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ABSTRACT

This article brings into focus the hybrid effects of thermal and concentration convection on peristaltic pumping
of fourth grade nanofluids in an inclined tapered channel. First, the brief mathematical modelling of the fourth
grade nanofluids is provided along with thermal and concentration convection. The Lubrication method is used
to simplify the partial differential equations which are tremendously nonlinear. Further, analytical technique is
applied to solve the differential equations that are strongly nonlinear in nature, and exact solutions of temperature,
volume fraction of nanoparticles, and concentration are studied. Numerical and graphical findings manifest the
influence of various physical flow-quantity parameters. It is observed that the nanoparticle fraction decreases
because of the increasing values of Brownian motion parameter and Dufour parameter, whereas the behaviour of
nanoparticle fraction is quite opposite for thermophoresis parameter. It is also noted that the temperature profile
decreases with increasing Brownian motion parameter values and rises with Dufour parameter values. Moreover,
the concentration profile ascends with increasing thermophoresis parameter and Soret parameter values.
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1 Introduction

Fluid transport with the help of peristaltic waves is first studied by Latham [1]. Since then
it has been the central domain of research interest in physiological and mechanical situation.
Peristaltic pumping is a mean or device for pumping fluids. It carries the fluid from lower
pressure to higher pressure along the tube through contraction wave. This process occurs in
many physiological mechanisms. For example, food movement from esophagus via stomach to
intestine, urine excretion of a bladder through kidneys, movement of sperms and ova in male and
female (fallopian tube) reproductive system respectively and chyme movement of gastrointestinal
tract. Furthermore, peristaltic action relates to lump transfer in lymphatic vessels, blood flow in
minute arteries and veins, and bile conduct through bile duct. There are many practical utilities of
peristaltic pumping in biomechanical systems. Moreover, to pump any corroding material, roller
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and finger pumps are utilized to avoid the direct contact with the surface. The initial mathematical
models of peristalsis were presented by Shapiro et al. [2] and Fung et al. [3]. They acquired it
through their working on a sinusoidal wave in endlessly long symmetrical channel or tube. In later
studies, the focus was to further explore the peristaltic action for Newtonian and non-Newtonian
fluids in diverse situations. Numerous experimental, analytical, and numerical models have been
discussed in this regard. Though much work is available on the subject but few recent research
are mentioned by the studies given at [4–10].

The field of practical application of nanofluids in industry and engineering has renowned
the interest of the researchers. These applications are related to photodynamic therapy, the lotus
effect for self-cleaning surfaces, primary cellular level of biological organisms, membranes for
filtering on size or charge (e.g., for desalination), shrimps snapping along with beetle wings
super-hydrophobic process, use of charged polymers for lubrication, nano porous materials for
size exclusion chromatography, molecular motors, drug transfer, neuro electronic interfaces, can-
cer diagnostics and therapies, protein engineering, machines for cell repair and light casting on
molecular motor cells such as kinesis and charged filtration in the kidney basal membrane,
etc. [11]. Choi et al. [12] coined the word nanofluid which designates to the fluid containing
nano-sized particles for conventional heat transfer. Moreover, the liquid contains ultrafine particles
which are below 50 nm diameter. These particles could be deducted with metals like (Cu, Al),
nitrides (SiN), oxides (Al2O2), or in non-metals namely nanofibers, graphite, carbon nanotubes
and droplets. Masuda et al. [13] propagated that nanofluids can be used in advanced nuclear
system because they have the characteristics to enhance the thermal conductivity. An analytical
model was followed by Buongiorno et al. [14,15] which is based on the nanofluids flow. The
model implied convective transport in nanofluids with Brownian diffusion and thermophoresis. It
is revealed in his studies that Brownian diffusion and thermophoresis were significant nanoparticle
or base-fluid slip process. This also explains abnormal convective heat transfer enhancement in
nanofluids. The concept of nanofluids both in peristaltic and non-peristaltic flow are mentioned
in [16–30].

A fluid dynamics phenomenon, termed as double diffusive convection, is a convection directed
by two different density gradients having different rates of diffusion. Fluids convection is propelled
by density variation under the influence of gravity. Such density variation can occur due to the
gradients in fluid composition or differences in temperature through thermal expansion. Compo-
sitional and thermal gradients usually diffuse over time which hampers the ability to conduct the
convection. Therefore, that gradient requires in the flow areas to carry on convection. We can find
out an example of double diffusive convection in oceanography. Here salt and heat concentration
dwell with various gradients and diffuse at varying rates. Influence of cold water, such as from
iceberg, can affect these variables. Akbar et al. [31] has examined peristaltic flow in nanofluid with
double diffusive natural convection. Further theoretical works on double diffusion are mentioned
in [32–40].

Limited work has been traced in literature review on inclined tapered channel with double
diffusive convection on peristaltic flow of nanofluids. Hence, inclined tapered channel on peristalsis
is considered with double diffusive convection flow for the current study by taking non-Newtonian
nanofluid.

