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ABSTRACT

We propose a mobile system, called PotholeEye+ , for automatically monitoring the surface of a roadway and
detecting the pavement distress in real-time through analysis of a video. PotholeEye+ pre-processes the images,
extracts features, and classifies the distress into a variety of types, while the road manager is driving. Every day
for a year, we have tested PotholeEye+ on real highway involving real settings, a camera, a mini computer, a GPS
receiver, and so on. Consequently, PotholeEye+ detected the pavement distress with accuracy of 92%, precision of
87% and recall 74% averagely during driving at an average speed of 110 km/h on a real highway.
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1 Introduction

A pothole is a type of distress in the pavement, the surface of a roadway, where a portion of
the road material has broken away, leaving a hole [1]. Potholes not only interfere with comfortable
driving on the roadway, but also lead to vehicle damage and/or traffic accidents. For highways
where driving is allowed at a speed between 80 and 110 km/h, in particular, risks are further
increased by serious damage to road pavement, such as potholes. Therefore, the road management
agencies daily or specially check the surface of a roadway by human inspections in order to
prevent such situations (e.g., traffic accidents). Particularly, the Korea Expressway Corporation,
one of the road management agencies, identifies pavement damage that requires immediate repair,
such as potholes, through daily and special inspections, and repairs such damage within 24 h of
detection. However, the human inspections are time consuming and labor-intensive task. Besides,
theses system by the human inspections cannot guarantee early detection.

As the development of IT technology has been consistently accelerated, studies have been
actively conducted to detect potholes that may threaten the safety of road users automatically
using such technology [2–6]. Initially, acceleration sensors were mounted on vehicles and the
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displacement values of sensors were measured to detect potholes [3,4]. However, for studies that
utilized acceleration sensors, detection was not possible when the vehicle avoided potholes during
driving. Even when the vehicle did not avoid potholes during driving, the false detection rate was
high because the displacements of other road surface installations, such as manholes, pavement,
and pier boundaries, were similar. To overcome this drawback, studies to detect potholes by
analyzing video and image data, such as from black boxes, captured at the viewing angle of a
road user have been actively conducted recently [5–7].

In this paper, we propose a novel mobile system, called PotholeEye+, which is an extension
version of PotholeEye [8] for automatically monitoring the surface of a roadway and providing
real-time analysis of images. PotholeEye+ has been newly developed to be effective, simple to use,
sustainable and reliable. Since the human inspections is time consuming and labor-intensive task,
in this paper we focus on how to effectively maintain the pavement distress, such as a pothole,
in view of the road management agencies. Toward that goal, PotholeEye+ involves a camera
and a mini-computer attached to vehicle as well as a remote server for history information that
interconnects these devices. PotholeEye+ analyzes video images from the camera on the mini-
computer and transmits analyzing results to remote server to save historical information. Fig. 1
show a conceptual diagram for pavement distress detection of PotholeEye+ which consist of three
steps, (a) data collection step, (b) real-time detection step, and (c) detected image recording step.
While a road manager is driving, PotholeEye+ automatically monitors the pavement images in
real-time video clip and detects the distress by analyzing the images. The results of this analysis
are conveyed to another staff, located at a remote office, to support decision whether to require
immediate repair or not in real-time. PotholeEye+ transmits the analyzing results to remote server
in order to save historical information at the same time.

Figure 1: Conceptual diagram for real-time road pavement distress detection; (a) data collection
step, (b) real-time detection step, and (c) detected image recording step

Hence, first, PotholeEye+ allows the road management agencies to inspect the surface con-
dition of a roadway in a fast and convenient manner. This maximizes the effectiveness of
maintenance task for pavement distress. Second, PotholeEye+ detects various types of pavement
distress present on the road, including potholes. It is necessary for road managers to manage
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portholes and other road surface damages because a collection of small damage, such as cracks,
may suddenly cause serious damage as with the damage caused by potholes. Third, PotholeEye+
makes it possible to track and manage the road pavement damage status by recording the detected
distress information. Thus, video clips and images collected and detected over a long period
can be used to develop a road pavement damage prediction system and various decision-making
support systems essential for road maintenance, such as the selection of areas in need of urgent
maintenance.

2 Related Works

Studies to detect distress to roadway pavement automatically have been actively conducted,
and they can be classified into methods that use acceleration sensors, images, and laser scan-
ning [4]. In this section, studies on image-based road pavement damage detection, which is
known to be relatively less expensive than other methods and able to detect a broader area, are
introduced.

