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ABSTRACT

2-D and 3-D micro-architectured multiphase thermoelastic metamaterials are designed and analyzed using a
parametric level set method for topology optimization and the finite element method. An asymptotic homoge-
nization approach is employed to obtain the effective thermoelastic properties of the multiphase metamaterials.
The ε-constraint multi-objective optimization method is adopted in the formulation. The coefficient of thermal
expansion (CTE) and Poisson’s ratio (PR) are chosen as two objective functions, with theCTE optimized and the PR
treated as a constraint. The optimization problems are solved by using the method of moving asymptotes. Effective
isotropic and anisotropic CTEs and stiffness constants are obtained for the topologically optimized metamaterials
with prescribed values of PR under the constraints of specified effective bulk modulus, volume fractions and
material symmetry. Two solid materials along with one additional void phase are involved in each of the 2-D and
3-D optimal design examples. The numerical results reveal that the newly proposed approach can integrate shape
and topology optimizations and lead to optimal microstructures with distinct topological boundaries. The current
method can topologically optimize metamaterials with a positive, negative or zero CTE and a positive, negative or
zero Poisson’s ratio.
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1 Introduction

Micro-architectured thermoelastic metamaterials are a new class of materials with unusual
thermal and elastic properties such as a negative Poisson’s ratio and a non-positive coefficient of
thermal expansion (CTE) (e.g., [1–7]). For such metamaterials, micro-architectures play a crucial
role in attaining targeted or extremal properties beyond those of their constituents. It offers
additional degrees of freedom to achieve exotic properties that are not exhibited by naturally
occurring or conventionally designed materials.

In developing these metamaterials, heuristic approaches have typically been used (e.g., [1,8–14]).
However, such approaches are limited to simple geometrical designs or loading conditions. For
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complex configurations and deformation mechanisms, topology optimization has emerged as a
promising method (e.g., [15–18]). Sigmund et al. [19,20] optimally designed materials with a zero
or negative CTE based on the solid isotropic material with penalization (SIMP) method. They
found that materials with a negative CTE can be obtained by using two solid materials (each
having a positive CTE) and one void phase. Schwerdtfeger et al. [21] optimized a 3-D structure
with a negative Poisson’s ratio and increased the negativity of Poisson’s ratio by a factor 2 using a
SIMP based inverse homogenization approach. Andreassen et al. [22] designed a manufacturable
3-D elastic microstructure with a Poisson’s ratio of −0.5 through topology optimization with a
manufacturing constraint. Wang et al. [23] proposed multi-phase metamaterials with unusual ther-
moelastic properties by using a parametric level set-based topology optimization method combined
with a finite element approach. Vogiatzis et al. [24] employed a reconciled level set-based topology
optimization method to design single- and multiple-phase metamaterials with negative Poisson’s
ratios in both 2-D and 3-D configurations. Takezawa et al. [25] developed a topology optimization
method for porous composites with anisotropic negative CTEs and isotropic/anisotropic positive
CTEs. Wang et al. [26] designed multi-phase and multi-functional metamaterials with targeted
effective elastic moduli and CTEs and proposed some periodic microstructures that can produce
negative Poisson’s ratios and negative CTEs. Ye et al. [27] developed an optimization framework
for gradually stiffer mechanical metamaterials with a negative Poisson’s ratio using a parametric
level set method and a numerical homogenization approach. Li et al. [28] proposed a robust topol-
ogy optimization model for thermoelastic properties of multiphase metamaterials by considering
hybrid interval-random uncertainties in properties of constituent materials. However, these authors
did not consider 3-D cases or anisotropic CTEs under constraints of Poisson’s ratio varying from
negative to positive values. This motivated the current study.

In the present paper, topology optimization of micro-architectured multiphase thermoelastic
metamaterials is conducted using a parametric level set method combined with a finite ele-
ment analysis. The ε-constraint multi-objective optimization method is adopted. An asymptotic
homogenization approach is employed to obtain the effective thermoelastic properties of the
metamaterials, and the method of moving asymptotes is applied to solve the optimization prob-
lem. Both 2-D and 3-D design examples are included to illustrate the new approach, which
differs from what was done in [20,26] and other existing studies on topology optimization of
multiphase metamaterials with extreme thermoelastic properties, where only 2D configurations
were considered in their design examples. In Section 2, the asymptotic homogenization method for
predicting effective thermoelastic properties of composites is briefly introduced. Existing analytical
formulas for bounds on the effective CTE of heterogeneous composites are reviewed in Section 3.
In Section 4, the topology optimization based on the parametric level set method (PLSM) is
formulated, which is followed by a sensitivity analysis in Section 5. Numerical results for 2-D
and 3-D design examples are presented in Section 6. The paper concludes in Section 7 with a
summary.

2 Asymptotic Homogenization of Thermoelastic Properties

Asymptotic homogenization is a widely used approach in which two spatial scales (i.e., micro-
scopic and macroscopic) are considered (e.g., [29–31]). The coordinate system at the microscopic
scale is y= (y1, y2, y3), while that at the macroscopic scale is x= (x1, x2, x3). The two scales are
linked through y= x/ε, where ε (>0) is a small dimensionless parameter.
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Using the double-scale asymptotic expansion, the displacement field in a periodic heteroge-
neous (composite) material can be expressed as

uε
i (x, y)= u0i (x, y)+ εu1i (x, y)+ ε2u2i (x, y)+ · · ·, (1)

where u0i (x, y) (i= 1, 2, 3) denote the homogeneous parts, and uki (x, y) (i= 1, 2, 3; k= 1, 2, 3,. . .)

represent local variations at the scale of heterogeneities. Note that uki (x, y) is periodic in y (also

known as Y -periodic), i.e., uki (x1+ n1Y1, x2+ n2Y2, x3 + n3Y3)= uki (x1, x2, x3) for any integers
n1, n2 and n3 and periods Y1, Y2 and Y3.

It then follows from Eq. (1) that the derivative of the displacement field uε
i (x, y)with respect

to the macroscopic coordinate x can be obtained as, with the help of the chain rule and the
relation y= x/ε,

∂uε
i (x, y)
∂xj

= ∂u0i (x, y)
∂xj

+ 1
ε

∂u0i (x, y)
∂yj

+ ε
∂u1i (x, y)

∂xj
+ ∂u1i (x, y)

∂yj
+ ε2

∂u2i (x,y)
∂xj

+ ε
∂u2i (x, y)

∂yj
+· · ·. (2)

In addition, the limit of the integral of a Y -periodic function � (y) as ε approaches zero is
given by (e.g., [29])

lim
ε→0

∫
�

�
(x

ε

)
d�=

∫
�

[
1
|Y |

∫
Y

� (y) dY
]
d�, (3)

where � is the domain occupied by the material, Y represents a unit cell of the material, and |Y |
is the unit cell area (in a 2-D case) or volume (in a 3-D case).

According to the principle of virtual work, the equilibrium equation of a material undergoing
thermoelastic deformations can be written as (e.g., [29,32])∫

�ε

Cijkl
∂uε

k

∂xl

∂vi
∂xj

d�=
∫

�ε

bivi d�+
∫

�t

tivi d� +
∫
Sε

pivi dS+
∫

�ε

Cijklαkl�T
∂vi
∂xj

d�, (4)

where �ε is the material domain with microstructures, �t is the traction-prescribed part of
the smooth closed boundary surface of �ε, Sε is the interface (or hole surface), Cijkl are the
components of the elasticity (stiffness) tensor, vi are the components of the virtual displacement,
bi are the components of the body force, ti are the components of the traction on the boundary
part �t, pi are the components of the traction on the interface Sε , and �T is the temperature
change.

