For this reason, the representation ability
of BISO is not sufficient. The calibration process could not improve this model. Before and
after calibration, the CHAB model has a good representation for hardening behaviour. The fitted
model has a bigger deviation to the prediction of the peak stress than the simulation having
the calibrated models. The CHAB model starts with over-prediction with increasing strain. The
combined model overcomes the over-prediction. The peak tensile stress is seen at 0.5% strain.
Fitted CHAB predicts the peak stress as 959.30 MPa, while the experimental peak is 849.45
MPa leading up to 11.45% difference. Calibrated CHAB predicts 855.83 MPa leading to 0.75%.
Previously a 1.6% difference was reported by Kang et al. [41]. This model is good at modelling the
increasing deformation and shows a significant difference when calibrated. The curves in Figs. 12c
and 13c do not have a good fit neither to experimental points nor to each other when the
model parameters are used interchangeably. It is inferred that when the parameters are calibrated
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at a strain amplitude, simulated results deviate from experimental results at the different strain
amplitudes.
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Figure 12: Comparisons of hardening curves (a) fitted (b) calibrated (c) cyclic model on the
folding process

When the parameters before calibration are used in the folding simulation, it is seen that there
are significant differences in the loop shapes in Fig. 13a. The models are improved by modifying
them in the optimization process. When optimized parameters are used, it has been found that
the differences between the model and experimental loops are negligible as seen in Fig. 13b.
The implemented method provides better accuracy. Therefore, these values become the calibrated
material parameters.
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Figure 13: Comparisons of cyclic hardening behaviours (a) fitted (b) calibrated (c) monotonic
model on the cyclic process

The BISO model alone has definitely not been sufficient in modelling the cyclic behaviour as
seen in Figs. 13a, 13b. Its linear nature continues after the calibration, too. CHAB or combined
models show a good fit between the simulated and experimental peak tensile stress. The kinematic
hardening rule is able to simulate the hysteresis loop for strain-controlled loadings as expected.
Neither CHAB nor the combined model for folding has a good fit to cyclic plasticity as seen
in Fig. 12c. The effects of the calibration process on the experimental strain-controlled hysteresis
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loops can be seen clearly when CHAB or combined models are used. Comparing the shape of
the loops, it is seen that the magnitude of the error between the model and experimental data
increases when getting closer to the end of the first cycle when the CHAB model is used alone.
The magnitude of the error decreases when the BISO is combined with CHAB. Ramezansefat
et al. [39] reported that when combined, the BISO overcomes the over-prediction problem. Usage
of CHAB alone restricts the plastic flow. The combined model has the minimum over-prediction.
Also the loops show close correlation to the uniaxial experiments.

Summarizing above discussions, it is concluded that one hysteresis loop from the uniaxial
strain controlled test is enough to calibrate the parameters as reported by Paul et al. [42].
Although the CHAB model is expected to represent the loops well [28], it is seen that it is
not sufficient when used alone, but can be used in combination [35]. In every case, calibration
should be done. Researchers have used just uniaxial tests to predict the low cycle fatigue damage
when calibrated by using genetic algorithm optimization methods [33,34]. It is understood that its
nonlinear nature is able to reflect the nonlinearity of the material models.

4 Conclusion

This study presents parameter determination and calibration for the nut flange bending pro-
cess. A plasticity model is set by using the Hill48 yield criterion, combined hardening rules, and
associated flow rule for FE simulation of the flange folding process. While the BISO model’s
parameters are determined from the monotonic tensile test curve, the CHAB’s parameters are
determined by nonlinear regression on the experimental uniaxial hysteresis loops. The optimization
process is performed to calibrate the parameters. Experiments are conducted to validate the
models. Based on the analysed data, the results reveal the following;

• Although a model obtained from the tensile/compression test should not be used directly
for the simulation of any multi-axial deformation process, it will be suitable as long as it is
calibrated with experimental data.

• The calibrated model parameters leading to accurate folding or cyclic deformation simula-
tion are presented for the folding process. The calibrated parameters are different for both
cases. Therefore, they cannot be used interchangeably.

• While the combined hardening rule will be a good choice for cyclic deformations, all models
are suitable for the folding process. By combining the BISO model with the CHAB model
over-prediction is eliminated. The pure kinematic model is enough for the folding, but not
enough for cyclic deformation.

• The springback shows that the AISI 1040 steel in the folding process is dependent on
anisotropy. Its plastic deformability in the axial and radial directions is different. Therefore,
the Hill48 criterion becomes a good choice because it can represent material anisotropy
owing to its anisotropy-dependent coefficients F, G, and H.

• Residual stress on the ring does not cause any plastic deformation. Thus, the folding process
can be completed without any defect on the ring.
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23. Qu, F., Jiang, Z., Lu, H. (2015). Effect of mesh on springback in 3D finite element analysis of flexible
microrolling. Journal of Applied Mathematics, 2015(2), 1–7. DOI 10.1155/2015/424131.

24. Sharma, V. M. J., Rao, G. S., Sharma, S. C., George, K. M. (2014). Low cycle fatigue behavior of
aa2219-t87 at room temperature. Materials Performance and Characterization, 3(1), 103–126. DOI
10.1520/MPC20130092.
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