2 Formulation and Methodology

Let’s consider the fourth-grade peristaltic transport in tapered channel with 2d width.
The sinusoidal wave propagates at constant velocity c along channel walls. At upper and
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lower walls the temperature, solute and concentration of nanoparticles is T0,C0,�0 and
T1,C1,�1 respectively. In addition, we also assume that the channel is inclined at an
angle α. For 2-dimensional and directional flow the field of velocity is characterized as W̃ =
(Ũ(X̃ , Ỹ , t̃), Ṽ(X̃ , Ỹ , t̃), 0). The flow geometry of the physical model is now described in Fig. 1.
The walls of tapered channel that are at lower level H̃1 and upper level H̃2 are represented in a
fixed frame of reference as

H̃1

(
X̃ , t̃

)
=−d− m̃X̃ − ã1sin

[
2π
λ

(
X̃ − ct̃

)
+ϕ

]
,

H̃2(X̃ , t̃)= d+ m̃X̃ + ã2sin
[
2π
λ

(
X̃ − ct̃

)]
, (1)

here t̃, c,λ, (ã1, ã2) and m̃ (m̃ << 1) refers to time, velocity propagation, wavelength, lower and
upper walls amplitudes and parameter of non-uniform tapered channel, respectively. The phase
difference φ lies within the range of 0 ≤ ϕ ≤ π , ϕ = 0 is symmetrical channel with out-of-phase
waves, i.e., the two walls move at the same speed. Also ã1, ã2, d, and φ fulfil the condition ã21 +
ã22+ 2ã1ã2cosϕ ≤ (2d)2) [5].

Against fourth grade fluid, the stress tensor is described by [5]

τ =−PI +S, (2)

S=μÃ1+ α̃1Ã2+ α̃2Ã2
1+ β̃1Ã3+ β̃2(Ã1Ã2+ Ã2Ã1)+ β̃3(tracÃ2

1)Ã1+ γ̃1Ã4+ γ̃2(Ã3Ã1+ Ã1Ã3)

+ γ̃3Ã2
2+ γ̃4(Ã2

1Ã2+ Ã2Ã
2
1)+ γ̃5trac(Ã2)Ã2+ γ̃6trac(Ã2)Ã

2
1+ (γ̃7tracÃ3+ γ̃8tracÃ2Ã1)Ã1, (3)

Ã1 = (∇V)+ (∇V)T̃ , (4)

Ãi = dÃi−1

dt
+ Ãi−1(∇V)+ (∇V)T̃i−1Ã, (5)

where μ refers to constant viscosity, α̃1, α̃2, β̃1 − β̃3, γ̃1 − γ̃8 refers for material constants, T̃ refers
to transpose and Ãi denotes Rivilin–Ericksen tensors.

Figure 1: Flow geometry of the physical model
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The equation of continuity, momentum, temperature, fraction of nanoparticles and the solute
concentration of an incompressible fluid for two-dimensional cases is given as

∂Ũ

∂X̃
+ ∂Ṽ

∂Ỹ
= 0, (6)

ρf

(
∂Ũ

∂ t̃
+ Ŭ

∂Ũ

∂X̃
+ Ṽ

∂Ũ

∂Ỹ

)
=− ∂P

∂X̃
+ ∂

∂X̃

(
S̆X̃X̃

)
+ ∂

∂Ỹ

(
S̆X̃Ỹ

)
+ρg sinα

+ g
{
(1−�0)ρf 0 {βT(T −T0)+βC(C−C0)} −(ρp−ρf 0)(�−�0)

}
,
(7)

ρf

(
∂Ṽ

∂ t̃
+ Ŭ

∂Ṽ

∂X̃
+ Ṽ

∂Ṽ

∂Ỹ

)
=− ∂P

∂Ỹ
+ ∂

∂X̃

(
S̆Ỹ X̃

)
+ ∂

∂Ỹ

(
S̃ỸỸ

)
−ρg cosα, (8)

(ρc)f

(
∂

∂ t̃
+ Ŭ

∂

∂X̃
+ Ṽ

∂

∂Ỹ

)
T = ε

(
∂2T

∂X̃2
+ ∂2T

∂Ỹ2

)
+ (ρc)p

{
DB

(
∂�

∂X̃

∂T

∂X̃
+ ∂�

∂Ỹ

∂T

∂Ỹ

)
(
DT

T0

)[(
∂T

∂X̃

)2

+
(
∂T

∂Ỹ

)2
]}

+DTC

(
∂2C

∂X̃2
+ ∂2C

∂Ỹ2

)
, (9)

(
∂

∂ t̃
+ Ŭ

∂

∂X̃
+ Ṽ

∂

∂Ỹ

)
C =Ds

(
∂2C

∂X̃2
+ ∂2C

∂Ỹ2

)
+DTC

(
∂2T

∂X̃2
+ ∂2T

∂Ỹ2

)
, (10)