Using Eqs. (2) and (3) in Eq. (4) gives the following three hierarchical equations based on the
order of ε (e.g., [32]):

CH
ijkl =

1
|Y |

∫
Y

(
Cijkl−Cijmn

∂χkl
m

∂yn

)
dY , (5)

βHij = 1
|Y |

∫
Y
Cijmn

(
αmn�T − ∂ϒm

∂yn

)
dY , (6)

αHij =
(
CH
ijkl

)−1
βHkl , (7)
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where CH
ijkl, βHij and αHij are, respectively, the effective (homogenized) elastic stiffness, thermal

stress and coefficient of thermal expansion tensors, χkl
m and ϒm are, respectively, the characteristic

displacement fields induced by the mechanical and thermal loading, which can be obtained from
(e.g., [20])∫
Y
Cijmn

∂χkl
m

∂yn

∂vi
∂yj

dY =
∫
Y
Cijmnε0(kl)mn

∂vi
∂yj

dY , (8)

∫
Y
Cijkl

∂ϒk

∂yl

∂vi
∂yj

dY =
∫
Y
Cijklαkl

∂vi
∂yj

dY . (9)

Note that Eqs. (5) and (6) can each be rewritten in a symmetric form as (e.g., [20,33])

CH
ijkl =

1
|Y |

∫
Y

(
ε0(kl)pq − ε∗(kl)pq

)
Cpqrs

(
ε
0(ij)
rs − ε

∗(ij)
rs

)
dY , (10)

βHkl =
1
|Y |

∫
Y

(
αpq�T − εα

pq

)
Cpqrs

(
ε0(kl)rs − ε∗(kl)rs

)
dY , (11)

where ε
0(ij)
rs stands for three or six linearly independent unit test strain fields for the 2-D or 3-D

case, and ε
∗(kl)
pq and εα

pq represent the locally varying strain and thermal strain fields induced,
respectively, by the test strain modes and thermal load, which can be obtained from

ε(kl)
pq = εpq

(
χkl
)
= 1

2

(
∂χkl

p

∂yq
+ ∂χkl

q

∂yp

)
, (12)

εα
pq= εpq

(
ϒα
)= 1

2

(
∂ϒα

p

∂yq
+ ∂ϒα

q

∂yp

)
. (13)

Also, Eqs. (8) and (9) can be rewritten as, with the help of Eqs. (12) and (13) and the
symmetry of Cijkl,∫
Y
Cpqrsε∗pq

(
χkl
) ∂vr

∂ys
dY =

∫
Y
Cpqrsε0pq

(
χkl
) ∂vr

∂ys
dY , (14)

∫
Y
Cpqrsεpq

(
ϒα
) ∂vr
∂ys

dY =
∫
Y
Cpqrsαpq

∂vr
∂ys

dY . (15)

3 Bounds on the Effective Coefficient of Thermal Expansion

Several analytical and semi-analytical formulas have been provided to evaluate the effec-
tive CTE of heterogeneous composites, which include those reported in [34–37]. The model
by Gibiansky et al. [37], which gives tight and sharp bounds compared to those presented in
Schapery [35] and Rosen et al. [36], is adopted in this study. The upper and lower bounds on the
effective CTE read [20,37]
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for 2-D cases, where
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and
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for 3-D cases, where
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3

)(
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3

)[〈
3κα
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In Eqs. (16a), (16b), (17a) and (17b), 〈X〉 =
N∑
n=1

vfnXn represents the volume average of the

property for the multi-phase composite, with vfn being the volume fraction of each phase and N
the number of phases, μmin and μmax are, respectively, the minimum and maximum shear moduli,
κL2D and κU2D are the lower and upper Hashin-Shtrikman bounds on the 2-D bulk modulus given
by [20,38]

κL2D =
〈

1
κ +μmin

〉−1

−μmin, (18a)

κU2D =
〈

1
κ +μmax

〉−1

−μmax, (18b)
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and κL3D and κU3D are, respectively, the lower and upper Hashin-Shtrikman bounds on the 3-D bulk
modulus given by [38,39]

κL3D =
〈

3
3κ + 4μmin

〉−1

− 4μmin

3
, (19a)

κU3D =
〈

3
3κ + 4μmax

〉−1

− 4μmax

3
, (19b)

where κ = E/[2(1− ν)] for the 2-D plane stress case and κ = E/[3(1− 2ν)] for the 3-D case, and
μ=E/[2(1+ ν)] for both the 2-D and 3-D cases (e.g., [40]).

4 Topology Optimization Using the PLSM

The parametric level set method (PLSM) developed in [41,42] is a powerful shape and
topology optimization approach that can overcome some shortcomings of the conventional level
set method, such as no regularization, velocity extension, and numerical time step limitations
(e.g., [43]). In addition, for multi-material optimizations, Wang et al. [44] proposed the use of
m level set functions to conduct multi-phase structural optimizations on the basis of the PLSM,
which can prevent overlapping between different phases and suppress redundant regions in the
design domain when compared to other multi-material approaches (e.g., [45,46]).

In order to obtain multi-functional composites with optimal properties, multi-objective topol-
ogy optimization methods need to be used. A few algorithms have been developed to achieve
multi-objective optimization. The weighted sum optimization method is a classical approach that
combines all the objectives into a single objective function, where the designer prescribes the
weights a priori. Different weights can be assigned to different terms in the objective function
based on their relative importance. These weights influence the final design. A major disadvantage
of the weighted sum optimization is its strong dependence on the weights that needs to be
carefully tailored according to specific applications (e.g., [47,48]). The ε-constraint method is
another popular method, in which one of the objective functions is optimized, while the other
objective functions are regarded as constraints that can limit the influence from the assigned
weights. A comparison between these two methods can be found in [49]. In addition, evolutionary
algorithms such as the genetic algorithm and particle swarm optimization have been widely used
(e.g., [50]). However, with a large number of design variables involved in a multi-objective topology
optimization problem, it is quite challenging to use evolutionary algorithms due to the lack of
speedy convergence and consistency.

Sigmund et al. [19] showed that there is no direct relationship between a negative coefficient of
thermal expansion (CTE) and a negative Poisson’s ratio (PR). CTEs and PRs are not competing
properties. Therefore, each of them can change without affecting the other.

In this study, the ε-constraint multi-objective optimization approach is adopted. The CTE and
PR are chosen as two objective functions, but only the CTE is optimized and the PR is treated
as a constraint. This differs from that in [26], where the weighted sum optimization method was
employed by combining the thermal strain and elasticity tensors into one objective function using
two sets of weighted factors.
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The current topology optimization algorithm can be described as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find mk
i (i= 1, 2, . . . , n; k= 1, 2)

Minimize : αj

Subject to : VL
1 ≤Vf 1 ≤VU

1 ,

VL
2 ≤Vf 2 ≤VU

2 ,

g
(
CH
)= 0,

ν ≤ ν∗,

a (u, v, φ)= l (v, φ) , u|�D = u0, ∀ v∈U,

mkL
i ≤mk

i ≤mkU
i ,

(20a)

where the coefficients mk
i (k= 1, 2; i= 1, 2,. . ., n) serve as design variables in optimization, with

i representing the number of knot points in the design domain and k denoting two level set
functions employed in the optimization, αj is the coefficient of thermal expansion serving as the

objective function, with j being 1 and 2 for the 2-D case or 1, 2 and 3 for the 3-D case, VL
1

and VU
1 and VL

2 and VU
2 are, respectively, the prescribed lower and upper bounds on the volume

fraction for solid materials 1 and 2, g(CH) denotes the constraint on the stiffness tensor CH due
to the material symmetry, ν and ν∗ are, respectively, Poisson’s ratio and its prescribed upper bound
to be used in the constraint to obtain a positive, negative or a near zero Poisson’s ratio, mkL

i

and mkU
i are, respectively, the lower and upper bounds of each design variable mk

i to ensure a
converged and stable solution, u and v are, respectively, the actual and virtual displacement fields,
U is the kinematically admissible displacement space, u0 is the prescribed displacement on the
admissible Dirichlet boundary �D, and a and l are the bilinear energy forms given by

a (u, v, φ)=
∫
Y

εij (u)Cijkl (x, φ)εkl (v) dY , (20b)

l (v, φ)=
∫
Y

ε0ij (u)Cijkl (x, φ)εkl (v) dY , (20c)

in which Cijkl (x, φ) is the locally varying elastic stiffness tensor that is related to the level set

function φ, and ε0ij is the applied strain.

