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ABSTRACT

This work is concerned with the application of a redefined set of extended uniform cubic B-spline (RECBS)
functions for the numerical treatment of time-fractional Telegraph equation. The presented technique engages
finite difference formulation for discretizing the Caputo time-fractional derivatives and RECBS functions to
interpolate the solution curve along the spatial grid. Stability analysis of the scheme is provided to ensure that the
errors do not amplify during the execution of the numerical procedure. The derivation of uniform convergence
has also been presented. Some computational experiments are executed to verify the theoretical considerations.
Numerical results are compared with the existing schemes and it is concluded that the present scheme returns
superior outcomes on the topic.

KEYWORDS

Extended cubic B-spline; redefined extended cubic B-spline; time fractional telegraph equation; caputo
fractional derivative; finite difference method; convergence

1 Introduction

In recent years, fractional calculus has gained a remarkable importance. Fractional derivatives
and integrals have manifold applications in science and engineering such as fluid mechanics,
chemical physics, electricity, control theory, biomedical, epidemic diseases, hydrology, electro-
chemistry, probability theory, signal processing, heat conduction and diffusion problems [1–7].
Many researchers developed fractional-order models to describe real-world problems and stud-
ied their analytical and numerical solutions [8–11]. These models involve different types of
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fractional derivative operators [12–15]. The fractional telegraph equation is one of the funda-
mental mathematical models arising in the study of electrical signals in transmission line and
wave phenomena [16–18]. Basically, it belongs to the family of hyperbolic partial differential
equations. Several numerical and analytical techniques have been proposed for solving these type
of equations. In [19], the authors employed Adomian decomposition method for solving time
and space fractional telegraph equations. Dehghan et al. [20] proposed variational method to
explore the series solution to multi space telegraph equation. The authors in [21], employed
Homotopy analysis method to explore the analytical solution of telegraph equation involving
fractional time derivative. Later on, Hayat et al. [22] used Homotopy perturbation technique to
study time fractional telegraph equation. They handled TFTE for both brownian and standard
motion. In [23], Wei et al. applied fully discrete local discontinuous Galerkin finite element method
to solve fractional telegraph equation. Hosseini et al. [24] studied the numerical solution of
fractional telegraph equation by means of radial basis functions. Srivastava et al. [25] employed
reduced differential transformation method for second order hyperbolic time fractional telegraph
equation in one dimensional space. Wang et al. [26] analyzed an H1-Galerkin mixed finite element
method for the numerical solution of time fractional telegraph equation. Modanli et al. [27] solved
fractional order telegraph equation by means of Theta method. Xu et al. [28] applied Legendre
wavelets direct method for solving fractional order telegraph equation. In [29], Wang et al. utilized
spectral Galerkin approximation to study the approximate solution of TFTE. Kamran et al. [30]
studied the numerical solution of TFTE by means of a Localized kernal-based approach. Here,
in this work, we consider the following fractional order telegraph equation.

∂α

∂tα
v(s, t)+ ∂β

∂tβ
v(s, t)+ γ1v(s, t)− γ2 ∂

2

∂s2
v(s, t)= f (s, t), (s, t) ∈ (0, L)× (0, T), (1)

v(s, 0)=ψ1(s), vt(s, 0)=ψ2(s), s ∈ [0, L], (2)

v(0, t)= φ1(t), v(L, t)= φ2(t), t ∈ [0, T ], (3)

where ψj(s) and φj(t) (j = 1, 2) are given and ∂α

∂tα v(s, t),
∂β

∂tβ
v(s, t) represent the Caputo fractional

derivatives of order α and β, respectively. It is worth mentioning that in (1), α ∈ (1, 2] and β ∈
(0, 1]. However, this work is restricted to the class of problems involving α = β + 1 and α= 2β.

In this paper, we have studied the application of a redefined form of extended cubic B-spline
(ECBS) functions for the numerical treatment of time-fractional Telegraph equation (TFTE).
These functions are generalized forms of cubic B-spline functions involving one free shape param-
eter which provides the flexibility to modify the shape of the solution curve [31]. Although, the
degree of the piecewise polynomials is enhanced by one and the continuity of RECBS remains of
order three. A finite-difference formula is used for the discretization of the Caputo time-fractional
derivative. Usually, in collocation techniques, the Dirichlet’s type end conditions are imposed where
the basis of spline functions vanish, but the typical ECBS functions do not vanish at boundaries.
We have employed RECBS functions for spatial discretization, as these basis functions die out on
the boundaries where the Dirichlet’s types of conditions are specified. The present approach is
novel for the approximate solution of fractional PDEs and as far as we are aware, it has never
been employed for this purpose before.