(
∂

∂ t̃
+ Ŭ

∂

∂X̃
+ Ṽ

∂

∂Ỹ

)
�=DB

(
∂2�

∂X̃2
+ ∂2�

∂Ỹ2

)
+
(
DT

T0

)(
∂2T

∂X̃2
+ ∂2T

∂Ỹ2

)
, (11)

In the above equations ρf ,g,ρf0,ρp,T ,C,�,DB,DT ,DCT ,Ds,DTC ,βC,βT , ε, (ρc)p , (ρc)f refers
to base fluid density, gravity acceleration, fluid density at T0, particles density, temperature, con-
centration, nanoparticle volume fraction, Brownian diffusion coefficient, thermophoretic diffusion
coefficient, soret diffusively, solutal diffusively, Dufour diffusively, volumetrically solutal expansion
coefficient of a fluid, volumetrically thermal expansion coefficient of a fluid, thermal conductivity,
nanoparticle heat capacity and fluid heat capacity, respectively.

Defining the subsequent dimensionless quantities

u= Ũ
c
, v= Ṽ

c
, x= X̃

λ
, y= Ỹ

d
, δ= d

λ
, p= d2p

μcλ
, t= ct̃

λ
, h1 = H̃1

d
,

h2 = H̃2

d
, a= ã1

d
, b= ã2

d
, m= m̃λ

d
, Re= ρf cd

μ
, Pr= (ρc)f υ

ε
,

θ = T −T0

T1−T0
, γ = C−C0

C1−C0
, Le= υ

Ds
, �= �−�0

�1−�0
, Ln= υ

DB
,

NCT = DCT (T1−T0)

(C1−C0)Ds
, NTC = DCT (C1−C0)

ε (T1−T0)
, Nb =

(ρc)p DB (�1−�0)

ε
,
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Nt =
(ρc)p DT (T1−T0)

εT0
, GrF = g

(
ρp−ρf

)
(�1−�0)d2

μ0c
,

Grt=
gd2 (1−�0) (T1−T0)ρf βT

μ0c
, Grc=

g (1−�0) ρfβc (C1−C0)d2

μ0c
,

λ̃n = α̃ic
μb0

(i= 1, 2) , κ̃i = β̃ic2

μb20
(i= 1, 2, 3) , η̃i = γ̃nc3

μb30
(i= 1− 8)

Sij = d
μ
S̃ij, (i= 1, 2, 3) , u= ∂ψ

∂y
, v=−δ ∂ψ

∂x
. (12)

In above dimensionless quantities Pr , δ,Re,Grc,GrF ,GrT ,Le,Nb,Ln,Nt,NCT ,NTC, θ ,� and γ
representing Prandtl number, wave number, Reynolds number, solutal Grashof number, nanopar-
ticle Grashof number, thermal Grashof number, Lewis number, parameter of Brownian motion,
nanofluid Lewis number, parameter of thermophoresis, parameter of Soret, parameter of Dufour,
dimensionless temperature, solutal concentration and fraction nanoparticle, respectively.

By using Eq. (6), Eq. (13) is automatically satisfied and Eqs. (7)–(12) for stream function ψ ,
temperature θ , nanoparticle fraction γ and solute concentration � in wave frame becomes

Reδ
(
ψtyψyψxy−ψxψyy

)=−∂p
∂x

+ δ ∂
∂x
(Sxx)+ ∂

∂y

(
Sxy

)+ Re
Fr
sinα+Grtθ +Grcγ −GrF�, (13)

Reδ3(ψtxψxψxy−ψyψxx)=−∂pm
∂y

+ δ2 ∂
∂x

(
Syx

)+ δ ∂
∂y

(
Syy

)− δRe
Fr
cosα+ δ (Grtθ +Grcγ −GrF�) ,

(14)

RePrδ
(
θt+ψyθx−ψxθy

)= (θyy+ δ2θxx)+NTC

(
δ2γxx+ γyy

)
+Nb

(
δ2�xθx+ θy�y

)
+Nt

(
δ2 (θx)

2+ (θy)2) , (15)

ReδLe
(
γt+ψyγx−ψxγy

)= (δ2γxx+ γyy)+NCT

(
δ2θxx+ θyy

)
, (16)

ReδLn
(
�t+�xψy−ψx�y

)= (δ2�xx+�yy

)
+ Nt

Nb

(
δ2θxx+ θyy

)
, (17)

Now using supposition of long wavelength and low number of Reynolds, the Eqs. (13)–(17)
becomes

0=−∂p
∂x

+ ∂

∂y
Sxy+ Re

Fr
sinα+Grtθ +Grcγ −GrF�, (18)

0=−∂p
∂y

, (19)

∂2θ

∂y2
+NTC

∂2γ

∂y2
+Nb

(
∂θ

∂y
∂�

∂y

)
+Nt

(
∂θ

∂y

)2

= 0, (20)

∂2γ

∂y2
+NCT

∂2θ

∂y2
= 0, (21)
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∂2�

∂y2
+ Nt

Nb

∂2θ

∂y2
= 0, (22)

Eliminate pressure from Eqs. (18) and (19) we get

∂2

∂y2
Sxy+Grt

∂θ

∂y
+Grc

∂γ

∂y
−GrF

∂�

∂y
= 0, (23)

where

Sxy = ∂2ψ

∂y2
+ 2�

(
∂2ψ

∂y2

)3

, (24)

and �= κ2+ κ3 is Deborah number.