The parametric level set-based topology optimization method (e.g., [41,51]) is adopted in this
study. The method of moving asymptotes (MMA) developed by Svanberg [52,53] is used to solve
the optimization problem defined in Eq. (20a). The MMA is a well-known optimizer that is
very efficient for structural optimization by minimizing sequential convex approximations of the
original function. It is also widely employed to handle multiple constraints. These are different
from what was done in [20], where the sequential linear programming method was employed as
the optimization method.
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According to the multi-material parametric level set method (e.g., [44,54]), the elastic stiffness
tensor C and the coefficient of thermal expansion tensor α at an arbitrary point x can be
determined as

C (x, φ)=H
(
φ1
)[(

1−H
(
φ2
))

C1+H
(
φ2
)
C2
]
, (21)

α (x, φ)=
(
1−H

(
φ2
))

α1+H
(
φ2
)

α2, (22)

where φ1 and φ2 represent two level set functions employed in the multi-material optimization,
and Cδ and αδ (δ = 1, 2) are, respectively, the elastic stiffness tensors and coefficient of thermal
expansion tensors for the two phases, and H(φi) (i= 1, 2) is the Heaviside function defined by

H
(
φi (x)

)=
{
0, φi (x) < 0,

1, φi (x)≥ 0.
(23)

Note that the cubic and isotropic elastic symmetries are considered in the microstructure
design in the current study. To ensure the cubic symmetry, the constraints on the elastic constants
given by g(CH) = 0 in Eq. (20a) have the explicit expressions (e.g., [55]): C1111 = C2222 = C3333,
C1122 = C1133 = C2233, C1123 = C1112 = C1113 = C2223 = C2212 = C2213 = C3323 = C3312 = C3313 =
C2312 = C2313 = C1213 = 0, and C2323 = C1212 = C1313. To attain the isotropic symmetry, one
additional constraint in the form of C2323 = (C1111 −C1122)/2 will be imposed along with those
for the cubic symmetry (e.g., [12]). The above-mentioned constraints can be readily implemented
in the MMA optimization algorithm, which is capable of handling multiple-constraint problems.

5 Sensitivity Analysis

In order to employ the MMA, the first derivatives of the objective function αj and constraint
functions (including Poisson’s ratio ν and volume fractions Vf 1 and Vf 2) need to be computed

with respect to the design variables mk
i . Hence, the derivatives of the effective elastic stiffness

tensor CH
ijkl and the effective thermal stress tensor βHkl with respect to mk

i are derived here.

From Eq. (10), the derivative of CH
ijkl with respect to the pseudo-time t can be obtained as

∂CH
ijkl

∂t
= 1

|Y |
∫
Y

(
ε
0(ij)
rs − ε

∗(ij)
rs

) ∂Cpqrs (x,φ)

∂t

(
ε0(kl)pq − ε∗(kl)pq

)
dY

+ 2
1
|Y |

∫
Y

(
ε0(kl)pq − ε∗(kl)pq

)
Cpqrs (x,φ)

∂
(
ε
0(ij)
rs − ε

∗(ij)
rs

)
∂t

dY . (24)

From Eq. (14), it follows that

∫
Y

⎡
⎣∂Cpqrs

∂t

(
ε0(kl)pq − ε∗(kl)pq

)
+Cpqrs

∂
(
ε
0(kl)
pq − ε

∗(kl)
pq

)
∂t

⎤
⎦ ∂vr

∂ys
dY = 0. (25)
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Using Eq. (25) in Eq. (24) leads to

∂CH
ijkl

∂t
=− 1

|Y |
∫
Y

(
ε
0(ij)
rs − ε

∗(ij)
rs

) ∂Cpqrs (x,φ)

∂t

(
ε0(kl)pq − ε∗(kl)pq

)
dY . (26)

Similarly, the derivative of the effective thermal stress tensor in Eq. (11) with respect to the
pseudo-time t can be determined as

∂βHkl

∂t
= 1

|Y |
∫
Y

(
αpq− εα

pq

) ∂Cpqrs (x, φ)

∂t

(
ε0(kl)rs − ε∗(kl)rs

)
dY

+ 1
|Y |

∫
Y

∂
(
αpq− εα

pq

)
∂t

Cpqrs (x, φ)

(
ε0(kl)rs − ε∗(kl)rs

)
dY

+ 1
|Y |

∫
Y

(
αpq− εα

pq

)
Cpqrs (x, φ)

∂
(
ε
0(kl)
rs − ε

∗(kl)
rs

)
∂t

dY . (27)

From Eq. (15), it follows that

∫
Y

⎡
⎣∂Cpqrs

∂t

(
αpq− εα

pq

)
+Cpqrs

∂
(
αpq− εα

pq

)
∂t

⎤
⎦ ∂vr

∂ys
dY = 0. (28)

Substituting Eq. (28) into Eq. (27) yields, with the help of Eq. (26),

∂βHkl

∂t
=− 1

|Y |
∫
Y

(
αpq�T − εα

pq

) ∂Cpqrs (x, φ)

∂t

(
ε0(kl)rs − ε∗(kl)rs

)
dY . (29)

To obtain the derivative of a function with respect to the design variables mk
i , Eq. (26) can

be rewritten as, with the help of Eq. (21),

∂CH
ijkl

∂t
=− 1

|Y |
∫
Y

(
ε
0(ij)
rs − ε

∗(ij)
rs

) 2∑
d=1

[
∂Cpqrs (x, φ)

∂H
(
φd
) δφd

∂φd

∂t

](
ε0(kl)pq − ε∗(kl)pq

)
dY , (30)

where the Dirac delta function δφd is the derivative of the Heaviside function H(φd), i.e., δφd =
∂H(φd)/∂φd (no sum on d).

In a level set-based topology optimization method, the structural design boundary is implicitly
represented by the zero-level set of a one-dimensional-higher level set function with the Lipschitz
continuity (e.g., [56]). Through differentiating the zero-level set equation φk(x, t) = 0 with respect
to the pseudo-time t, the Hamilton-Jacobi partial differential equation (HJ-PDE) can be readily
obtained as

∂φk (x, t)
∂t

− vkn
∣∣∣∇φk

∣∣∣= 0, (31)
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where k= 1 or 2 (with no sum on k), vkn is the normal velocity of the kth level set function given
by (e.g., [51])

vkn =
[
ϕk (x)

]T
ṁk (t)∣∣∣(∇ϕk

)T mk (t)
∣∣∣ , (32)

in which ϕk(x) is a n × 1 column matrix representing the n compactly supported radial basis
functions ϕki (i= 1, 2,. . ., n) defined over the fixed grid points, and mk(t) is a n×1 column matrix

representing n generalized expansion coefficients mk
i (i = 1, 2,. . ., n) serving as design variables.

