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ABSTRACT

In this study, a peridynamic fiber-reinforced concrete model is developed based on the bond-based peridynamic
model with rotation effect (BBPDR). The fibers are modelled by a semi-discrete method and distributed with
random locations and angles in the concrete specimen, since the fiber content is low, and its scale is smaller than
the concrete matrix. The interactions between fibers and concrete matrix are investigated by the improvement
of the bond’s strength and stiffness. Also, the frictional effect between the fibers and the concrete matrix is
considered, which is divided into static friction and slip friction. To validate the proposed model, several examples
are simulated, including the tensile test and the three-point bending beam test. And the numerical results of the
proposed model are compared with the experiments and other numerical models. The comparisons show that
the proposed model is capable of simulating the fracture behavior of the fiber-reinforced concrete. After adding
the fibers, the tensile strength, bending strength, and toughness of the fiber-reinforced concrete specimens are
improved. Besides, the fibers distribution has an impact on the crack path, especially in the three-point bending
beam test.
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1 Introduction

Fiber-reinforced concrete is a composite of concrete and fibers, which is wildly used in
construction engineering [1–6]. Conventional plain concrete has good compressive strength, but
the tensile strength is low. And the brittle failure characteristic of the concrete structures limits its
application. To improve the performance of the concrete, adding a small number of short fibers is
a proper choice. There are several types of fibers applied in reinforcing plain concrete, including
steel fibers, glass fibers, synthetic fibers, carbon fibers, and natural fibers. Fiber’s formation, length,
volume fraction, and aspect ratio have a significant impact on the reinforcement effect. The fibers
can restrain the microcrack generation, enable the crack bridging after the crack propagation,
and relieve the stress concentration near the crack tip. After adding the fibers, many engineering
properties such as strength, toughness, and durability of the concrete structure are improved.
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Numerous experimental studies are made to test the mechanical behavior of the fiber-
reinforced concrete [7–16]. Although the experiment test can directly obtain the mechanical
properties of the specimen, such as the tensile strength, Young’s modulus, and so on, it is expen-
sive and time-consuming. Besides, the size effect of the experimental specimen affects the accuracy
of predicting the mechanical properties of the engineering structures. The size of the engineering
structure is much larger than the laboratory size. Considering these disadvantages, the researchers
develop many numerical models to analyze the mechanical behavior of the fiber-reinforced con-
crete, such as the discrete element system [17], smeared crack model [18–20], cohesive zone
model [21], micromorphic model [22], mixture theory [23], lattice model [24,25], finite element
method (FEM) [26–32], and so on. Although these numerical methods can successfully predict
the mechanical behavior of the fiber-reinforced concrete, there are still some challenges in dealing
with the complex fracture propagation and the random fiber distribution.

Peridynamics (PD), proposed by Silling [33], is a nonlocal version of the continuum mechan-
ics. In peridynamics, the equilibrium equations are written in spatial integral form instead of
spatial differential form. This special technology rids the difficulty of spatial derivatives near the
discontinuity and makes the peridynamics more suitable for solving damage problems [34–44]. In
the peridynamics, the matter is discretized into a group of material points, and the interactions
between points are through the bond. The original peridynamic model is called the bond-based
peridynamics, where the bond acts like the spring [45]. This spring-like interaction relationship
leads to the limitation of Poisson’s ratio (μ = 1/3 in plane stress, μ = 1/4 in plane strain and
3D). To remedy this shortcoming, the researchers develop the state-based peridynamics [46,47]
and modified bond-based peridynamics [48–51]. In the state-based peridynamics, the interaction
between material points depends on all the bonds connected to these two points. And the nonlocal
deformation gradient is defined, which can correspond to the one in the continuum mechanics.
However, the state-based peridynamics have some problems such as computing expensive and
zero-energy mode. In the modified bond-based peridynamics, the more reasonable interaction
relationships of the bond are developed, which consider the rotational degree and the tangential
interaction of material points.

In recent years, many numerical models based on the peridynamics for fiber-reinforced con-
crete are developed. Yaghoobi et al. [52] develop the fiber-reinforced concrete models by using
the non-ordinary state-based peridynamics and the micropolar peridynamics [53], where the fibers
are modelled by a semi-discrete method. Zhang et al. [54] simulate the crack propagation of
a three-point bending beam test by using the bond-based peridynamics, where the randomly
distributed PVA-fiber bonds describe the strengthening effect from fibers on the concrete matrix.
Xu et al. [55] propose a fiber-reinforced concrete model to analyze the fracture behavior of
prefabricated beams, where the different interactions and materials in the fiber-reinforced concrete
are modelled by the different types of bonds and material points. These peridynamic models
can successfully predict the crack path and the load-force curves of the fiber-reinforced concrete
structures, but the interaction between fibers and the concrete matrix is oversimplified, and the
frictional effect of the fiber is not considered. Besides, in paper [54], the bond-based peridynamics
has the limitation of Poisson’s ratio, and the limited Poisson’s ratios μ = 1/3 and μ = 1/4 are
different from the Poisson’s ratio of concrete μ = 0.2, which leads to the numerical errors in
simulating the fiber-reinforced concrete.