In wave frame the boundary conditions regarding stream function � , temperature θ , fraction
of nanoparticle � and solute concentration γ are described as:

ψ =−F
2

at y= h1 =−1−mx− asin [2π (x− t)+ϕ] ,

ψ = F
2

at y= h2 = 1+mx+ bsin [2π (x− t)] , (25)

∂ψ

∂y
= 0 at y= h1 =−1−mx− asin [2π (x− t)+ϕ] ,

∂ψ

∂y
= 0 at y= h2 = 1+mx+ bsin [2π (x− t)] , (26)

θ = 0, at y= h1 and θ = 1, at y= h2, (27)

�= 0, at y= h1, and �= 1, at y= h2, (28)

γ = 0, at y= h1, and γ = 1, at y= h2, (29)

3 Exact Solution

The exact solution of the volume fraction of nanoparticles which satisfies the relevant
condition (28) is described as

�=
(y− h1)

(
Nt
Nb

+ 1
)

h2− h1
− Nt

(
e−ξy− e−ξh1

)
Nb
(
e−ξh2 − e−ξh1

) , (30)

The exact solution of the solutal (species) concentration which satisfies the relevant condition
(29) is described as

γ = (NCT+ 1) (y− h1)
h2− h1

− NCT
(
e−ξy− e−ξh1

)
e−ξh2 − e−ξh1

, (31)

The exact solution of temperature which satisfies the relevant condition (27) is described as

θ = e−ξy− e−ξh1

e−ξh2 − e−ξh1
, (32)
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where

ξ = Nb+Nt

(h2− h1) (1−NCTNTC)
, (33)

4 Analytical Technique

The differential Eqs. (19) and (24) are non-linear so it is difficult to find exact solutions to
these equations. So regular perturbation technique is used for finding the solutions of Eqs. (19)
and (24). Expand now �,p and F as

ψ =ψ0 +� (ψ1) , (34)

p= p0+� (p1) , (35)

F = F0 +� (F1) . (36)

With assistance from Eqs. (34)–(36) into Eqs. (19), (24) and (26) combining like powers of �,
we get the following system as follows:

System of order �0

∂4ψ0

∂y4
=−

(
Grt
∂θ

∂y
+Grc

∂γ

∂y
−GrF

∂�

∂y

)
, (37)

∂p0
∂x

= ∂3�0

∂y3
+ Re
Fr
sinα+Grtθ +Grcγ −GrF�, (38)

ψ0 =−F0
2

at y= h1 =−1−mx− asin [2π (x− t)+ϕ] , (39)

ψ0 = F0
2

at y= h2 = 1+mx+ bsin [2π (x− t)] , (40)

∂ψ0

∂y
= 0 at y= h1 =−1−mx− asin [2π (x− t)+ϕ] , (41)

∂ψ0

∂y
= 0 at y= h2 = 1+mx+ bsin [2π (x− t)] , (42)

System of order �1

∂4ψ1

∂y4
=−2

∂2

∂y2

(
∂2ψ0

∂y2

)3

, (43)

∂p1
∂x

= ∂3�1

∂y3
+ 2

∂

∂y

(
∂2ψ0

∂y2

)3

, (44)

ψ1 =−F1
2

at y= h1 =−1−mx− asin [2π (x− t)+ϕ] , (45)

ψ1 = F1
2

at y= h2 = 1+mx+ bsin [2π (x− t)] , (46)
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∂ψ1

∂y
= 0 at y= h1 =−1−mx− asin [2π (x− t)+ϕ] , (47)

∂ψ1

∂y
= 0 at y= h2 = 1+mx+ bsin [2π (x− t)] , (48)

4.1 Solution for Zeroth Order System
Solution of Eq. (37) that satisfies the boundary conditions (39)–(42) is described as follows:

ψ0 =L4y
3+L3y

2+L2y+L1 + ξ0y4

24
− ξ1sinh(ξy)

ξ4
+ ξ1cosh(ξy)

ξ4
, (49)

The pressure gradient for this order is described as

∂p0
∂x

= Re
Fr
sinα+ ξ1sinh (ξy)

ξ
− ξ1cosh (ξy)

ξ
+Grt

(
e−ξy− e−h1ξ

e−h2ξ − e−h1ξ

)
+ ξ0y+ 6L4

+Grc

(
(NCT+ 1) (y− h1)

h2− h1
− NCT

(
e−ξy− e−h1ξ

)
e−h2ξ − e−h1ξ

)

−GrF

⎛⎝(y− h1)
(
Nt
Nb

+ 1
)

h2− h1
− Nt

(
e−ξy− e−h1ξ

)
Nb
(
e−h2ξ − e−h1ξ

)
⎞⎠ ,

(50)

where ξ
,s
i constants are used for simplifying equations and are described in Appendix. The

remaining constants L1,L2,L3 and L4 are determined using boundary conditions (39)–(42) and
are described in Appendix.