Note that in reaching Eq. (32) use has been made of the relation

φk (x, t)= ϕk (x)T mk (t) . (33)

Substituting Eqs. (31) and (32) into Eq. (30) gives, with the help of Eq. (33),

∂CH
ijkl

∂t
=− 1

|Y |
∫
Y

(
ε
0(ij)
rs − ε

∗(ij)
rs

)[ 2∑
d=1

∂Cpqrs (x, φ)

∂H
(
φd
) δφdϕd (x)T ṁd (t)

](
ε0(kl)pq − ε∗(kl)pq

)
dY

=− 1
|Y |

∫
Y

(
ε
0(ij)
rs − ε

∗(ij)
rs

)[ 2∑
d=1

n∑
b=1

∂Cpqrs (x,φ)

∂H
(
φd
) δφdϕdb (x)

∂md
b (t)

∂t

](
ε0(kl)pq − ε∗(kl)pq

)
dY . (34)

Alternatively, the derivative of CH
ijkl can also be expressed as, upon using the chain rule,

∂CH
ijkl

∂t
=

2∑
d=1

n∑
b=1

∂CH
ijkl

∂md
b

∂md
b (t)

∂t
. (35)

By comparing Eqs. (34) and (35), the derivative of CH
ijkl with respect to md

b can be obtained as

∂CH
ijkl

∂md
b

=− 1
|Y |

∫
Y

(
ε
0(ij)
rs − ε

∗(ij)
rs

) ∂Cpqrs (x,φ)

∂H
(
φd
) δφdϕdb (x)

(
ε0(kl)pq − ε∗(kl)pq

)
dY . (36)

For the case with two level set functions (e.g., [26]), the two derivatives can be obtained from
Eqs. (36) and (21) as

∂CH
ijkl

∂m1
b

=− 1
|Y |

∫
Y

(
ε
0(ij)
pq − ε

∗(ij)
pq

)[(
1−H

(
φ2
))

C1
pqrs+H

(
φ2
)
C2
pqrs

](
ε0(kl)rs − ε∗(kl)rs

)
ϕ1
b (x) δφ1 dY ,

(37)

∂CH
ijkl

∂m2
b

=− 1
|Y |

∫
Y

(
ε
0(ij)
pq − ε

∗(ij)
pq

)
H
(
φ1
)(

C2
pqrs−C1

pqrs

)(
ε0(kl)rs − ε∗(kl)rs

)
ϕ2
b (x) δφ2 dY . (38)
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Similarly, the derivatives of the effective thermal stress tensor can be obtained from Eqs. (29)
and (21) as

∂βHkl

∂m1
b

=− 1
|Y |

∫
Y

(
αpq�T − εα

pq

)[(
1−H

(
φ2
))

C1
pqrs+H

(
φ2
)
C2
pqrs

](
ε0(kl)rs − ε∗(kl)rs

)
ϕ1
b (x) δφ1 dY ,

(39)

∂βHkl

∂m2
b

=− 1
|Y |

∫
Y

(
αpq�T − εα

pq

)
H
(
φ1
)(

C2
pqrs−C1

pqrs

)(
ε0(kl)rs − ε∗(kl)rs

)
ϕ2
b (x) δφ2 dY . (40)

For the effective CTE tensor, its derivative with respect to the design variables md
b can be

obtained from Eq. (7) as

∂αHij

∂md
b

=
(
CH
ijkl

)−1 ∂βHkl

∂md
b

+
∂
(
CH
ijkl

)−1

∂md
b

βHkl , (41)

where d = 1, 2 and b= 1, 2,. . ., n.

For a multi-material system with two solid phases and one void phase, as shown in Fig. 1,
the volume fractions of the two solid materials can be written as (e.g., [51])

Vf 1 =
1
|Y |

∫
Y
H
(
φ1
)[

1−H
(
φ2
)]

dY , (42a)

Vf 2 =
1
|Y |

∫
Y
H
(
φ1
)
H
(
φ2
)
dY , (42b)

where Vf 1 and Vf 2 are, respectively, the volume fractions of the two solid materials 1 and 2.

Figure 1: Multi-material system with two solid phases and one void phase via two level set
functions

Then, the sensitivity of each volume fraction with respect to the design variables md
b can be

obtained from Eqs. (42a) and (42b) as, with the help of Eq. (33),

∂Vf 1
∂m1

i

= 1
|Y |

∫
Y

ϕ1
i (x)

(
1−H

(
φ2
))

δφ1 dY , (43a)

∂Vf 1
∂m2

i

=− 1
|Y |

∫
Y

ϕ2
i (x)H

(
φ1
)

δφ2 dY , (43b)
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∂Vf 2
∂m1

i

= 1
|Y |

∫
Y
H
(
φ2
)

ϕ1
i (x) δφ1 dY , (43c)

∂Vf 2
∂m2

i

= 1
|Y |

∫
Y
H
(
φ1
)

ϕ2
i (x) δφ2 dY . (43d)

6 Numerical Results and Discussion

The linear thermoelasticity equations given in Eqs. (14) and (15) are solved using the finite ele-
ment method (FEM). A fixed and rectilinear mesh is used in the homogenization-based topology
optimization (e.g., [57]), and ANSYS [58] is employed as the computational tool. In addition, the
level set knots are positioned at the finite element nodes for simplicity. In the examples included
here, an ‘ersatz’ material model (e.g., [59]) is used to approximate material properties for those
elements crossed by the moving level set boundaries, i.e., the zero level set. The volume-averaged
elastic stiffness tensor Ce and coefficient of thermal expansion tensor αe of the eth element can
be computed from Eqs. (21) and (22) through integration over the element domain as

Ce = 1
Ve

∫
�e

[
H
(
φ1
)(

1−H
(
φ2
))

C1+H
(
φ2
)
C2
]
d�, (44)

αe = 1
Ve

∫
�e

[(
1−H

(
φ2
))

α1+H
(
φ2
)

α2
]
d�, (45)

where Ve is the volume (or area in a 2-D case) of the eth element.

When the unit cell is discretized into NE finite elements, the effective (homogenized) stiffness
and thermal stress tensors given in Eqs. (10) and (11) can be written as

CH
ijkl =

1
|Y |

NE∑
e=1

(
uij0e− uij∗e

)
Ke

(
ukl0e− ukl∗e

)
, (46)

βHkl =
1
|Y |

NE∑
e=1

(
uα
0e− uα

∗e
)
Ke

(
ukl0e− ukl∗e

)
, (47)

where

Ke =
∫

�e
BTCeBd� (48)

is the element stiffness matrix, B (x) is the strain-displacement matrix, uij0e denotes the element dis-

placement under the applied strain ε
0(ij)
rs , uij∗e represents the global displacement vector associated

with the element e under the mechanical loading obtainable from solving Eq. (14), and uα
0e stands

for the element displacement under αpq and includes the components of the global displacement
vector under thermal loading that can be computed using Eq. (15).
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Further, to avoid the numerical singularity, the Heaviside function H(φi) and the Dirac delta
function δφk involved in Eqs. (34)–(45) are approximated by the following piece-wise smooth
functions [56]:

H
(
φk (x)

)
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξ , φk (x) <−�;

3 (1− ξ)

4

⎡
⎣φk (x)

�
− 1

3

(
φk (x)

�

)3
⎤
⎦+ 1+ ξ

2
,
∣∣∣φk (x)

∣∣∣≤�

1, φk (x) > �,

; (49)

δ
(
φk (x)

)
=

⎧⎪⎪⎨
⎪⎪⎩
3 (1− ξ)

4�

⎡
⎣1−

(
φk (x)

�

)2
⎤
⎦ ,

∣∣φk (x)
∣∣≤�,

γ
∣∣φk (x)

∣∣> �,

(50)

where � is a real positive constant that is usually chosen as 2∼4 times of the background cell
size, and ξ and γ are small positive numbers to be selected to ensure that the overall stiffness of
the structure is non-singular. In this study, � is taken to be 3.5 times of the average grid knot
spacing, and ξ and γ are selected to be 0.0001 and 0.0005, respectively.

The method of moving asymptotes (MMA) is a good optimizer in tackling multiple con-
straints and normally can achieve a quick convergence [52,53]. To stabilize the convergence of the
optimization algorithm, the moving limit in this algorithm can be adjusted flexibly in the range
of 0.05 to 0.1. In addition, the lower and upper bounds of the design variables are chosen to

be mkL
i = ζ ×mini

{
mk, c
i

}
and mkU

i = ζ ×maxi
{
mk, c
i

}
, in which c denotes the iteration cycle, ζ is

a controlling parameter ranging from 1.5 to 2, accommodating different optimization problems.
The results are considered convergent when the difference between two successive iterations for
the objective function is less than 0.1%.