The manuscript is composed as: Section 2 describes the redefined extended cubic B-spline
functions. In Section 3, the numerical method has been explained. In Section 4, the stability
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analysis of proposed method is presented. In Section 5, we have derived the results for theoret-
ical convergence. The approximate results and discussion are reported in Section 6. Finally, the
concluding remarks have been given in Section 7.

2 Redefined Extended Cubic B-Spline Functions

Suppose the spatial domain [a, b] be portioned into M parts of equal length h= b−a
M such that

a= s0 < s1 < · · ·< sM = b, where sm = s0+mh, m= 0 : 1 :M. We assume the ECBS approximation
V∗(s, t) for a sufficiently smooth function v(s, t) as

V∗(s, t)=
M+1∑
m=−1

ξm(t)λm(s, κ), (4)

where ξm(t) are real constants and λm(s, κ) are ECBS functions [32]:

λm(s, κ)= 1
24h4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4(1− κ)h(s− sm−2)
3+ 3κ(s− sm−2)

4, if s ∈ [sm−2, sm−1)

(4− κ)h4+ 12h3(s− sm−1)+ 6h2(2+ κ)(s− sm−1)
2

−12h(s− sm−1)
3− 3κ(s− sm−1)

4, if s ∈ [sm−1, sm)

(4− κ)h4− 12h3(s− sm+1)− 6h2(2+ κ)(s− sm+1)
2

+12h(s− sm+1)
3+ 3κ(s− sm−1)

4, if s ∈ [sm, sm+1)

−4h(1− κ)(s− sm+2)
3− 3κ(s− sm+2)

4, if s ∈ [sm+1, sm+2)

0, otherwise

(5)

where −8≤ κ ≤ 1 is responsible for fine tuning the shape of the curve. The approximate solution
(V∗)rm = V∗(sm, tr) and its first two derivatives with respect to space variable s, at mth knot and
rth time step, in terms of ξm can be expressed as⎧⎪⎪⎨⎪⎪⎩
(V∗)rm = b1ξ rm−1+ b2ξ rm+ b1ξ rm+1,

(V∗
s )
r
m =−b3ξ rm−1+ b3ξ rm+1,

(V∗
ss)

r
m = b4ξ rm−1+ b5ξ rm+ b4ξ rm+1,

(6)

where b1 = 4−κ
24 , b2 = 16+2κ

24 , b3 = 1
2h , b4 = 2+κ

2h2
, b5 = −4−2κ

2h2
. The ECBS functions λ−1, λ0, . . . , λM+1

do not vanish at the boundaries when Dirichlet type end conditions are imposed. Therefore, we
redefine these functions in such a manner that the resulting basis vanish at the boundaries [33].
We eliminate ξ r−1 and ξ rM+1 from Eq. (4) as

V(s, t)=�(s, t)+
M∑
m=0

ξ rm(t)λ̃m(s, κ), (7)

where the weight function �(s, t) and redefined ECBS (RECBS) functions are given by

�(s, t)= λ−1(s, κ)
λ−1(s0, κ)

φ1(t)+ λM+1(s, κ)
λM+1(sM , κ)

φ2(t), (8)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ̃m(s, κ)= λm(s, κ)− λm(s0, κ)
λ−1(s0, κ)

λ−1(s, κ), m= 0, 1,

λ̃m(s, κ)= λm(s, κ), m= 2 : 1 :M − 2,

λ̃m(s, κ)= λm(s, κ)− λm(sM , κ)
λM+1(sM , κ)

λM+1(s, κ), m=M − 1,M.

(9)

3 Numerical Technique

We divide the time domain [0, T ] into R subintervals [tr, tr+1] s.t. tr = r�t, r= 0, 1, 2, . . . , R
and �t= T

R . The Caputo’s time fractional derivative at t= tr+1, for α ∈ (1, 2], can be discretized as

∂α

∂tα
v(s, tr+1)=

tr+1∫
t0

∂2v(s, w)
∂w2

(tr+1 −w)−α+1


(2−α) dw.