4.2 Solution for First Order System
Using solution zero-order (49) into (43), the solution of Eq. (43) which satisfies the boundary

conditions (45)–(48) is described as follows:

ψ1 =− 3
14
L4ξ

2
0 y

7+ ξ0ξ8y6

240L3
+L8y

3+L7y
2+L6y+L5− 1

224
ξ30 y

8+ ξ9y5

120
+ ξ11y3e−ξy

+ 1
24
y4
(
ξ8−

36ξ20 ξ1e
−ξy

ξ4

)
+ y2

(
ξ12e

−ξy− 3ξ0ξ21 e
−2ξy

4ξ6

)
+ y

(
ξ13e

−ξy+ ξ14e−2ξy
)

−2ξ31 e
−3ξy

9ξ8
+ ξ10e−2ξy+ ξ15e−ξy,

(51)

The pressure gradient for this order is described as

∂p1
∂x

=−45L4ξ
2
0 y

4+ ξ0ξ8y3

2L3
+ 6L8 − 1

2
3ξ30y

5+ 3ξ20 ξ1y
4e−ξy

2ξ
− ξ3ξ11y3e−ξy+ ξ9y2

2
− 18ξ20 ξ1y

3e−ξy

ξ2

+ 54ξ20 ξ1y
2e−ξy

ξ3
+ y2

(
6ξ0ξ21 e

−2ξy

ξ3
− ξ3ξ12e−ξy

)
+ 6ξ31 e

−3ξy

ξ5
+ 6

(
3ξ0ξ21 e

−2ξy

2ξ5
− ξξ12e−ξy

)
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+ y

(
ξ8−

36ξ20 ξ1e
−ξy

ξ4

)
+ 9ξ2ξ11y2e−ξy+ y

(
ξ13ξ

3 (−e−ξy)− 8ξ14ξ3e−2ξy
)
− 8ξ3ξ10e−2ξy

− ξ3ξ15e−ξy+ 3ξ2ξ13e
−ξy+ 12ξ2ξ14e

−2ξy+ 6y

(
ξ2ξ12e

−ξy− 3ξ0ξ21 e
−2ξy

ξ4

)
− 18ξξ11ye

−ξy

+ 6ξ11e
−ξy+ 6

(
6L4+ ξ0y+ ξ1

ξ
(sinh (ξy)− cosh (ξy))

)
(
6L4y+ 2L3+ ξ0y2

2
+ ξ1

ξ2
(cosh(ξy)− sinh(ξy))

)2

, (52)

where ξ
,s
i constants are used for simplifying equations and are described in Appendix. The

remaining constants L5,L6,L7 and L8 are determined using boundary conditions (45)–(48) and
are described in Appendix.

Now for small parameter �, summarizing the perturbation results we have

ψ =ψ0 +�ψ1, (53)

∂p
∂x

= ∂p0
∂x

+�∂p1
∂x

, (54)

�p=�p0+��p1, (55)

Defining F = F0+�F1 and using F0 = F −�F1 and then ignoring terms larger than O (�) the
results obtained by Eq. (53) to Eq. (55) showing up till �.

For average pressure increase the non-dimensional expression is given as follows:

�p=
∫ 1

0

∫ 1

0

∂p
∂x
dxdt. (56)

5 Different Wave Forms

The expression (in non-dimensional form) for the considered wave forms is defined as follows:

1. Multisinusoidal wave

h1 (x)=−1−mx− asin [2nπ (x− t)+ϕ] ,h2 (x)= 1+mx+ bsin [2πn (x− t)] .

2. Triangular wave

h1 (x)=−1−mx− a

[
8
π3

∞∑
i=1

(−1)i+1

(2i− 1)2
sin (2π (2i− 1) (x− t)+ϕ)

]
,

h2 (x)= 1+mx+ b

[
8
π3

∞∑
i=1

(−1)i+1

(2i− 1)2
sin (2π (2i− 1) (x− t))

]
.
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3. Trapezoidal wave

h1 (x)=−1−mx− a

[
32
π2

∞∑
i=1

sin π8 (2i− 1)

(2i− 1)2
sin (2π (2i− 1) (x− t)+ϕ)

]
,

h2 (x)= 1+mx+ b

[
32
π2

∞∑
i=1

sin π8 (2i− 1)

(2i− 1)2
sin (2π (2i− 1) (x− t))

]
.