6.1 2-D Examples
To demonstrate the procedure of topology optimization of multiphase thermoelastic metama-

terials, two sets of examples are presented in this sub-section under the plane stress conditions:
one is to minimize anisotropic CTE, and the other is to minimize isotropic CTE, both with a
Poisson’s ratio constraint. In all of the numerical examples, the constraint of the effective bulk
modulus KH is enforced to ensure the structural load-carrying capability. KH is a measurement
of resistance to the volumetric strain, which, for the 2-D case, can be expressed in terms of the
effective elasticity tensor components as (e.g., [48])

KH = 1
4

(C1111+C1122+C2211+C2222) . (51)

In all the optimizations demonstrated below, the square design domain is discretized into 60
by 60 square four-node elements, in which four Gaussian quadrature points are distributed in each
direction, resulting in a total of 16 integration points in each element. For illustration purposes,
material properties used in the simulations here are taken to be E1 = 1 GPa, ν1 = 0.3, α1 = 1×10−5

1/K for solid phase 1 (in blue) and E2 = 1 GPa, ν2 = 0.3, α2 = 10×10−5 1/K for solid phase 2 (in
pink). The volume fractions for the two solid materials are specified as 25% and 10%, respectively,
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with a tolerance of ±2%. Note that the elastic properties of the two constituent materials are
chosen to be the same here to signify the effects of geometry and shape changes in the selected
example problems. However, since the optimization method and the algorithm proposed here are
mathematical in nature, they can be readily applied to other scenarios, where the two constituent
materials have distinct (including high contrast) elastic properties, by simply changing values of the
material parameters in the input file. This, of course, will lead to different optimal microstructures
for the two-phase metamaterials, depending on the specified constituent properties.

Fig. 2 shows the two initial guesses employed in the topology optimization of the 2-D
composites with different material distributions.

Figure 2: Initial distributions of materials in a 2-D two-phase composite: (a) case # 1, (b) case # 2

6.1.1 Minimum Anisotropic CTE with a Poisson’s Ratio Constraint

The optimization herein is to minimize the CTE in the horizontal direction αH11, with the
constraint of a positive, a zero and a negative Poisson’s ratio, respectively. The optimization starts
from the two initial material distributions illustrated in Fig. 2. The constraint of 20% of the upper
bound on the effective H-S bulk modulus predicted using Eq. (18b) is also enforced along with
the horizontal and vertical geometrical symmetry.

Optimal microstructures with 3-by-3 unit cells (with the single unit cell denoted by the solid
green line) from the initial distribution # 1 shown in Fig. 2a are presented in Figs. 3a, 3c and
3e with the constraint of Poisson’s ratio being 0.5, 0 and −0.5, respectively. Moreover, the final
optimized microstructures from the initial distribution # 2 in Fig. 2b are displayed in Figs. 4a, 4c
and 4e. The plots in the right column of Figs. 3 and 4 show the iteration history curves of the
objective function αH11, Poisson’s ratio ν, and two volume fractions Vf 1 and Vf 2, respectively. The
main results are summarized in Tab. 1, which contains the total number of iterations, minimum
αH11, effective elastic stiffness tensor and thermal strain tensor for all the optimization examples. It
gives a side-by-side comparison of the optimization results based on the two initial distributions. It
can be seen that for both of the initial distributions in Fig. 2, with the decrease of the constrained
Poisson’s ratio from 0.5 to −0.5, the absolute value of the attainable minimum CTE in the x-
direction decreases under the same bulk modulus constraint.
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Figure 3: Minimization of αH11 with a Poisson’s ratio constraint starting from the initial distribution
# 1 shown in Fig. 2a: (a) Three-by-three unit cells with PR = 0.5; (b) Iteration history with PR
= 0.5 (totaling 108 iterations); (c) Three-by-three unit cells with PR = 0; (d) Iteration history
with PR = 0 (totaling 190 iterations); (e) Three-by-three unit cells with PR = −0.5; (f) Iteration
history with PR = −0.5 (totaling 149 iterations)
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Figure 4: Minimization of αH11 with a Poisson’s ratio constraint starting from the initial distribution
# 2 shown in Fig. 2b: (a) Three-by-three unit cells with PR = 0.5; (b) Iteration history with PR
= 0.5 (totaling 65 iterations); (c) Three-by-three unit cells with PR = 0; (d) Iteration history with
PR = 0 (totaling 139 iterations); (e) Three-by-three unit cells with PR = −0.5; (f) Iteration history
with PR = −0.5 (totaling 177 iterations)
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Table 1: Minimum α11 with the Poisson’s ratio constraint based on the two initial distributions in
Fig. 2

Initial distribution # 1

PR Iteration # Minimum α11 Final effective C Final effective α

0.5 108 −8.1359

⎡
⎢⎣
0.0302 0.0151 0

0.0151 0.0303 0

0 0 0.0022

⎤
⎥⎦

⎡
⎢⎣
−8.1359

10.9166

0

⎤
⎥⎦

0 190 −5.7755

⎡
⎢⎣
0.0453 0 0

0 0.0453 0

0 0 0.0009

⎤
⎥⎦

⎡
⎢⎣
−5.7755

5.7934

0

⎤
⎥⎦

−0.5 149 −2.1603

⎡
⎢⎣
0.0906 −0.0453 0

−0.0453 0.0907 0

0 0 0.0021

⎤
⎥⎦

⎡
⎢⎣
−2.1603

2.2479

0

⎤
⎥⎦

Initial distribution # 2

0.5 65 −8.8331

⎡
⎢⎣
0.0302 0.0151 0

0.0151 0.0304 0

0 0 0.0013

⎤
⎥⎦

⎡
⎢⎣
−8.8331

8.9196

0

⎤
⎥⎦

0 139 −4.8103

⎡
⎢⎣
0.0454 0 0

0 0.0455 0

0 0 0.0020

⎤
⎥⎦

⎡
⎢⎣
−4.8103

3.4380

0

⎤
⎥⎦

−0.5 177 −1.9664

⎡
⎢⎣
0.0863 −0.0432 0

−0.0432 0.0863 0

0 0 0.0021

⎤
⎥⎦

⎡
⎢⎣
−1.9664

3.4098

0

⎤
⎥⎦

Clearly, the final optimization results based on the two initial guesses differ from each other
but do not display huge differences. This is consistent with the well-known fact that final optimal
designs based on the conventional level set methods tend to strongly depend on initial guesses,
since the Hamilton-Jacobi PDE (see Eq. (31)) satisfies a maximum principle which prohibits the
hole nucleation inside the material domain (e.g., [60]). That is, without hole nucleation mechanism
in the conventional level set methods, the final optimal design will largely depend on the initial
guess which dictates the maximum number of holes allowed. In order to mitigate this inherent
drawback, one common and simple approach is to choose an initial guess that contains sufficiently
many small holes densely distributed in the design domain, which will be allowed to merge and
evolve gradually in the optimization process (e.g., [60,61]). However, this simple approach has its
limitations, and more advanced techniques are needed to reduce the dependence of the level set
methods on initial guesses. One of such techniques is based on the use of multiquadric radial basis
functions (RBFs) to construct implicit level set functions that do not require reinitialization [60].
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RBFs have been utilized in the studies on the topology optimization of 2-D mechanical meta-
materials based on a parametric level set method [51] and on homogenization analyses of 3D
printable interpenetrating phase composites by a meshfress method [62].