Koch et al. proposed a method of detecting potholes by acquiring images using a small robot
watching the road surface [6,7]. In the method proposed by them first [6], the defective part and
non-defective part of an image were divided using the shape of the histogram, and the shape
and texture extracted from the defective part were compared with the texture extracted from the
non-defective part to determine potholes. Subsequently, the aforementioned study was improved
using a tracking algorithm that utilized continuous image frames [7]. Buza proposed a method of
identifying potholes by dividing an image using the OTSU thresholding method, extracting shapes
using the spectral clustering algorithm, and extracting horizontal and vertical regions [9].

Huidrom proposed the critical distress detection and measurement and classification
(CDDMC) algorithm for the automatic detection and classification of road pavement damage [10].
This algorithm was developed by considering a collective set of three visual properties of potholes,
cracks, and patches. This collective set of identified visual properties incudes the image texture, the
shape factor, and the dimension of a pothole and patch. Especially, for extracting visual properties,
the circularity of the object area, average width, and standard deviation of the pixel brightness
were used. This CDDMC algorithm was composed of the steps of (a) image enhancement,
(b) image segmentation, (c) visual properties extraction of objects, (d) detection and classification
of distresses by decision logic, and (e) quantification.

Among the studies introduced above, the studies by Koch and Kim aimed to detect pavement
distress automatically based on images [6,11–14]. However, the study by Buza utilized manu-
ally cropped images for evaluation, and the study by Huidrom evaluated only the user-defined
area. Therefore, it appears that further investigation is required to apply the studies to actual
environments [9,10]. The study by Koch utilized the images acquired by a small robot, but the
fabrication of the small robot is expensive, and it is difficult to use it universally in high-speed
driving environments [7]. Shebin et al. proposed a pothole detection system using a single deep
neural network method based on smartphone [12]. Kumar et al. proposed a pothole detection
model based on transfer learning, faster region-based convolutional neural network (F-RCNN)
and inception-V2 [13]. Jung-Cheng et al. developed a pothole image generation system, which can
improve the performance of the detection model by virtual images. In this paper, we proposed
a more practical method to detect pavement distress while driving in real time using a camera
mounted on a vehicle, in terms of more effectively managing road surface distress.
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3 Methods of Automatic Detection of Pavement Distress

The main work towards realizing PotholeEye+ is to detect the pavement distress automatically
in real-time. To solve this work, PotholeEye+ technically combines traditional image processing
methods and a classification method after batching the pre-trained model as shown in Fig. 2.

Figure 2: Block diagram for image classification and distress estimation

3.1 Image Processing Step
First, PotholeEye+ processes the video image from a camera attached to the vehicle in real-

time. The results of this step are cropped images containing only the region of interest (ROI).
Fig. 3 represents image processing step in detail. PotholeEye+ applies an orthogonal projec-
tion [15] in order to reduce the deviation of the input images according to the camera position.
Let V be a subspace of R

n, input image. To find the matrix of the orthogonal projection onto V ,
the method we first discussed, three steps: (1) find a basis −→v1, −→v2 , −→v3 , . . . ,−→vm for V , (2) turn the
basis −→vi into an orthonormal basis −→ui then (3) P=∑−→vi −→vi, T .

Then PotholeEye+ performs binarization using multi-thresholding approach after noise
removal. In order to extract feature points from an image, the binarization method is a common
method, but if the threshold is fixed and processed, there is a difficulty in the binarization
process to extract the feature points according to the image. Fig. 4 shows how feature points are
extracted according to the threshold setting. If the threshold value, T , is set to 140, the feature
points are well extracted, but if T is lowered in the order of 100, 50 and the result is seen,
the feature gradually disappears such as (c) and (d) in Fig. 4. To overcome this limitation of
binarization, in the early stages of this study, we tried to extract feature points with the adaptive
threshold technique, which is the core of the CDDMC algorithm [10]. The adaptive thresholding
is to convert enhanced image into binary image with black pixels representing objects of interest.
However, the adaptive threshold technique was excluded because it was difficult to extract in the
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case of distress included in the lane. Therefore, we apply binarization using multi-thresholding
approach. Fig. 3e shows the binarization technique applied in this study, and it can be seen that
various feature points can be found in each binarized image, such as a red area.

Figure 3: Image processing step for cropping the ROI (Region of interest): (a) Video image as
input data, (b) Orthogonal transformation, (c) Noise removal, (d) Set up the ROI, (e) Binarization
based on multi-parameters

Figure 4: Binarization examples according to the threshold value, T ; (a) Gray scale image,
(b) T : 140, (c) T : 50, (d) T : 100
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3.2 Classification Step
Next, PotholeEye+ uses a Convolutional Neural Networks (CNNs) model, which is known to

have achieved good performance in image classification [16]. CNN can be divided into a part that
extracts features of an image and a part that classifies the class. The feature extraction area is
composed of several layers of convolution and pooling layers. Convolution Layer is an essential
element that applies a filter to the input data and reflects the activation function. The pooling
layer next to the convolution layer is an optional layer. At the end of the CNN, a Fully Connected
layer is added for image classification. A flatten layer is placed between the part that extracts the
features of the image and the part that classifies the image.