Based on the bond-based peridynamic model with rotation effect (BBPDR) [49], this work
proposes a peridynamic model of fiber-reinforced concrete. The BBPDR considers the shear
deformation of the bond and solves the limitation of Poisson’s ratio. Considering that the fiber
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volume fraction is low (0.25%–2% in common cases) and the scale of the fiber is smaller than the
concrete matrix, the semi-discrete method is applied to model the fibers [52,53]. In the proposed
model, the fibers are not modelled independently, and the fiber reinforcement is implemented as
the improvements of the bond’s strength and stiffness. Compare with the existing peridynamic
fiber reinforced concrete models [52–55], the proposed model considers the strengthening effect
and frictional effect of the fibers separately. The friction process starts when the local damage
emerges. And the friction process is divided into static friction and slip friction.

The main contribution of this work is developing a peridynamic fiber-reinforced concrete
model based on BBPDR. Compared with the FEM fiber-reinforced concrete model, the proposed
model is more suitable for fracture analysis of fiber-reinforced concrete. And the proposed model
considers the frictional effect between the fibers and the concrete matrix, which is more reason-
able for the fiber modeling than the existing peridynamic fiber-reinforced concrete models. The
numerical results show that the proposed model can effectively simulate the crack propagation of
fiber-reinforced concrete. And the influence of fiber content and the frictional effect is investigated
through the tensile test and bending test. The numerical results indicate that the fiber content
has a great impact on the strength and toughness, and the frictional coefficient mainly influences
the toughness.

The paper is organized as follows: Section 2 introduces the basic theories of peridynamics and
BBPDR. In Section 3, the peridynamic fiber-reinforced concrete model is introduced, including
the fiber modelling, strengthening mechanism, and frictional effect. Section 4 gives the numerical
implementation of the proposed model and the ADR (adaptive dynamic relaxation) method. In
Section 5, four numerical examples are presented to demonstrate the effectiveness of the proposed
model, including the convergence study, the tensile test of a plate with a single fiber, the tensile
test of the plate with circular notches, and the three-point bending beam test. In Section 6, the
discussions and conclusions are made.

2 Bond-Based Peridynamic Model with Rotation Effect (BBPDR)

In peridynamic theory, the matter is discretized to a group of material points. These material
points interact with each other through the bond within a finite distance δ (δ = 3.015 · dx in
common cases [56], dx is the discretization grid size), see Fig. 1. The finite distance δ is called
the horizon size. The interaction between material points i and j is called the pair-wise force f ij.
The motion equations are written in the integral form in peridynamics:

ρ (xi) · ü (xi, t)=
∫
Hi

f ij dVj + b(xi, t) (1)

where ρ is the mass density, xi is the location of point i, ü (xi, t) is the acceleration of point i,
Hi is the peridynamic horizon, see Fig. 1, f ij is the pair-wise force of point i acting on point j,
Vj is the volume of point j, b(xi, t) is the body force density.

In bond-based peridynamics, the pair-wise force f ij is dependent on the deformation of the
bond between point i and j. The relative displacement vector η and initial relative position vector
ξ are defined as:

η = u
(
xj, t

)− u (xi, t) (2)

ξ = xj −xi (3)
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Figure 1: The interaction between material points

The pair-wise force f ij is linear with the bond’s stretch s:

f ij =ω(|ξ |) · c · s · ξ + η

|ξ + η| (4)

s= |ξ + η| − |ξ |
|ξ | (5)

where ω(|ξ |) denotes the distance influence function and equals to 1 in this study, c is the micro-
modulus of the bond. The direction of f ij is parallel with the deformed bond ξ + η, see Fig. 2a.
The determination of micro-modulus c is by comparing the distribution of strain energy density
between the peridynamics and continuum mechanics. The value of c is:

c=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

6E
π tδ3(1−μ)

plane stress

6E
π tδ3(1− 2μ)(1−μ)

plane strain

6E
πδ4(1− 2μ)

3D

(6)

where E is Young’s modulus, μ is the Poisson’s ratio, t is the thickness, δ is the horizon size.

Figure 2: The pair-wise force: (a) Bond-based peridynamics, (b) Bond-based peridynamic model
with rotation effect (BBPDR)
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Because of the only one material parameter in bond-based peridynamics, there exists the
limitation of Poisson’s ratio (μ = 1/3 in plane stress, μ = 1/4 in plane strain and 3D). To
solve this problem, Silling et al. [46,47] develop the state-based peridynamic theories, includ-
ing ordinary state-based peridynamics and non-ordinary state-based peridynamics. However, the
state-based peridynamics are computing expensive and have the zero-energy mode. Considering
the shortcomings of state-based peridynamics, the researchers develop the modified bond-based
peridynamic models [48–51]. These modified bond-based peridynamic models extend the relation
between peridynamic pair-wise force and relative deformation, which considers the rotations of
material points and the tangential peridynamic pair-wise force.