Moreover, it is observed from the optimal microstructures shown in the left column of Fig. 3
that different Poisson’s ratio constraints result in different topological features, but similarities
exist due to the same initial material distribution. A comparison of the microstructures displayed
in Figs. 3a, 3c and 3e shows that they all possess vertical struts with the higher CTE (in pink)
that mainly control the CTE in the horizontal direction. However, the unit cell with the optimal
minimum CTE under the constraint of PR = 0.5 shown in Fig. 3a has struts with the lower
CTE (in blue) along the vertical direction due to the positive Poisson’s ratio constraint. For the
optimal microstructure under the constraint of PR = 0 displayed in Fig. 3c, the solid material
with the lower CTE (in blue) is mainly concentrated at the center of the unit cell, while most
of the vertical struts comprise of the material with the higher CTE (in pink). In addition, for
the optimal microstructure with the constraint of PR = −0.5 shown in Fig. 3e, an anti-chiral
structure, which is known to be a main mechanism responsible for the negative Poisson’s ratio, is
clearly seen. Furthermore, through comparing all the optimized results displayed in Figs. 3 and 4
based on the two initial distributions # 1 and # 2 shown in Fig. 2, it is found that the optimized
microstructures with the constraint of PR = 0.5 look almost the same. However, for the other
two cases with PR = 0 and PR =−0.5, the final optimal configurations resulting from the two
different initial distributions display distinct topologies.

Clearly, Tab. 1 shows that the optimized 2-D composite in each case exhibits anisotropic CTEs
and the cubic (for PR = 0.5 and −0.5) or isotropic (for PR = 0) elastic symmetry.

6.1.2 Minimum Isotropic CTE with a Poisson’s Ratio Constraint
The goal of this sub-section is to design microstructures with minimized isotropic CTEs and

desirable Poisson’s ratios for the given horizontal and vertical symmetry. All the microstructures
optimized herein possess cubic symmetry (e.g., [12]).

Figs. 5 and 6 show the optimal microstructures with 3-by-3 unit cells (with the single unit cell
denoted by the solid green line) under different bulk modulus constraints, i.e., 15%, 20%, 25%,
30%, 35% and 40% of the H-R upper bound on the effective bulk modulus given by Eq. (18b),
and the zero Poisson’s ratio constraint. The plots displayed in the right column of Figs. 5 and 6
show the iteration history curves of the CTE, Poisson’s ratio and two volume fractions based on
the initial material distribution # 1 displayed in Fig. 2a.

It is clearly observed from Figs. 5 and 6 that the optimized microstructures are different from
each other, even though there is a detectable similarity due to the same initial distribution. Also,
the microstructures with the 15%, 20% and 30% of the H-R upper bound of the effective bulk
modulus displayed in Figs. 5a, 5c and 6a exhibit almost the same topological features but with
different unit cell sizes. In addition, for the microstructures with the 25%, 35% and 40% of the
H-R upper bound of the effective bulk modulus constraints displayed in Figs. 5e, 6c and 6e, they
look slightly topologically similar but still show a significant difference. The main findings from
the optimization results shown in Figs. 5 and 6 are summarized in Tab. 2, which gives a clear
picture of how the effective thermoelastic properties of the optimized microstructure change with
the bulk modulus constraint. It is observed that the obtained minimum isotropic CTE increases
with the increase of the bulk modulus, which agrees with what is analytically predicted using
Eq. (16a).
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Figure 5: Minimization of isotropic CTE with the constraints of Poisson’s ratio = 0 and specified
value of the bulk modulus based on the initial distribution # 1 in Fig. 2: (a), (b) Three-by-three
unit cells with the bulk modulus = 15% and the iteration history (118 iterations); (c), (d) Three-
by-three unit cells with the bulk modulus = 20% and the iteration history (189 iterations); (e),
(f) Three-by-three unit cells with the bulk modulus = 25% and the iteration history (176 iterations)
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Figure 6: Minimization of isotropic CTE with the constraints of Poisson’s ratio = 0 and specified
value of the bulk modulus based on the initial distribution # 1 in Fig. 2: (a), (b) Three-by-three
unit cells with the bulk modulus = 30% and the iteration history (117 iterations); (c), (d) Three-
by-three unit cells with the bulk modulus = 35% and the iteration history (249 iterations); (e),
(f) Three-by-three unit cells with the bulk modulus = 40% and the iteration history (302 iterations)
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Table 2: Minimum CTE with the constraints of different bulk modulus values and zero Poisson’s
ratio from the initial distribution # 1 in Fig. 2a

κH2D Iteration # Final effective C Final effective α

0.15 118

⎡
⎢⎣
0.0364 −0.0020 0

−0.0020 0.0363 0

0 0 0.0009

⎤
⎥⎦

⎡
⎢⎣
−2.4726

−2.4836

0

⎤
⎥⎦

0.20 189

⎡
⎢⎣
0.0453 0 0

0 0.0454 0

0 0 0.0010

⎤
⎥⎦

⎡
⎢⎣
−1.8913

−1.8870

0

⎤
⎥⎦

0.25 176

⎡
⎢⎣
0.0567 0 0

0 0.0566 0

0 0 0.0023

⎤
⎥⎦

⎡
⎢⎣
−1.7262

−1.7264

0

⎤
⎥⎦

0.30 117

⎡
⎢⎣
0.0679 0.0001 0

0.0001 0.0679 0

0 0 0.0020

⎤
⎥⎦

⎡
⎢⎣
−0.9684

−0.9702

0

⎤
⎥⎦

0.35 249

⎡
⎢⎣
0.0860 −0.0066 0

−0.0066 0.0860 0

0 0 0.0023

⎤
⎥⎦

⎡
⎢⎣
−0.4842

−0.4823

0

⎤
⎥⎦

0.40 302

⎡
⎢⎣
0.0927 −0.0021 0

−0.0021 0.0928 0

0 0 0.0021

⎤
⎥⎦

⎡
⎢⎣
−0.3482

−0.3487

0

⎤
⎥⎦

Clearly, Tab. 2 shows that the topologically optimized 2-D three-phase composite in each case
exhibits isotropic CTEs and the cubic or isotropic symmetry in the elastic stiffness constants.

In addition to the topology optimization for minimizing CTE with the constraint of Poisson’s
ratio = 0, simulations with the constraint of Poisson’s ratio = −0.5 are performed with the
constraints of 15%, 20% and 25% of the H-R upper bounds on the effective bulk modulus given
by Eq. (18b), respectively.

Figs. 7 and 8 show the optimal results obtained from the two initial distributions displayed in
Fig. 2. In all six numerical examples, the constraint of Poisson’s ratio =−0.5 is well maintained.
Also, it is seen that the two different initial distributions lead to different microstructures with
distinct minimized isotropic CTEs. For the 15% bulk modulus constraint, a minimum of −1.442 is
obtained from the initial distribution # 1 and of −1.959 from the initial distribution # 2. Further,
the optimal microstructures from the initial distribution # 1 contain an anti-chiral unit that is
mainly responsible for the negative Poisson’s ratio, while those from the initial configuration #
2 possess a re-entrant structure, leading to a negative Poisson’s ratio of −0.5. The chirality and
re-entrant structures are two well-known deformation mechanisms that can bring about negative
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Poisson’s ratios. Such observations are also true for the optimization with the 20% and 25% bulk
modulus constraints, respectively.

Figure 7: Minimization of isotropic CTE with the constraints of Poisson’s ratio = −0.5 and
specified value of the bulk modulus based on the initial distribution # 1 displayed in Fig. 2:
(a), (b) Three-by-three unit cells with the bulk modulus = 15% and the iteration history (179
iterations); (c), (d) Three-by-three unit cells with the bulk modulus = 20% and the iteration history
(157 iterations); (e), (f) Three-by-three unit cells with the bulk modulus = 25% and the iteration
history (241 iterations)
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Figure 8: Minimization of isotropic CTE with the constraints of Poisson’s ratio = −0.5 and
specified value of the bulk modulus based on the initial distribution # 2 shown in Fig. 2: (a), (b)
Three-by-three unit cells with the bulk modulus = 15% and the iteration history (168 iterations);
(c), (d) Three-by-three unit cells with the bulk modulus = 20% and the iteration history (155
iterations); (e), (f) Three-by-three unit cells with the bulk modulus = 25% and the iteration history
(182 iterations)
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The optimization results displayed in Figs. 7 and 8 are summarized in Tab. 3, which includes
the total number of iterations, the effective elastic stiffness tensor, and the coefficient of thermal
expansion tensor. It is seen that the two different initial configurations lead to different optimiza-
tion results, but no huge derivation exists. Moreover, the variation trend of the minimized CTE
with respect to the bulk modulus constraint is the same: it increases with the increase of the bulk
modulus in both cases.