We reviewed GoogleNet [17], VGGNet [18], and AlexNet [19], which are well known as
CNN model. At Large Scale Visual Recognition Challenge (ILSVRC) 2014, GoogLeNet, made by
Google, is known to have won VGGNet with a slight margin. The basic structure of GoogleNet
announced by Google was designed to obtain features of different scales by applying convolutional
filters with different sizes to the same layer and solved the problem of computation in deep layers
using 1× 1 convolution. VGGNet was developed by studying the effect of depth on the network
(Layer). At ILSVRC 2014, both GoogLeNet and VGGNet recorded very low error rates of 7%.
AlexNet is also a model that won ILSVRC 2012 and consists of a total of 5 convolution layers
and 3 full-connected (FC) layers, and the last FC Layer uses the soft-max function as an active
function for classification.

To select the competitive CNN model, we evaluated these CNN models. For evaluation, we
first prepared 50 224 ∗ 224 color images for each class and increased the number of images
to 30,000 using data augmentation technique to solve the small data problem. In other words,
GoogLeNet, VGGNet, and AlexNet were trained equally with 30 epochs, using totally 180,0000
images. As a result of the test, GoogLeNet showed the highest accuracy as shown in Tab. 1 and
was finally selected.

Table 1: Competitive results for CNN model selection

Types GoogLeNet(%) VGGNet(%) AlexNet(%)

Cracks in asphalt 100 95 95
Cracks in concrete 100 100 100
Pothole 85 40 60
Spalling 100 70 100
Punch-out 80 55 75

During driving, PotholeEye+ only classified images into types of distress using a pre-trained
CNN model. In other words, 1) PotholeEye+ loads a CNN model prepared in advance, 2) applies
CNN classifier to cropped area extracted from image processing step. As a result, 3) major types
of distress are extracted and the others are discarded. PotholeEye+’s CNN model is generated by
iterative training based on image sets, that are automatically extracted by the image processing
system [15] and labeled by humans under the supervision of a roadway manager. In more detail,
we prepared 31,200 images of size 224× 224 which are categorized distress into 4 types for main
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distress, pothole and patching failure in asphalt pavement, spalling and punch-out in concrete
pavement, and 22 non-main or non-distresses such as tire mark and shadow, as shown in Fig. 5.
As a result, we categorized the pavement distress in the extracted image set into 26 types and
prepared 1,200 images for each type for training. Although training data are images represent-
ing the type of pavement distress, the image generally has a lot of influence of light and the
pavement distress is a random shape. Since PotholeEye+ needs to be able to recognize shadows,
darkness, and inverted shapes, we applied the data augmentation technique to our training data.
Fig. 6 shows parts of the training data to generate a CNN model and results of applying the
augmentation technique such as brightness, left and right inversion.

Figure 5: Types of the distress considered in PotholeEye+; in asphalt pavement, (a) pothole and
(b) patching failure; in concrete pavement, (c) spalling and (d) punch-out; otherwise, such as (e)
tire mark and (f) shadow

In addition, PotholeEye+ provides a roughly size of the damaged area in a cropped image
that are identified as a type of pavement distress. Estimating a distress size performs the following
processes: calculation of a mean value of the pixels in the central area, binarization using the
mean value, detection of binary large objects (BLOBs) which is small objects are judges as noise
and only objects larger than certain size, and lastly measurement width and height about the
detected BLOBs.

4 Experimental Results

We conducted PotholeEye+ on the highway involving real settings, a camera, a mini computer,
a GPS receiver, and so on, in vehicle from Hyundai Motor Company as shown in Fig. 7. Tab. 2
shows a list of sections on highway driven for PotholeEye+’s test and we drove 102 km with an
average speed of 110 km/h. To access the quantitative performance, we tested PotholeEye+ in two



972 CMES, 2021, vol.127, no.3

point of view. The first is the detection performance of the PotholeEye+ for pavement distress
and the second is how much time has been reduced for road inspection when using PotholeEye+.

Figure 6: Training data images; (a) parts of the training dataset and (b) parts of results of
applying the data augmentation

Figure 7: Pictures of device attached to vehicle; (a) front view of the vehicle with GPS receiver, (b)
rear view of the vehicle with camera, (c) touch screen monitor, (d) mini-computer, and (e) GoPro
Hero Camera
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We evaluated the distress detection (classification) results of the PotholeEye+ during driving
a total of 4 sections, a distance of 102 km as listed in Tab. 2. Accuracy, precision and recall were
considered [20]. The experiment results showed that PotholeEye+ achieved an accuracy of 91.66%,
a precision of 87.07% and a recall of 74.39%. Detailed information is as listed in Tab. 3. As a
result of the experiment, we found that there is a need to intensively supplement the detection
model for the distress of asphalt pavement because there are many cases of misclassification of the
distress caused by the asphalt pavement. Also, parts of false positive were difficult to distinguish
even by human, as shown in Fig. 8. Figs. 8a and 8c–8e are all normal patching, but PotholeEye+
classified into the pavement distress, such as pothole and spalling, and (b) is narrow crack and
(c) is crack but misclassified into spalling.