The bond-based peridynamic model with rotation effect (BBPDR) is an extended model of the
bond-based peridynamics [49]. In this model, the bond can transfer the pair-wise forces in both
axial and tangential directions, see Fig. 2b. In isotropic elastic material, the number of material
parameters in BBPDR is consistent with the one of continuum mechanics. And the numerical
simulations of the paper [49] show that the limitation of Poisson’s ratio is solved. The axial pair-
wise force f x and tangential pair-wise force f y is linear with the bond’s stretches in axial and
tangential direction, respectively:

{
f x
f y

}
=

[
c 0

0 d

]
·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ux
|ξ |
uy
|ξ |

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7)

where c and d are the micro-modulus in axial and tangential directions, ux and uy are the relative
displacement components in axial and tangential directions. Similar to the method of determining
the micro-modulus in bond-based peridynamics [45,56], c and d are determined by comparing the
distribution of strain energy density between the BBPDR and the continuum mechanics. In the
plane stress problem, the values of c and d are [49]:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
c= 6E

π tδ3(1−μ)

d = 6E(1− 3μ)

π tδ3(1−μ2)

(8)

Comparing Eq. (8) with Eq. (6), it shows that the micro-modulus in bond-based peridynamics
is identical with the axial micro-modulus in BBPDR. When the fixed Poisson’s ratio μ = 1/3 is
applied, the tangential micro-modulus d equals 0 and the BBPDR degenerates into the bond-
based peridynamics. This comparison shows that the bond-based peridynamics is a special case of
BBPDR. Although the theoretical and numerical analysis of the paper [49] show that the BBPDR
can solve the limitation of Poisson’s ratio, considering that the tangential stiffness d should be
greater than 0 to avoid the negative work of tangential pair-wise force, the selection of Poisson’s
ratio expands to −1< μ < 1/3.

In peridynamics, the damage of material is described by bond breakage. The bond will break
when its stretch s reaches its critical value sc, and the material with such character is called
PMB (Prototype microelastic brittle) material [45]. Considering that concrete is a kind of brittle
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material, the assumption of PMB material is applied in this study. The scalar factor μ(t, ξ) is
defined to show the bond’s breakage:

μ(t, ξ)=
{
1 s(t′) < sc, t′ < t

0 otherwise
(9)

where t′ is the time before the current time t. When the bond breaks, it cannot transmit interaction
for material points anymore. sc is obtained by comparing fracture energy calculated in peridynam-
ics and the critical energy release rate Gc. For simplicity, we only present the result in a plane
stress problem [56]:

sc =
√
4Gc
ctδ4

(10)

where Gc is the critical energy release rate, c is the micro-modulus in bond-based peridynamics, t
is the thickness, δ is the horizon size.

The damage value is defined as:

ϕ (xi, t)= 1−
∫
Hi

μ
(
t, ξij

)
dVj∫

Hi
dVj

(11)

where ϕ (xi, t) is from 0 to 1, larger value means more broken bonds and more damage near the
point i.

3 Fiber-Reinforced Concrete Model

Considering that the fiber content is low, and the fiber scale is small compared with the con-
crete matrix, a semi-discrete model is applied to model the fibers, see Fig. 3. Similar to the fiber
modelling of paper [52,53], the fibers are not modelled independently, and the fiber reinforcement
is implemented as the improvements of the bond’s strength and stiffness. Fig. 3 shows that the
bonds passed by the fibers are enhanced, including the bond’s stiffness and strength, see Fig. 4.

E1 =E0+ωf (|ξ |) · (Ef −E0) (12)

sc1 = sc0+ωf (|ξ |) · (scf − sc0) (13)

where E1 and E0 are Young’s modulus of enhanced bond and normal bond respectively, ωf (|ξ |)
is the influence function of a bond, which is chosen as ωf (|ξ |)= dx/ |ξ | in this study, the smaller
the distance between the material points and the fibers, the stronger the strengthening effect of
fiber on the material points, Ef is the limit value of E1, sc1 and sc0 are the critical stretch of
enhanced bond and normal bond respectively, scf is the limit value of sc1.

In this study, the frictional effect between fibers and the concrete matrix is considered. The
frictional process starts when the damage value of the material points near the fiber reaches limit
value ϕm:

max (ϕ (xi, t))≥ ϕm xi ∈Gf (14)

where xi is the location of point i, according to the paper [45], ϕm is chosen as 0.3, Gf is a group
of material points, where the distance between the material points and the fiber is less than df ,
see Fig. 5. In this study, df equals 0.8 ·dx.
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Figure 3: The bonds are enhanced by the fibers (δ = 2dx)

Figure 4: Fibers enhance the bond’s stiffness and strength

Figure 5: The influence range of the fiber

The frictional process is divided into two stages: Static friction and sliding friction, see Fig. 6.
During the static friction (|ur| < ut), the frictional force density fr is linear with the relative
displacement ur, which is calculated relative to the location when the friction process begins.
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During the sliding friction (|ur| ≥ ut), the frictional force density fr is a constant. The relation
between fr and ur is:

fr =
{−kf · ur, |ur|< ut

−kf · ut, |ur| ≥ ut
(15)

where kf is the frictional stiffness, which is related to the interface properties between the fibers
and concrete matrix, in this study, kf is calculated as:

kf =C · (c+ d) · (dx)2 (16)

where dx is the discretization grid size, C is a constant and equals 4000 (dx = 1mm) and 2000
(dx= 0.5 mm), c and d are the micro-modulus in BBPDR, see Eq. (8). ut is the sliding limit of
ur and equals sc ·dx in this study.