6 Graphical Outcomes

To interpret the results quantitatively we consider the instantaneous volume flow rate F (x, t)
periodic in (x− t) [5] as

F (x, t)=Q+ asin [2π (x− t)+ϕ]+ bsin [2π (x− t)]

here Q is average time of flow through a single wave cycle and F = ∫ h2h1 udy.
To observe the graphical outcomes of concentration, temperature, nanoparticle fraction, pres-

sure gradient, pressure rise and streamlines Figs. 2–11 are displayed. The temperature profile effect
is plotted for the different values of Nb and NTC in Figs. 2a and 2b. It is seen in Fig. 2a that
temperature profile behaviour decreases with increasing Nb values. This is because temperature
exhibits a direct relationship with Nb. In Fig. 2b the temperature profile show opposite effect as
compared with Nb. Here temperature effects increases with increasing NTC values. Fig. 3 shows the
impact of Nt and NCT on concentration profile. It is shown in Figs. 3a and 3b that concentration
profile increases with increasing Nt and NCT values. This is due to the direct relationship of
concentration with Nt and NCT . To view the impact of nanoparticle fraction on Nb,Nt and NTC
Figs. 4a–4c are plotted. It is shown in Fig. 4 that behavior of nanoparticle fraction decreases
because of the increasing values of Nb and NTC (see Figs. 4a and 4c), whereas the behaviour of
nanoparticle fraction is quite opposite for Nt. In this case nanoparticle fraction increases due to
the increasing Nt values.
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Figure 2: (a) Profile of temperature (θ) for various Nb values (sinusoidal wave). (b) Tempera-
ture (θ) profile for various NTC values (sinusoidal wave)
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To study the graphical results of pressure, rise Figs. 5a–5d are plotted. As it turns out in
Figs. 5a and 5b that pressure rise decreases within the regions where �p > 0, Q < 0 (retrograde
pumping), �p > 0, Q > 0 (peristaltic pumping) and �p = 0 (free pumping), whereas behavior is
opposite over the regions where �p< 0, Q> 0 (copumping region). Here pressure rise enhanced
by increasing values of m and �. Figs. 5c and 5d show the pressure rise actions for the various
Re and Nt values. From these figures we can see that pressure rise increases in all pumping
regions (peristaltic, retrograde, copumping and free) by increasing values of Re and Nt. Graphical
behavior of pressure gradient is illustrated in Fig. 6a–6c. It is represented in Fig. 6a that when
xε[0, 0.7] the pressure gradient decreases by increasing Nb values, while the pressure gradient
behaviour is quite opposite when xε[0.7, 1]. Here pressure gradient increases because of increasing
values of Nb. Fig. 6b indicates that when xε[0.7, 1] the value of the pressure gradient decreases
because of increasing values of �. It shows up in Fig. 6c that the behavior of pressure gradient
decreases due to the increasing values of Fr. The pressure gradient behaviour for the various wave
forms is shown in Figs. 7a–7d. From these figures it is seen that trapezoidal waves are found to
have maximum pressure gradient.
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Figure 7: (a–d): Pressure gradient (dp/dx) against axial distance (x) for different wave shapes

For studying the phenomenon of trapping Figs. 8–11 are plotted. Streamlines for the different
values of NCT and m are displayed in Figs. 8 and 9. It shows up in Figs. 8 and 9 that the size
and number of the trapped bolus are increased by rising values of NCT and m. Fig. 10 is plotted
to observe the streamlines pattern of the streamlines for different Nb values. Number of trapping
bolus is observed to decrease by increasing Nb values. Patterns of streamlines for various wave
types are shown in Figs. 11a and 11b.

Figure 8: Streamlines of NCT
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Figure 9: Streamlines of m

Figure 10: Streamlines of Nb



916 CMES, 2021, vol.127, no.3

(a) (b)

(c) (d)

Figure 11: (a–d): Streamlines of different wave shapes

7 Concluding Remarks

This article highlights the hybrid effects of thermal and concentration convection on peristaltic
pumping of fourth grade nanofluids in an inclined tapered channel. The mathematical modelling
of the fourth grade nanofluids is given along with thermal and concentration convection. Ana-
lytical technique is used to solve the differential equations that are strongly nonlinear in nature.
Exact solutions of temperature, volume fraction of nanoparticles, and concentration are explored.
The key finding can be encapsulated as follows:

• The temperature profile behaviour decreases with increasing Nb values and increases with
increasing NTC values.
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• The concentration profile increases with increasing Nt and NCT values.
• The behaviour of nanoparticle fraction decreases because of the increasing values of Nb
and NTC , whereas the behavior of nanoparticle fraction is quite opposite for Nt.

• The behaviour of pressure gradient decreases due to the increasing values of Fr.
• The size and number of the trapped bolus are increased by rising values of NCT and m.
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Appendix

ξ0 = Nb (NCT+ 1)Grc−GrF (Nb+Nt)

(h1− h2)Nb
, ξ1 = ξe(h1+h2)ξ (Nb (Grt−NCTGrc)+GrFNt)

Nb
(
eh1ξ − eh2ξ

) ,

ξ2 =
24ξ21 (ξ0− 6L4ξ)

ξ3
, ξ3 =−6ξ21 (8ξ (L3ξ − 3L4)+ ξ0)

ξ4
, ξ4 = 12ξ0ξ1 (ξ0− 3L4ξ)