Clearly, Tab. 3 shows that the topologically optimized 2-D three-phase composite in each case
exhibits isotropic CTEs and the cubic symmetry in the elastic stiffness constants.

Table 3: Minimum CTE with the constraints of different bulk modulus values and Poisson’s ratio
= −0.5 based on the two initial distributions displayed in Fig. 2

Initial distribution # 1

κH2D Iteration # Final effective C Final effective α

0.15 179

⎡
⎢⎣
0.0679 −0.0339 0

−0.0339 0.0680 0

0 0 0.0014

⎤
⎥⎦

⎡
⎢⎣
−1.4420

−1.4415

0

⎤
⎥⎦

0.20 157

⎡
⎢⎣
0.0906 −0.0453 0

−0.0453 0.0907 0

0 0 0.0023

⎤
⎥⎦

⎡
⎢⎣
−0.6317

−0.6322

0

⎤
⎥⎦

0.25 241

⎡
⎢⎣
0.0977 −0.0489 0

−0.0489 0.0978 0

0 0 0.0019

⎤
⎥⎦

⎡
⎢⎣
−0.0852

−0.0852

0

⎤
⎥⎦

Initial distribution # 2

0.15 168

⎡
⎢⎣
0.0679 −0.0339 0

−0.0339 0.0680 0

0 0 0.0013

⎤
⎥⎦

⎡
⎢⎣
−1.9590

−1.9565

0

⎤
⎥⎦

0.20 155

⎡
⎢⎣
0.0906 −0.0452 0

−0.0452 0.0909 0

0 0 0.0028

⎤
⎥⎦

⎡
⎢⎣
−0.3902

−0.3877

0

⎤
⎥⎦

0.25 182

⎡
⎢⎣
0.0950 −0.0475 0

−0.0475 0.0951 0

0 0 0.0035

⎤
⎥⎦

⎡
⎢⎣
−0.0992

−0.0995

0

⎤
⎥⎦

The effective properties of the 2-D composites with the optimal topologies shown in Figs. 5–8
are displayed as three types of markers in Fig. 9, in which the upper and lower bounds on the
effective isotropic CTEs are plotted against the effective bulk modulus obtained from Eqs. (16a)
and (16b). A total of 12 examples are included with the final optimal unit cells labeled from 1 to



CMES, 2021, vol.127, no.3 843

12. As displayed at the right upper corner of the graph, all the numerical values of the effective
CTE are close to the lower bound. However, through a close-up observation from Fig. 9, it is seen
that the effective CTE values for the optimized microstructures with the constraint of Poisson’s
ratio = 0 are much closer to the lower bound than those with the constraint of Poisson’s ratio
=−0.5.

Figure 9: Effective isotropic CTE obtained from the topology optimization compared with the
upper and lower bounds of the effective CTE based on Eqs. (16a) and (16b) for the 12 sample
cases with the indicated optimal unit cells initially shown in Figs. 5–8

The results from Sections 6.1.1 and 6.1.2 reveal that Poisson’s ratio constraints can largely
affect the extreme values of the effective CTE of a metamaterial with an optimized microstructure.
The constraint of a positive Poisson’s ratio can lead to a negative CTE with a much larger
magnitude than that of a negative Poisson’s ratio can. Therefore, optimal designs need to be
performed to obtain metamaterials with desired negative CTEs and negative Poisson’s ratios.

6.2 3-D Examples
Similar to the 2-D multi-material and multi-objective optimizations described in Section 6.1,

3-D optimizations are performed in this sub-section. The design domain consists of 24×24×24 8-
node brick elements with three Gaussian quadrature points distributed in each direction, resulting
in a total of 27 integration points in each element. The initial 3-D design with two solid materials
and one void phase is displayed in Fig. 10. For simplicity, the properties are taken to be E1 = 1
GPa, ν1 = 0.3, α1 = 1×10−5 1/K for material 1 (in blue), and E2 = 1 GPa, ν2 = 0.3, α2 = 10×10−5

1/K for material 2 (in pink). To demonstrate the design procedures for topology optimization of
3-D multi-phase thermoelastic metamaterials, two examples are presented here: one is to minimize
anisotropic CTE, and the other is to minimize isotropic CTE. Both cases are constrained with
a prescribed value of the effective Poisson’s ratio. In all the numerical examples shown below,
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constraints on the volume fractions are enforced along with material cubic symmetry conditions.
Eqs. (46) and (47) are used to obtain the optimal effective elastic stiffness and CTE tensors for
the 3-D examples presented herein.

Figure 10: Initial material distribution for the 3-D case

6.2.1 Minimum Anisotropic CTE with a Poisson’s Ratio Constraint

The first case is to obtain 3-D microstructures with the minimum αH22 under the constraint
of Poisson’s ratio being 0.1, 0 or −0.1. The volume fractions for the two solid materials are
constrained to be 15% and 10%, respectively, with a tolerance of ±2%.

Figs. 11a, 12a and 13a display the final optimal unit cells showing distributions of two solid
phases. The 2× 2× 2 unit cells are shown in Figs. 11b, 12b and 13b. In addition, Figs. 11c–11e,
12c–12e and 13c–13e display microstructural details from the x− y, x− z and y− z cross section
views, respectively.

As shown in Figs. 11f–11h, the convergence is achieved after 116 iterations, giving a minimum
αH22 of −3.4584 and a Poisson’s ratio of 0.10177 that is very close to the constrained value of 0.1
in the topology optimization problem. Furthermore, the two volume fraction constraints are well
maintained: one is 0.1499, and the other is 0.099, which are almost the same as the pre-defined
volume fractions of 0.15 and 0.1.

Similarly, Figs. 12f–12h show that the convergence is reached after 96 iterations, yielding a
minimum αH22 of −2.7479 and a Poisson’s ratio of 0.000599, which is very close to the constrained
value of zero Poisson’s ratio in the topology optimization. Moreover, the two volume fraction
constraints are well maintained: one is 0.14997, and the other is 0.090172, which are almost the
same as the pre-defined volume fractions of 0.15 and 0.1, with a tolerance of ±2%.

For the optimization with the constraint of Poisson’s ratio = −0.1, it can be observed from
Figs. 13f–13h that the convergence is achieved after 195 iterations, giving a minimum αH22 of
−2.9405 and a Poisson’s ratio of −0.10213 which is quite close to the constrained value of
Poisson’s ratio = −0.1 in the topology optimization. Also, the two volume fraction constraints are
well maintained: one is 0.14795, and the other is 0.080033, which are very close to the pre-defined
volume fractions of 0.15 and 0.1, with a tolerance of ±2%.

Note that the magnitude of αH22 = −3.4584 obtained with the constraint of Poisson’s ratio

= 0.1 is larger than that of αH22 =−2.7479 under the constraint of Poisson’s ratio = 0, which is

smaller than the magnitude of αH22 =−2.9405 obtained with Poisson’s ratio = −0.1. This indicates
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that the Poisson’s ratio and CTE are not directly related and can therefore be independently varied
without affecting each another, which agrees with what was found in [19].