= 1

(2−α)

r∑
j=0

tj+1∫
tj

∂2v(s, w)
∂w2 (tr+1−w)−α+1dw

= 1

(2−α)

r∑
j=0

v(s, tj+1)− 2v(s, tj)+ v(s, tj−1)

�t2

tj+1∫
tj

(tr+1−w)−α+1dw+ (Eα)r+1
�t

= 1

(2−α)

r∑
j=0

v(s, tj+1)− 2v(s, tj)+ v(s, tj−1)

�t2

tr−j+1∫
tr−j

(υ)−α+1dυ+ (Eα)r+1
�t

= 1

(2−α)

r∑
j=0

v(s, tr−j+1)− 2v(s, tr−j)+ v(s, tr−j−1)

�t2

tj+1∫
tj

(υ)−α+1dυ+ (Eα)r+1
�t

= 1

(3−α)

r∑
j=0

v(s, tr−j+1)− 2v(s, tr−j)+ v(s, tr−j−1)

�tα
[(j+ 1)2−α − j2−α]+ (Eα)r+1

�t

= 1

(3−α)

r∑
j=0

pj
v(s, tr−j+1)− 2v(s, tr−j)+ v(s, tr−j−1)

�tα
+ (Eα)r+1

�t , (10)

where pj = (j+ 1)2−α − (j)2−α, υ = (tr+1 −w) and (Eα)
r+1
�t is the truncation error.

Also

|(Eα)r+1
�t | ≤ ρ1(�t)2−α , (11)

where ρ1 is constant and

• pj ∈ Z+, ∀ j
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• 1= p0 > p1> p2> p3> · · ·> pr, pr→ 0 as r→∞
• (2p0− p1)+

∑r−1
j=1(−pj+1 + 2pj− pj−1)+ (2pr− pr−1)− pr = 1

Similarly,

∂β

∂tβ
v(s, tr+1)=

tr+1∫
t0

∂v(s,w)
∂w

(tr+1−w)−β


(1−β) dw

= 1

(1−β)

r∑
j=0

tj+1∫
tj

∂v(s, w)
∂w

(tr+1 −w)−βdw

= 1

(1−β)

r∑
j=0

v(s, tj+1)− v(s, tj)
�t

tj+1∫
tj

(tr+1 −w)−βdw+ (Eβ)r+1
�t

= 1

(1−β)

r∑
j=0

v(s, tj+1)− v(s, tj)
�t

tr−j+1∫
tr−j

(υ)−βdυ + (Eβ)r+1
�t

= 1

(1−β)

r∑
j=0

v(s, tr−j+1)− v(s, tr−j)
�t

tj+1∫
tj

(υ)−βdυ + (Eβ)r+1
�t

= 1

(2−β)

r∑
j=0

v(s, tr−j+1)− v(s, tr−j)
�tβ

[(j+ 1)1−β − j1−β ]+ (Eβ)r+1
�t

= 1

(2−β)

r∑
j=0

qj
v(s, tr−j+1)− v(s, tr−j)

�tβ
+ (Eβ)r+1

�t . (12)

where qj = (j+ 1)1−β − (j)1−β , υ = (tr+1−w) and (Eβ)
r+1
�t is the truncation error.

Also

|(Eβ)r+1
�t | ≤ ρ2(�t)1−β , (13)

where ρ2 is constant and

• qj ∈Z+, ∀j
• 1= q0 > q1> q2> q3> · · ·> qr, qr → 0 as r→∞
• ∑r

j=0(qj− qj+1)+ qr+1 = (q0− q1)+
∑r−1

j=1(qj − qj+1)+ qr = 1
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Substituting (10) and (12) in (1) at t= tr+1, we get

r∑
j=0

pj
v(s, tr−j+1)− 2v(s, tr−j)+ v(s, tr−j−1)

�tα
(3−α) +
r∑
j=0

qj
v(s, tr−j+1)− v(s, tr−j)

�tβ
(2−β) + γ1v(s, tr+1)

− γ2 ∂
2

∂s2
v(s, tr+1)= f (s, tr+1), r= 0, 1, 2, . . . ,R. (14)

Using theta-weighted scheme for θ = 1, Eq. (14) takes the following form

α1

r∑
j=0

pj

(
vr−j+1− 2vr−j+ vr−j−1

)
+β1

r∑
j=0

qj

(
vr−j+1− vr−j

)
+ γ1vr+1− γ2(vss)r+1 = f r+1,

r= 0, 1, 2, . . . ,R,
(15)

where α1 = 1
�tα
(3−α) , β1 = 1

�tβ
(2−β) , v(s, tr+1)= vr+1.