Figure 6: The relation between the frictional force density f r and relative displacement ur

Besides, the frictional force density is limited by Coulomb’s law of friction. The frictional
force density cannot be greater than the limit value ft. When fr ≥ ft, fr equals to ft. The limit
value of frictional force density is calculated as:

ft =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

cf ·
n∑
i=1

f i · ni ·Vi if
n∑
i=1

f i · ni > 0

0 if
n∑
i=1

f i · ni ≤ 0

(17)

where cf is the friction coefficient, n is the number of the enhanced bonds, f i is the pair-wise force
of the enhanced bond, ni is the tangential direction vector of the fiber,

∑n
i=1 f i · ni ·Vi calculates

the compression between material point and fiber. The friction force density exists only when there
is compression between the concrete and fibers.

The fibers are distributed randomly by using the “rand” function in MATLAB, and random
numbers determine the center locations and angles of the fibers. In the actual situation, the fiber
volume fraction is used to represent the fiber content in concrete, which is defined as Vf /V ,
where Vf is the total volume of fibers and V is the volume of the fiber-reinforced concrete.
However, in the 2D plane stress problem, the fiber volume fraction calculated by Vf /V is relatively
large because the thickness of the plate is small. Similar to the damage value of Eq. (11), the
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strengthening degree ei is used to represent the local fiber distribution near the region of point i,
which is defined as:

ei = Ri
Ni

(18)

where Ri is the number of the enhanced bonds, Ni is the number of total bonds of the point i.
The large strengthening degree means the dense distribution of the fibers near the material point.

4 Numerical Implementation

In peridynamics, the material domain is discretized into an assemble of material points
to solve the Eq. (1) numerically. And the integration symbol of Eq. (1) is replaced with the
summation notation. In this study, the discretization scheme of the material points is the uniform
grid. Eq. (1) is rewritten as:

ρ (xi) · ü (xi, t)=
n∑
j=1

f ij · nij ·Vj + b(xi, t) (19)

where n is the number of the neighbors within the horizon, nij is the direction vector of the bond.

There are two widely used time integration methods in peridynamic numerical models: Explicit
method and ADR method. In this study, the ADR method is applied to obtain the quasi-static
solutions of Eq. (19). The same method is used in the papers [52–54], and the detailed discussions
of the ADR method are made in paper [57] and book [56]. In the ADR method, the quasi-static
solutions are obtained by adding the virtual damping force. The time step dt and the mass density
are fictitious, dt equals 1.0 in this study. Eq. (19) is rewritten as:

M · Ü+C · U̇+P (U)+ b (X)= 0 (20)

where M is the fictitious mass matrix and equals to mii · I, mii is the diagonal component of M
and satisfied the inequality equation of Gerschgorin theorem [56], I is the identity matrix, U is
the vector of displacements of all material points, C is the damping matrix and equals to cn ·M,
P is the vector of internal force density, b is the vector of body force density, X is the vector of
the location of all material points. According to the book [56], mii is chosen as:

mii = 1
4

(dt)2 ·
(
πδ2tc

)
5dx

(21)

where dt is the time step, t is the thickness of the plate, δ is the horizon size, dx is the
discretization grid size.

The displacement vector U is obtained by applying the central time difference scheme:

U̇n+ 1
2 = 2−dt · cn

2+dt · cn U̇
n− 1

2 + 2dt
2+dt · cnM

−1 · (P (
Un)+ b

(
Xn)) (22)

Un+1 =Un+dt · U̇n+ 1
2 (23)

U̇
1
2 = dt

2
M−1 ·

(
P

(
U0

)
+ b

(
X0

))
(24)
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where n represents the nth step, and cn is calculated as:

cn= 2

√
(Un)T ·P (Un) ·Un

(Un)T ·M ·Un
(25)

Besides, there is a limit value of cn. When cn calculated by Eq. (25) is larger than 2.0, cn

equals 1.9. Such limitation of cn guarantees numerical stability, and the numerical error is small.

5 Numerical Examples

In this section, four examples are simulated to validate the proposed model and analyze the
fracture behavior of fiber-reinforced concrete, including the convergence study, the tensile test of
a plate with a single fiber, the tensile test of a plate with two semi-circle notches, and the three-
point bending beam test. In the first example, a static simulation of a square plate under tension
is made to study the convergence of BBPDR. In the second example, a tensile test of the plate
with a single fiber is simulated to validate the effectiveness of the proposed fiber-reinforced model.
And in the following two examples, the specimens with randomly distributed fibers are tested. The
results of the proposed model are contrasted with the numerical results of other models and the
experimental results.