ξ
,

ξ5 =−6ξ1
(
36L2

4ξ
2+ 2ξξ0 (L3ξ − 18L4)+ 3ξ20

)
ξ2

,

ξ6 =−24ξ1 (2L3ξ (3L4ξ − ξ0)+ 9L4 (ξ0− 4L4ξ))

ξ2
,

ξ7 =−24ξ1
(
L2
3ξ

2+L3 (ξ0− 12L4ξ)+ 18L2
4

)
ξ2

, ξ8 =−24L3

(
L3ξ0+ 36L2

4

)
,

ξ9 =−432L4

(
L3ξ0+ 6L2

4

)
, ξ10 =

ξ3 (2ξ2+ ξξ3)− 60ξ0ξ21
16ξ8

, ξ11 =
ξξ4− 24ξ20 ξ1

ξ5
,

ξ12 =
ξ (12ξ4+ ξξ5)− 180ξ20 ξ1

ξ6
, ξ13 =

ξ (60ξ4+ ξ (8ξ5+ ξξ6))− 720ξ20 ξ1
ξ7

,

ξ14 =
ξ3ξ2− 48ξ0ξ21

16ξ7
, ξ15 =

ξ7ξ
4+ 4 (30ξ4+ ξ (5ξ5+ ξξ6)) ξ − 1260ξ20 ξ1

ξ8
,

ξ16 =
h61ξ0ξ8
240L3

− 2ξ31 e
−3h1ξ

9ξ8
+ 1

24
h41

(
ξ8−

36ξ20 ξ1e
h1(−ξ )

ξ4

)
,

ξ17 = h21

(
ξ12eh1(−ξ )−

3ξ0ξ21 e
−2h1ξ

4ξ6

)
+ h1

(
ξ13eh1(−ξ )+ ξ14e−2h1ξ

)
,

ξ18 = 1
120

h51ξ9+ h31ξ11e
−h1ξ + ξ10e−2h1ξ + ξ15e−h1ξ + ξ16+ ξ17,

ξ19 =
h62ξ0ξ8
240L3

− 2ξ31 e
−3h2ξ

9ξ8
+ 1

24
h42

(
ξ8−

36ξ20 ξ1e
−h2ξ

ξ4

)
,

ξ20 = h22

(
ξ12e

−h2ξ − 3ξ0ξ21 e
−2h2ξ

4ξ6

)
+ h2

(
ξ13e

−h2ξ + ξ14e−2h2ξ
)
,

ξ21 = 1
120

h52ξ9+ h32ξ11e
−h2ξ + ξ10e−2h2ξ + ξ15e−h2ξ + ξ19+ ξ20,

ξ22 = 1
6
h31

(
ξ8−

36ξ20 ξ1e
−h1ξ

ξ4

)
+ 1

24
h41ξ9− 2ξξ10e

−2h1ξ ,
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ξ23 = 2h1

(
ξ12e−h1ξ −

3ξ0ξ21 e
−2h1ξ

4ξ6

)
+ h31ξξ11

(
−e−h1ξ

)
+ 3h21ξ11e

−h1ξ + ξ22,

ξ24 = h21

(
3ξ0ξ21 e

−2h1ξ

2ξ5
− ξξ12e−h1ξ

)
+ ξ13e−h1ξ + ξ14e−2h1ξ + ξ23,

ξ25 =
2ξ31 e

−3h1ξ

3ξ7
+ 3h41ξ

2
0 ξ1e

−h1ξ

2ξ3
+ h1

(
ξξ13

(
−e−h1ξ

)
− 2ξξ14e

−2h1ξ
)
− ξξ15e−h1ξ + ξ24,

ξ26 = 1
6
h32

(
ξ8−

36ξ20 ξ1e
−h2ξ

ξ4

)
+ 1

24
h42ξ9− 2ξξ10e

−2h2ξ − ξξ15e−h2ξ ,

ξ27 = 2h2

(
ξ12e−h2ξ −

3ξ0ξ21 e
−2h2ξ

4ξ6

)
+ h22

(
3ξ0ξ21 e

−2h2ξ

2ξ5
− ξξ12e−h2ξ

)
,

ξ28 =
3h42ξ

2
0 ξ1e

−h2ξ

2ξ3
− h32ξξ11e

−h2ξ + 3h22ξ11e
−h2ξ + ξ13e−h2ξ + ξ26+ ξ27,

ξ29 =
ξ14e−2h2ξ

(
2ξ31 e

−3h2ξ
)

3ξ7
+ h2

(
ξξ13

(
−e−h2ξ

)
− 2ξξ14e

−2h2ξ
)
,

ξ30 = h21
(
(h1− h2)

3 h22ξ
4ξ0e

h2ξ − 24ξ1 (h1 (h2ξ + 1)− h2 (h2ξ + 3))
)
,

ξ31 = 12h1ξ1e−h2ξ ((h1− h2) (h1+ 2h2) ξ − 6h2) ,

ξ32 = 24ξ1e−h2ξ
(
−2h21ξ + h1 (h2ξ + 3)+ h2 (h2ξ + 3)