For r = 0, v−1 appears in Eq. (15). We use the initial conditions and substitute v−1 = v0 −
�tψ2(s) to get the following equation

(α1+β1+ γ1)v1− γ2(vss)1 = (α1+β1)v0+α1�tψ2(s)+ f 1. (16)

For r= 1, 2, . . . ,R, Eq. (15) is reshaped as

(α1+β1+ γ1)vr+1− γ2(vss)r+1 = (2α1+β1)vr−α1
r∑
j=1

pj(vr−j+1 − 2vr−j+ vr−j−1)

−β1
r∑
j=1

qj(vr−j+1− vr−j)−α1vr−1+ f r+1. (17)

Now, we discretize the spatial domain [a,b] by M + 1 equally spaced knots a =
s0, s1, s2, . . . , sM = b such that sm = s0 + mh, m = 0, 1, . . . ,M and assume that the RECBS
approximation V(s, t) for the exact solution v(s, t) is given by

V(s, t)=�(s, t)+
M∑
m=0

ξ rm(t)λ̃m(s,κ), (18)

where �(s, t) and λ̃m(s,κ) are defined in (8) and (9), respectively.

Solution at t= t1
The initial solution is given in (2). However, the control points ξi at t= t1 are required to start

the main scheme (17). For this purpose, (18) is substituted into (16) to get the following system
of equations

(α1+β1+ γ1)
⎡⎣�1

i +
i+1∑

m=i−1

ξ1mλ̃m(si,κ)

⎤⎦− γ2
⎡⎣(�ss)

1
i +

i+1∑
m=i−1

ξ1m(λ̃m)ss(si,κ)

⎤⎦
= (α1+β1)v0i +α1�tψ2(si)+ f 1i , i= 0, 1, . . . ,M. (19)
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Solving (19), we get
[
ξ10 , ξ

1
1 , . . . , ξ

1
M

]T
and substitute these control points into (18) to obtain

the approximate solution at t= t1
Solution at t= tr+1, r= 1, 2, . . . ,R

Using (18) in Eq. (17), we obtain

(α1+β1+ γ1)
⎡⎣�r+1

i +
i+1∑

m=i−1

ξ r+1
m λ̃m(si,κ)

⎤⎦− γ2
⎡⎣(�ss)

r+1
i +

i+1∑
m=i−1

ξ r+1
m (λ̃m)ss(si,κ)

⎤⎦
= (2α1+β1)

⎡⎣�r
i +

i+1∑
m=i−1

ξ rmλ̃m(si,κ)

⎤⎦−α1
r∑
j=1

pj

⎡⎣�r−j+1
i − 2�r−j

i +�r−j−1
i +

i+1∑
m=i−1

(ξ
r−j+1
m

−2ξ r−jm + ξ r−j−1
m )λ̃m(si,κ)

]
−β1

r∑
j=1

qj

⎡⎣�r−j+1
i −�r−j

i +
i+1∑

m=i−1

(ξ
r−j+1
m − ξ r−jm )λ̃m(si,κ)

⎤⎦
−α1

⎡⎣�r−1
i +

i+1∑
m=i−1

ξ r−1
m λ̃m(si,κ)

⎤⎦+ f r+1
i , i= 0, 1, 2, . . . ,M. (20)

Eq. (20) represents a set of (M + 1) equations involving (M + 1) unknowns. This system of
equations is solved to for ξ r+1

i and their values are plugged into (18) to get the required solution
at (r+ 1)th time level.

4 Stability

We apply Fourier method to study the stability of our numerical method. Let εrm and ε̃rm
denote the Fourier growth factor and its approximate value. We introduce the error term �rm as

�rm = εrm− ε̃rm, m= 1 : 1 :M − 1, r= 0 : 1 :R, (21)

where �r = [�r1,�
r
2, . . . ,�

r
M−1]

T . Using (21) in (20), the error equation at (r + 1)st time level is
given by

(α1+β1+γ1)
[
b1�

r+1
m−1+b2�r+1

m +b1�r+1
m+1

]
−γ2

[
b4�

r+1
m−1+b5�r+1

m +b4�r+1
m+1

]
=(2α1+β1)

[
b1�

r
m−1+b2�rm+b1�rm+1

]−α1 r∑
j=1

pj
[
b1(�

r−j+1
m−1 −2�r−jm−1+�r−j−1

m−1 )

+b2(�r−j+1
m −2�r−jm +�r−j−1

m )+b1(�r−j+1
m+1 −2�r−jm+1+�

r−j−1
m+1 )

]
−β1

r∑
j=1

qj
[
b1(�

r−j+1
m−1 −�r−jm−1)

+b2(�r−j+1
m −�r−jm )+b1(�r−j+1

m+1 −�r−jm+1)
]
−α1

[
b1�

r−1
m−1+b2�r−1

m +b1�r−1
m+1

]
, m=1,2,...,M−1.