5.1 Convergence Study
A square plate under tension is tested to study the convergence of BBPDR, including the

effects of discretization grid size dx and the horizon size δ on the numerical results. The geometry
and boundary condition of the plate is shown in Fig. 7. The plate with dimension 100 mm ×
100 mm× 1 mm is subjected to a displacement load at the top side, and its left and bottom side
are fixed in x-direction and y-direction, respectively. Young’s modulus E is 210 GPa, and Poisson’s
ratio μ is 0.2.

Figure 7: The geometry and boundary condition of the square plate under tension (unit: mm)

Eq. (19) is solved by an implicit scheme, which is detailed discussed in paper [51]. In the
implicit scheme, the peridynamic integral equations are solved similar to the FEM, and the
element stiffness matrix of a bond is obtained through the principle of virtual work.
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Fig. 8 shows the x displacement distribution along the line y = 50 mm (shown in Fig. 7)
with different discretization grid sizes (dx= 1.0, 2.0, and 5.0 mm), and the horizon size δ equals
3.015 · dx. Fig. 9 shows the x displacement distribution along the line y = 50 mm with different
horizon sizes (δ = 2.0, 3.015, and 4.0 mm), and the discretization grid size dx is fixed as 1.0 mm.
The numerical results are compared to the theoretical solution:

ut =−x · εy ·μ (26)

where x is the x coordinate, εy is the strain in y-direction and equals 0.001, μ is the Poisson’s
ratio. The relative error is calculated as:

er = |un− ut|
|ut| × 100% (27)

where un are the numerical results.

Fig. 8 indicates that the numerical results converge to the theoretical solution as dx decreases.
Fig. 9 shows that δ = 3.015 · dx has the highest accuracy, which is consistent with the suggestion
of [56]. Too large or too small δ leads to errors in calculating the element stiffness matrix of a
bond. The largest error appears at the left boundary because the x displacement is close to 0 at
the region close to the left boundary. In the following examples, δ = 3.015 ·dx is applied in all the
examples. In the plate with a single fiber, dx= 1.0 mm is applied. And in the examples of crack
propagation, dx= 0.5 mm is applied for high precision in predicting fracture behavior.

Figure 8: The x displacement along y= 50 mm with different dx: (a) x displacement, (b) Relative
error
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Figure 9: The x displacement along y = 50 mm with different δ: (a) x displacement, (b) Rela-
tive error

5.2 Tensile Test of a Plate with a Single Fiber
In this section, the plate with a single fiber under tension is tested to validate the proposed

fiber-reinforced model. The geometry and boundary condition of the plate is shown in Fig. 10.
The plate with dimension 100 mm× 20 mm× 1 mm is subjected to a displacement load at the
right side. The displacement load increases linearly with the time steps. The 60 mm fiber is located
at the center of the plate, and a weak region with a width of 10 mm is defined at the center
of the plate, see Fig. 10, where only the bonds connected to the points inside the weak region
can break. The number of the material points is 2140, and the number of the total time step is
2000. Tab. 1 lists the mechanical parameters of the plate, where the Ef and scf are chosen greater
than the E0 and sc0 to amplify the strengthening effect of fiber. A similar example with the same
geometry condition is tested in the paper [52].

Figure 10: The geometry and boundary condition of the plate with a single fiber (unit: mm)
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Table 1: Mechanical parameters of the plate with single fiber

Parameter Unit Value

E0 GPa 20
Ef GPa 200
μ – 0.2
dx mm 1.0
df mm 0.8
δ mm 3.015
lf mm 60
kf N/m4 7.7× 1017

ut mm 4.0× 10−4

cf – 0.5
sc0 – 4.0× 10−4

scf – 2.0× 10−3

The force-displacement load curves of the plain concrete and the fiber reinforced concrete
are shown in Fig. 11. At the initial stage of loading (0–0.01 mm), the stress wave concentrates
at the loading area, so the calculated reaction force remains zero. After the stress wave passes
through the plate and reaches the left boundary, the calculated reaction force begins to rise. The
tensile strength of the plate is increased by 11.5% and the ultimate strain is increased by 20%
with the fiber reinforcement. Fig. 12 shows that the damage initiates at the right boundary of
the weak region and passes through the plate. After adding the fibers, the path of crack changes
to the direction along with the fiber, see Fig. 12b. Fig. 13 shows the strengthening degree of the
material points (Fig. 13a) and the frictional force density (Fig. 13b). The strengthening degree is
larger when the distance between the fiber and the material point becomes closer. The positive
direction of the frictional force is defined as the direction of the load, see Fig. 13b. The frictional
force densities are distributed on the material points close to the fiber, and the directions of
frictional force densities are opposite on the two sides of the crack surface, see Fig. 13b. Hence,
the material points tend to move toward the crack surface, and the crack propagation near the
fiber is prevented.