)
,

ξ33 = 24ξ1
(
h21ξ + h1 (h2ξ + 3)+ h2 (3− 2h2ξ)

)
,

ξ34 = h31
(
−35h82L3ξ

3
0 − 1440h72L3L4ξ

2
0 + 1120h2L3ξ29+ 28h62ξ0ξ8ξ28− 1120L3ξ21

)
,

ξ35 = 25h82L3ξ
3
0 + 960h72L3L4ξ

2
0 + 1120h2L3 (ξ25− ξ29)− 28h62ξ0ξ8ξ28+ 3360L3ξ21,

ξ36 = h2h21ξ35− 1120h22h1L3 (h2ξ25+ 3ξ18)+ 1120h32L3ξ18− 28h32h
6
1ξ0ξ8+ ξ34,

ξ37 = 5h22h
8
1L3ξ

2
0 (7h2ξ0− 192L4)+ 4h22h

7
1ξ0 (360h2L3L4ξ0+ 7ξ8)+ ξ36,

ξ38 = 3h21

(
h52ξ0 (7ξ8ξ28− 10h2L3ξ0 (h2ξ0+ 42L4))

280L3
+ ξ29

)
,

ξ39 =
h51ξ0 (7ξ8− 10h1L3ξ0 (h1ξ0+ 42L4))

280L3
+ ξ25,

ξ40 = ξ20
(
48
(
h71− h72

)
L4+

(
h81− h82

)
ξ0

)
− 224 (ξ18− ξ21) ,
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ξ41 = 25h82L3ξ
3
0 + 960h72L3L4ξ

2
0 − 28h62ξ0ξ8ξ28− 3360L3 (ξ18− ξ21) ,

ξ42 = h2 (ξ41− 1120h2L3 (2ξ25+ ξ29))− 56h22h
5
1ξ0ξ8+ h1 (ξ41+ 1120h2L3 (ξ25− ξ29)) ,

ξ43 = 4h71ξ0 (20h2L3ξ0 (h2ξ0− 12L4)+ 7ξ8)+ 28h2h61ξ0 (120h2L3L4ξ0+ ξ8) ,

ξ44 = 8h21
(
−10h72L3ξ

3
0 − 420h62L3L4ξ

2
0 + 7h52ξ0ξ8ξ28+ 140L3 (ξ25+ 2ξ29)

)
,

ξ45 =−15h82L3ξ
3
0 − 600h72L3L4ξ

2
0 + 560h2L3ξ25+ 560h2L3ξ29+ 14h2h51ξ0ξ8,

ξ46 = 2h1
(
10h72L3ξ

3
0 + 420h62L3L4ξ

2
0 − 7h52ξ0ξ8ξ28− 280L3 (ξ25+ ξ29)

)
,

ξ47 = 15h81L3ξ
3
0 − 20h71L3ξ

2
0 (h2ξ0− 30L4)+ ξ45 + 14h62ξ0ξ8ξ28,

L1 =
e−h2ξ

(
12F0 (h1+ h2)

(
h21− 4h2h1+ h22

)
ξ4eh2ξ + ξ30

)+ 24h22ξ1e
−h1ξ (h1 (−h1ξ + h2ξ − 3)+ h2)

24 (h1− h2)
3 ξ4

,

L2 =
h2e−h1ξ

(
h1ξ4eh1ξ

(
72F0− (h1− h2)

3 (h1+ h2) ξ0
)
− 12ξ1

(−2h21ξ + h1 (h2ξ − 6)+ h22ξ
))+ ξ31

12 (h1− h2)
3 ξ4

,

L3 =
e−h1ξ

(
ξ4eh1ξ

(
(h1− h2)

3 (h21+ 4h2h1+ h22
)
ξ0− 72F0 (h1+ h2)

)
− ξ33

)
+ ξ32

24 (h1− h2)
3 ξ4

,

L4 =
e−h1ξ

(
ξ4eh1ξ

(
24F0− (h1− h2)

3 (h1+ h2) ξ0
)
+ 12ξ1 (h1ξ − h2ξ + 2)

)
− ξ34

12 (h1− h2)
3 ξ4

,

L5 =
560F1 (h1+ h2)

(
h21− 4h2h1+ h22

)
L3− 25h22h

9
1L3ξ

3
0 + ξ37

1120 (h1− h2)
3L3

,

L6 =−
6h2

(
3

224h
2
1 (−224F1+ ξ40)−

(
h32− h31

)
ξ39

)
+ (h1− h2) (h1+ 2h2)

(
ξ38− 3h22ξ39

)
3h1 (h1− h2)

3 ,

L7 =
−3360F1 (h1+ h2)L3− 25h91L3ξ

3
0 − 5h81L3ξ

2
0 (5h2ξ0+ 192L4)+ ξ43+ ξ44+ ξ42

1120 (h1− h2)
3L3

,

L8 =
1120F1L3++1120L3ξ18− 1120L3ξ21− 14h61ξ0 (60h2L3L4ξ0+ ξ8)+ ξ46+ ξ47

560 (h1− h2)
3L3

,