Figure 8: Misclassified cases; (a), (c), (d), and (e) are all normal patching, but PotholeEye+ classi-
fied into the pavement distress, such as pothole and spalling; (b) is narrow crack and (c) is crack
but misclassified into spalling

Table 2: Description about the sections on highway driven for PotholeEye+ test

Highway name Sections (Distance) Lane Type of pavement

Gyeongbu[Seoul-
Busan]

Osan IC∗ to Yangjae IC
(37.85 km)

1, 2, 3, 4 Asphalt

Yeongdong Dongsuwon IC to Gunja
TG§ (26.30 km)

1, 2 Concrete

Seohaean Maesong IC to W† Seoul TG
(21.89 km)

2, 3 Concrete

Pyeongtaek-Jecheon W Pyeongtaek IC to W
Pyeongtaek JC‡ (16.86 km)

1, 2 Concrete

Note: ∗IC: Interchange; §TG: Tollgate; ‡JC: Junction; †W: West.

Next, to evaluate how short the inspection time for finding pavement distress on highway was
reduced, we have been running PotholeEye+ for eight branches of highway management under the
Korea Expressway Corporation for 6 months. We compared the inspection time of PotholeEye+
with the human inspectors. As a result, we confirmed that the inspection time was reduced by
3 times as shown in Tab. 4. Furthermore, we received positive feedback from the human inspectors
that anyone can check the pavement distress using PotholeEye+, and that the risk of accidents
that may occur during the check can be reduced.
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Table 3: Detection results from for PotholeEye+ for each pavement distress type

Highway name TN∗ TP§ FP† FN+ Sum Precision Recall Accuracy

Gyeongbu[Seoul-Busan] 205 205 63 95 568 68.33 76.49 72.18
Yeongdong 21889 1781 321 105 24096 94.43 84.73 98.23
Seohaean 14213 1590 267 149 16219 91.43 85.62 97.44
Pyeongtaek-Jecheon 11904 143 139 9 12195 94.08 50.71 98.79
Average 87.07 74.39 91.66

Note: ∗TN: True Nagative; §TP: True Positive; †FP: False Positive (Type 1 Error); +FN: False Negative (Type 2 Error).

Table 4: Comparison results with the inspection time and the features

Human Inspactor PotholeEye+

Features �Inspection task (5 h)
�Entered into the
system∗, manually (3 h)

�Inspection task (2 h)
�Confirm the detected
images

Time 8 h 2.5 h (�5.5)

Note: ∗Pavement Management System.

5 Implementations

PotholeEye+ installed in the terminal of the driving vehicle instantly detects road surface
damage at the current location through the real-time analysis of the data collected from the video
sensor. Fig. 9 shows PotholeEye+ installed on a vehicle to check the road surface. PotholeEye+
has a weak point of snow and rain because the camera is attached to the outside of the vehicle.
Hence, we made a cover to prevent the camera exposed to the outside from malfunctioning due
to snow or rain.

Figure 9: PotholeEye+ installed on a vehicle to check the road surface; (a) front view; (b) back
view; (c) cover for a camera exposed to the outside

Fig. 10 shows a screenshot of PotholeEye+ running on a mini-computer installed in the
vehicle. The detected images by PotholeEye+ are sent to the road manager through MMS along
with GPS location information and they are also transmitted to a remote server. The server stores
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and manages the detailed information detected at each time along with the basic information on
the road pavement of each section of the route based on a map.

Figure 10: Screenshot of PotholeEye+ running on mini-PC installed in a vehicle

6 Conclusion and Future Plan

In this paper, we present the end-to-end operation of PotholeEye+. Repeated driving experi-
ments on a highway confirmed that PotholeEye+ could be used to inspect the pavement condition
in a fast, accurate and convenient manner. However, it was also confirmed that the detection
accuracy of PotholeEye+ must be improved for it to be applied effectively to the automation
of pavement condition inspection activities in actual highway environments. In the future, the
detection performance will be improved by securing long-term image data through repeated
driving, preparing detailed criteria for pavement distress based on the data, and applying the
latest technologies. Moreover, the ability of detecting small distress, such as small cracks, will
be improved by supplementing the image processing algorithm through the application of line
component extraction to the lower section of an image, and the system will be gradually improved
through comparative experiments with the latest technologies.
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