Figure 11: The force-displacement load curves of the plates under tension
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Figure 12: The crack paths of the plates under tension: (a) Plain concrete, (b) Fiber-reinforced
concrete

Figure 13: The distribution of the strengthening degree (a) and the frictional force density along
the fiber (b)

The influence of the frictional coefficient cf is investigated and four different frictional
coefficients are chosen, cf = 0.1, 0.3, 0.7, 0.9. The frictional coefficient describes the frictional
characteristics of the fiber, which is related to the fiber formation and fiber type. Fig. 14
shows the comparison of force-displacement load curves with different frictional coefficients.
With the increase of frictional coefficient, the descending parts of the force-displacement load
curves become slower, and the toughnesses of the plates become greater. However, the frictional
coefficient has little effect on tensile strength.
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Figure 14: The force-displacement load curves of the plate with different frictional coefficients

Besides, the proposed model is compared with the numerical model of fiber-reinforced con-
crete in paper [54]. For simplicity, the numerical model of paper [54] is named as the random
bond model in the following discussions. In the random bond model, the bond-based peridynamics
is applied to calculate the pair-wise force between the material points, see Eq. (4), and the
strengthening effect of the fiber is implemented by a randomly distributed PVA-fiber bond. This
relation is similar to the fiber’s strengthening effect of the proposed model, see Fig. 4. The stiffness
and critical stretch of the PVA-fiber bond are higher than the concrete bond. And the fiber volume
fraction is defined as:

Rv =
Lfiber
Lall

(28)

where Lfiber is the sum of lengths of all the PVA-fiber bonds, Lall is the sum of lengths of all the
bonds. The fiber volume fraction determined by Eq. (28) is influenced by horizon size δ, and Rv
decreases when δ rises.

The tensile test setup is the same as Fig. 10. Different from the fiber modelling of the
proposed model, the fiber in the random bond model is represented by randomly distributed
PVA-fiber bonds. Fig. 15 shows the distribution of PVA-fiber bonds, and the volume fraction
equals 20.26%, which is higher than the common cases (0.25%–2%). This example is only used to
compare the proposed model and the random bond model, which is not of practical significance.
The mechanical parameters of the random bond model are listed in Tab. 2. The mechanical
parameters of the proposed model are similar to Tab. 1 and only the frictional coefficient cf is
changed to 0.9.
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Figure 15: The distribution of PVA-fiber bonds in the random bond model

Table 2: Mechanical parameters of the random bond model

Parameter Unit Value

E0 GPa 20
Ef GPa 80
μ – 0.2
dx mm 1.0
δ mm 3.015
lf mm 60
sc0 – 4.0× 10−4

scf – 1.0× 10−3

Fig. 16 shows the force-displacement load curves of plain concrete and fiber-reinforced con-
crete. Since the random bond model is developed based on the bond-based peridynamics, the
tensile test of plain concrete is also simulated by using the bond-based peridynamics. The two
curves of the plain concrete are almost the same. And the descending part of the random bond
model is characterized by brittle fracture.

Figure 16: The force-displacement load curves of different models
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To further investigate the reinforcement effect of the random bond model, the plates with the
different critical stretch of PVA-fiber bond scf are simulated. Fig. 17 shows the force-displacement

load curves with four different scf (scf = 1.0 × 10−3, 1.2 × 10−3, 1.5 × 10−3, 1.8 × 10−3). The
tensile strength increases as scf increases, but the brittle fracture that occurs at the descending
parts remains the same. Fig. 18 shows the force-displacement load curves of the proposed model
with four different scf (scf = 2.2× 10−3, 2.4× 10−3, 2.8× 10−3, 3.0× 10−3). Because of the low
content of the enhanced bond, see Figs. 10 and 13a, in the proposed model, scf has little effect
on the tensile strength but slows down the descending part of the force-displacement load curve.
The toughness of the plate becomes greater with higher scf .

scf = 1.0 × 10-3

scf = 1.2 × 10-3

scf = 1.5 × 10-3

scf = 1.8 × 10-3

Figure 17: The force-displacement load curves of the random bond model with different scf

scf = 2.2 × 10-3

scf = 2.4 × 10-3

scf = 2.8 × 10-3

scf = 3.0 × 10-3

Figure 18: The force-displacement load curves of the proposed model with different scf
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The results shown in Figs. 16–18 indicate that the random bond model is capable of simulat-
ing the strengthening effect of fibers, but hard to simulate the improvement of toughness. Besides,
the limitation of Poisson’s ratio in bond-based peridynamics may lead to numerical errors when
simulating the fiber-reinforced concrete (μ= 0.2). The proposed model is developed based on the
BBPDR, which expands the selection of Poisson’s ratio (−1 < μ < 1/3). Both the strengthening
effect and toughness improvement can be simulated by the proposed model, see Figs. 11–14. And
the semi-discrete fiber modelling shows the distribution of fibers more comprehensively.

5.3 Tensile Test of a Plate with Two Semi-Circle Notches
In paper [52], the tensile tests of a plate with two semi-circle notches are simulated to illustrate

the effect of fiber volume fractions on tensile strength. The geometry and boundary condition of
the plate is shown in Fig. 19. The plate with two symmetry semi-circle notches is subjected to a
displacement load. The mechanical parameters are shown in Tab. 3. The selection of parameters
and the geometry condition are referred to as paper [52]. The number of the material points of
the plate is 8153, and the number of the total time steps is 20000.