Figure 11: Minimization of αH22 under the constraint of Poisson’s ratio = 0.1: (a) Optimal unit
cell; (b) Periodic microstructures with 2× 2× 2 unit cells; (c) Unit cell in the x− y cross section
view; (d) Unit cell in the x− z cross section view; (e) Unit cell in the y− z cross section view; (f)
Iteration history of CTE in the y-direction; (g) Iteration history of Poisson’s ratio; (h) Iteration
history of two volume fraction constraints (total 116 iterations to achieve convergence)



846 CMES, 2021, vol.127, no.3

Figure 12: Minimization of αH22 under the constraint of Poisson’s ratio = 0: (a) Optimal unit cell;
(b) Periodic microstructures with 2× 2× 2 unit cells; (c) Unit cell in the x− y cross section view;
(d) Unit cell in the x−z cross section view; (e) Unit cell in the y−z cross section view; (f) Iteration
history of CTE in the y-direction; (g) Iteration history of Poisson’s ratio; (h) Iteration history of
two volume fraction constraints (total 96 iterations to achieve convergence)
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Figure 13: Minimization of αH22 under the constraint of Poisson’s ratio =−0.1: (a) Optimal unit
cell; (b) Periodic microstructures with 2× 2× 2 unit cells; (c) Unit cell in the x− y cross section
view; (d) Unit cell in the x− z cross section view; (e) Unit cell in the y− z cross section view; (f)
Iteration history of CTE in the y-direction; (g) Iteration history of Poisson’s ratio; (h) Iteration
history of two volume fraction constraints (total 195 iterations to achieve convergence)
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Figs. 11–13 show 3-D optimal microstructures with complex topologies achieved through
the optimization evolution process originated from the initial design illustrated in Fig. 10. This
indicates that the approach employed in the current study is capable of merging and creating
holes without implementing topological derivatives [63] or other techniques. Also, it is seen that
the present approach can integrate shape and topology optimizations, in which the first few
iterations are used to quickly achieve the optimal topology and the rest of iterations before the
final convergence are mainly serving to complete the shape optimization.

The effective elastic stiffness and CTE tensors for the three optimal microstructures with
different Poisson’s ratio constraints shown in Figs. 11–13 are, respectively, obtained as

CH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0506 0.0057 0.0056 0 0 0

0.0057 0.0502 0.0056 0 0 0

0.0056 0.0056 0.0500 0 0 0

0 0 0 0.0133 0 0

0 0 0 0 0.0132 0

0 0 0 0 0 0.0132

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, αH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7.1380

−3.4584

7.3460

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (52)

CH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0502 0.0000 0.0001 0 0 0

0.0000 0.0500 0.0002 0 0 0

0.0001 0.0002 0.0500 0 0 0

0 0 0 0.0058 0 0

0 0 0 0 0.0057 0

0 0 0 0 0 0.0058

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, αH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6.4058

−2.7476

5.9566

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
; (53)

CH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.050 −0.0046 −0.0045 0 0 0

−0.0046 0.0500 −0.0046 0 0 0

−0.0045 −0.0046 0.0500 0 0 0

0 0 0 0.0043 0 0

0 0 0 0 0.0042 0

0 0 0 0 0 0.0043

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, αH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4.3768

−2.9405

3.2009

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (54)

Clearly, Eqs. (52)–(54) show that the topologically optimized 3-D three-phase composite in
each case exhibits anisotropic CTEs and elastic stiffness constants that satisfy the cubic symmetry.

It should be pointed out that the optimal geometrical boundaries shown in Figs. 11–13 appear
to have serrated shapes that are not sufficiently smooth. The reason for this is that the total
number of elements used here is 13824 in a 24 × 24 × 24 mesh, which is not fine enough to
produce smooth boundaries but remains a limitation of the current study for the 3-D three-
phase metamaterials. In addition, it can be observed that the same initial structures could lead
to distinctive designs if they have been given different constraints even with the same objective
function. Alternatively, the different initial distributions lead to different final optimal microstruc-
tures owing to the highly non-convex problems with multiple local regions existing in the current
gradient-based optimization enabled by the PLSM (e.g., [60]).
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From the unit cells displayed in Figs. 11–13, it is not easy to tell underlying mechanisms that
may lead to the desired negative CTE and Poisson’s ratio, unlike that for the 2-D cases described
in Section 6.1. This is a feature inherent in topology optimization that could result in designs
unattainable through conventional thinking.

6.2.2 Minimum Isotropic CTE with a Poisson’s Ratio Constraint
The goal here is to obtain the minimum isotropic CTE under the constraints of Poisson’s

ratio being 0 and the volume fractions of the two solid materials at 15% and 6%, respectively,
with a tolerance of ±2%.

Fig. 14a displays the optimal unit cell, and Fig. 14b shows 2× 2× 2 periodic unit cells. It
can be seen that very clear and distinct material interfaces are formed between the two solid
phases that can be reconstructed with ease from the mesh generated in topology optimization.
In addition, Figs. 14c–14e provide the 2-D cross-sectional views from three perspectives that
further demonstrate fine geometrical features obtained from topology optimization. Furthermore,
Figs. 14f–14h give the convergence plots for the effective CTE, Poisson’s ratio, and two volume
fraction constraints, in which 210 iterations are performed to achieve the final results with the
CTE being −0.69308, Poisson’s ratio −0.0411 and two volume fractions 0.13005 and 0.04, respec-
tively. For the solid material with the higher CTE displayed in pink, the volume fraction first
jumps to about 90% and then gradually drops down to satisfy the volume fraction constraint in
the topology optimization. On the other hand, for the solid phase with the lower CTE (marked in
blue), it drops from the initial volume fraction of 48% down to near zero and then increases to
achieve the required volume fraction. Moreover, the optimization approaches adopted here work
pretty well concerning the hole nucleation and merging.

The effective elastic stiffness and CTE tensors for the optimal microstructure generated in this
case are obtained as

CH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0199 −0.0008 −0.0007 0 0 0

−0.0008 0.0203 −0.0006 0 0 0

−0.0007 −0.0006 0.0202 0 0 0

0 0 0 0.0009 0 0

0 0 0 0 0.0010 0

0 0 0 0 0 0.0009

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, αH =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.6931

−0.6755

−0.6824

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (55)

From Eq. (55), it is seen that the topologically optimized 3-D three-phase composite in this
case shows an isotropic CTE and elastic stiffness constants satisfying the cubic symmetry.

Finally, it should be mentioned that fabricating the 3-D multi-phase metamaterial samples
discussed here by using traditional subtractive manufacturing techniques is very challenging.
However, additive manufacturing methods can be employed to print these optimally designed
composite structures (e.g., [64]). Topologically optimized 2-D multiphase polymeric metamaterials
with a tunable CTE have been produced by additive manufacturing through an Objet Connex 500
3D printer (e.g., [25]).
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Figure 14: Minimization of isotropic CTE under the zero Poisson’s ratio constraint: (a) Optimal
unit cell; (b) Periodic microstructures with 2× 2 × 2 unit cells; (c) Unit cell in the x − y cross
section view; (d) Unit cell in the x− z cross section view; (e) Unit cell in the y− z cross section
view; (f) Iteration history of CTE; (g) Iteration history of Poisson’s ratio; (h) Iteration history of
the two volume fraction constraints (totalling 210 iterations to achieve convergence)
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7 Conclusion

A parametric level set-based topology optimization method is used to design 2-D and 3-D
multiphase thermoelastic metamaterials with minimized anisotropic and isotropic CTEs and pre-
scribed values of Poisson’s ratio under the constraints of specified effective bulk modulus, volume
fractions and material symmetry. The effective properties of the multiphase metamaterials are pre-
dicted using an asymptotic homogenization method. The ε-constraint multi-objective optimization
method is utilized in the formulation, and the method of moving asymptotes is employed to solve
the optimization problems.

In each design example considered, two solid materials and one void phase are included.
It is found that optimal 2-D and 3-D microstructures can be generated by applying the newly
proposed approach. Novel structures are obtained through the current topology optimization
approach, which are difficult to achieve using conventional (heuristic) methods. In addition, the
new approach can lead to topologically optimized metamaterials with a positive, negative or zero
Poisson’s ratio and a positive, negative or zero CTE.
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