Figure 19: The geometry and boundary condition of the plate with two semi-circle notches
(unit: mm)

Table 3: Mechanical parameters of the plate with two semi-circle notches

Parameter Unit Value

E0 GPa 20
Ef GPa 30
μ – 0.2
dx mm 0.5
df mm 0.4
δ mm 1.5075
lf mm 20
kf N/m4 2.47× 1019

ut mm 1.0× 10−4

cf – 0.4
sc0 – 2.0× 10−4

scf – 3.0× 10−4

As discussed in Section 3, the fiber volume fraction is replaced with the strengthening degree
to characterize the fiber content. Fig. 20 shows the distributions of fibers of the plate. Two
different numbers of fibers (100 fibers and 200 fibers) are applied, and the fiber volume fractions
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are defined as α and 2α, respectively. The strengthening degree of the plate with a higher fiber
volume fraction is distributed more intensively.

Figure 20: The fiber distributions of the plate with a circular notch: (a) vf = α (100 fibers), (b) vf =
2α (200 fibers)

Fig. 21 shows the force-displacement load curves of the plate with different fiber volume
fractions. After adding the fibers, the tensile strengths of the plates are increased by 9.7% (vf = α)
and 23.6% (vf = 2α) relative to the plain concrete. Different from the brittle fracture of the plain
concrete, the descending parts of the fiber reinforced concrete are characterized by the ductile
fracture. Fig. 22 shows the crack path of the plate with different fiber volume fractions, and the
results are compared with the paper [52]. The crack path is not a straight line after adding the
fibers, but the damaged area is still in the center part of the plate. The fibers have a slight effect
on the crack propagation but do not change its main direction.

Figure 21: The force-displacement load curves of the plate with different fiber volume fraction
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Figure 22: The crack propagation of the plate with different fiber volume fraction: (a) Plain
concrete, (b) vf = α, (c) vf = 2α, (d) Fiber-reinforced concrete, vf = 0.6% [52]

Besides, the influence of fiber distribution on crack propagation is investigated. As reported in
paper [9], the strengthening effect of fibers is maximized when the fibers are aligned perpendicular
to the crack path. In this example, four different fiber distribution with vf = α are selected, named
as (a), (b), (c), and (d). The strengthening degrees of four different fiber distributions are shown
in Fig. 23. Fig. 24 shows the force-displacement load curves of the plate with different fiber
distributions. The tensile strength of the plate is slightly influenced, and the fiber distribution
mainly influences the descent part of the curves. The curves of distribution (b) and distribution
(c) descend more slowly than the other two fiber distributions. This phenomenon results from the
concentration of fibers in the center part of the plate. Figs. 23 and 25 show that the strengthening
degrees in the center part (|x| < 2.5 mm) of distribution (b) and distribution (c) are higher than
the other two fiber distributions. The plate with a higher strengthening degree in the center part
shows greater toughness in the tensile test. Although the strengthening effect of fiber distribution
and fiber agglomeration on concrete is complex, the strengthening degree defined by Eq. (18) can
characterize the fiber reinforcement effect to a certain degree. Fig. 26 shows the crack paths of
different fiber distributions. The fiber distribution influences the local damage, but the damages
still mainly concentrate in the center of the plate.
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Figure 23: The strengthening degree of the plate with four different fiber distribution, and the
total strengthening degrees located at center region are shown in Fig. 25: (a) 156.1, (b) 190.8,
(c) 198.6, (d) 150.9

Figure 24: The force-displacement load curves of the plate with four different fiber distributions

Figure 25: The total strengthening degree of the material points located at the center region (|x|<
2.5 mm)
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Figure 26: The crack paths of the plate with four different fiber distributions, and the total
strengthening degrees located at center region are shown in Fig. 25: (a) 156.1, (b) 190.8, (c) 198.6,
(d) 150.9

5.4 Three-Point Bending Beam Test
This section discusses a three-point bending beam test. The geometry and boundary con-

dition of the beam is shown in Fig. 27. The final central deflection is 0.25 mm. The beam
has a dimension of 160 mm × 40 mm × 0.5 mm with a notch of 18 mm. The number of
the material points of the beam is 26019. The notch location is changed with c = 0, 20,
40 mm. As the notch location changes, the crack pattern changes from the pure mode I
to the mixed mode of Mode I and Mode II. The mechanical parameters are shown in
Tab. 4. The selection of the mechanical parameters is referred to as paper [54]. Fig. 28 shows
the distribution of fibers and the number of fibers is 100. The number of total time steps
is 40000.

Figure 27: The geometry and boundary condition of the three-point bending beam test (unit: mm)
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Figure 28: The distribution of fibers of the three-point bending beam test

Table 4: Mechanical parameters of the three-point bending beam test

Parameter Unit Value

E0 GPa 30
Ef GPa 40
μ – 1/3
dx mm 0.5
df mm 0.4
δ mm 1.5
lf mm 20
kf N/m4 3.33× 1019

ut mm 4.25× 10−4

cf – 0.1
sc0 – 1.7× 10−3

scf – 4.0× 10−3

Fig. 29b shows the crack path of the proposed model with c= 0 mm. The crack pattern is
the pure mode I, and the crack propagates along the centerline of the beam. Comparing with
the results of plain concrete, see Fig. 29a, the crack path has some perturbation because of the
fibers. As discussed in the previous sections, the addition of fibers does not change the main
direction of the crack path but influence the local damage distribution. The results match well
with the experiments of paper [54], see Fig. 29c. Fig. 30 shows the deflection-force curves of
plain concrete and fiber reinforced concrete. At the initial stage of the loading (0–0.01 mm),
the calculated reaction force is zero or less than zero. Because the stress wave concentrates at
the loading area, and the stress wave reflection occurs at the bottom boundary. After the stress
wave reaches the bottom boundary (0.01–0.05 mm), the calculated reaction force begins to rise.
The flexural strength of the beam is increased by 26.2% after adding fibers. When the curves
approach the peak value (0.05–0.13 mm), the vibration of the curves becomes severe. And the
same phenomenon appears during the descending part (0.13–0.25 mm). The crack influences the
stress wave propagation, which leads to the oscillation phenomenon of the reaction force. Fig. 31
shows the deflection-CMOD (Crack Mouth Opening Displacement) curves of plain concrete and
fiber reinforced concrete. After the deflection reaches 0.08 mm, the CMOD of fiber reinforced
concrete is lower than the one of plain concrete, which indicates that the fiber inhibits the crack
opening process.
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Figure 29: The crack path of three-point bending beam (c= 0 mm): (a) Plain concrete, (b) Fiber-
reinforced concrete, (c) Fiber-reinforced concrete [54]

Figure 30: Deflection-force curves of three-point bending beam (c= 0 mm)
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Figure 31: Deflection-CMOD curves of three-point bending beam (c= 0 mm)

When the notch location is off-center, the crack pattern is the mixed mode of Mode I
and Mode II. Figs. 32 and 33 show the crack propagation of the beams with c = 20 mm
and c = 40 mm. In Fig. 33, the crack path of the fiber reinforced concrete with c = 40 mm
is different from the experimental results. This difference results from the different local fiber
distribution and the Poisson’s ratio. The experimental results of the paper [8] show that the
oblique angles of cracks are different when the beam is prepared with different fiber vol-
ume fractions. And the numerical results of papers [53,54] show that the oblique angles of
cracks are different from the experimental results when the fiber distributions are different.
Fig. 34 shows the crack path of fiber-reinforced concrete with μ = 0.29, which is similar to
the experimental results shown in Fig. 33c. Poisson’s ratio influences the ratio of the axial
stiffness and the tangential stiffness, see Eqs. (7) and (8). Considering that the effect of Pois-
son’s ratio on crack propagation is not the objective of this study, only the simulated results
with μ = 0.29 are shown. Figs. 35 and 36 show the deflection-force curves of the three-point
bending beams with c = 20 mm and c = 40 mm. The flexural strengths of the beams with
different notch locations are increased by 52.2% (c = 20 mm) and 25.6% (c = 40 mm) after
adding fibers.
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Figure 32: The crack path of three-point bending beam (c= 20 mm): (a) Plain concrete, (b) Fiber-
reinforced concrete, (c) Fiber-reinforced concrete [54]

Figure 33: The crack path of three-point bending beam (c= 40 mm): (a) Plain concrete, (b) Fiber-
reinforced concrete, (c) Fiber-reinforced concrete [54]
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Figure 34: The crack path of three-point bending beam with Poisson’s ratio μ= 0.29

Figure 35: Deflection-force curves of three-point bending beam (c= 20 mm)
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Figure 36: Deflection-force curves of three-point bending beam (c= 40 mm)

6 Discussion and Conclusion

This paper proposes a peridynamic fiber reinforced concrete model based on the bond-
based peridynamic model with rotation effect (BBPDR). The fiber is modelled in a semi-discrete
way, and the fiber reinforcement is implemented by the improvements of bonds’ strength and
stiffness. In the proposed model, the friction interaction between fibers and the concrete matrix is
considered, which is divided into static friction and slip friction.

Numerical examples validate the proposed model’s effectiveness in modelling the fracture
behavior of fiber-reinforced concrete. After adding the fibers, the tensile strength, flexural strength,
and toughness of the concrete are improved. The fibers influence the path of crack propagation
and the descending part of the load-deflection curve. The numerical results of the proposed model
are compared with the experimental results and numerical results of other numerical models. And
the comparisons show the effectiveness and validation of the proposed model in simulating the
fracture behavior of fiber-reinforced concrete.

In future work, the authors will investigate the corresponding relation between the numerical
parameters and the physical properties of the fiber. And the optimization analysis of the fiber dis-
tribution and the hybrid fiber combination will be studied, which helps design the fiber-reinforced
concrete with better performance.
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