(22)
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If �rm = εreινmh, where ι=√−1 and ν = 2πm
b−a , then (22) is reshaped as

[(α1+β1+ γ1)(2b1 cosνh+ b2)− γ2(2b4 cosνh+ b5)] ε
r+1

= γ4 [2b1 cosνh+ b2] ε
r

−α1(2b1 cosνh+ b2)
r∑
j=1

pj
[
εr−j+1− 2εr−j + εr−j−1]−β1(2b1 cosνh+ b2)

r∑
j=1

qj
[
εr−j+1 − εr−j]

−α1
[
2b1 cosνh+ b2

]
εr−1. (23)

After simplifying (23), we get the following result

εr+1 = 1
η

⎡⎣(1+ η1)εr− η1 r∑
j=1

pj
[
εr−j+1 − 2εr−j+ εr−j−1

]
− η2

r∑
j=1

qj
[
εr−j+1 − εr−j

]
− η1εr−1

⎤⎦ , (24)

where η= 1+ η3 + 12η4(2+κ) sin2(νh/2)
h2

[
6+(4−κ) sin2(νh/2)

] ≥ 1, η1 = α1
α1+β1 , η2 =

β1
α1+β1 , η3 =

γ 1
α1+β1 and η4 = γ 2

α1+β1 .

For r= 0, the expression (23) takes the following form

|ε1| = 1
η
|(1+ η1)ε0| ≤ (1+ η1)|ε0|, ∵ η≥ 1.

Now, assuming |εr| ≤ (1+ η1)|ε0| for r> 1, we use (24) to proceed as

|εr+1|= 1
η

⎡⎣(1+η1)|εr|−η1 r∑
j=1

pj
[|εr−j+1|−2|εr−j|+εr−j−1]−η2 r∑

j=1

qj
[|εr−j+1|−|εr−j|]−η1|εr−1|

⎤⎦
≤(1+η1)2|ε0|−η1(1+η1)

r∑
j=1

pj
[|ε0|−2|ε0|+ε0]−η2(1+η1) r∑

j=1

qj
[|ε0|−|ε0|]−η1(1+η1)|ε0|

=(1+η1)2|ε0|−η1(1+η1)|ε0|
=(1+η1)[1+η1−η1]|ε0|
⇒|εr+1|≤(1+η1)|ε0|,∀r.

Consequently, following [34], we have |�r| = (1+ η1)|�0|, r= 0, 1, . . . ,R.

Hence, the scheme stable.
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5 Convergence

Let Ṽ(s, t)= ∑M
m=0 dm(t)λ̃m(s) be the computed ECBS for the numerical solution V(s, t) and

the analytical solution v(s, t) subject to the interpolating conditions LṼ(sm, t) = f̃ (sm, t), m =
0, 1, . . . ,M. Now, the problem (1) in terms of difference equation L(Ṽ(sm, t)−V(sm, t)), at t= tr,
is given by

(α1b1+β1b1+ γ1b1+ γ2b4)ζ r+1
m−1+ (α1b2+β1b2+ γ1b2+ γ2b5)ζ r+1

m

+ (α1b1+β1b1+ γ1b1+ γ2b4)ζ r+1
m+1 = (2α1+β1)

(
b1ζ

r
m−1+ b2ζ

r
m+ b1ζ

r
m+1

)
−α1

r∑
k=1

pk
[
b1

(
ζ r−k+1
m−1 − 2ζ r−km−1 + ζ r−k−1

m−1

)+ b2
(
ζ r−k+1
m − 2ζ r−km + ζ r−k−1

m
)

+b1
(
ζ r−k+1
m+1 − 2ζ r−km+1+ ζ r−k−1

m+1

)]−β1 r∑
k=1

qk
[
b1

(
ζ r−k+1
m−1 − ζ r−km−1

)+ b2
(
ζ r−k+1
m − ζ r−km

)
+b1

(
ζ r−k+1
m+1 − ζ r−km+1

)]−α1(b1ζ r−1
m−1+ b2ζ

r−1
m + b1ζ

r−1
m+1

)+ f r+1
m , m= 0, 1, . . . ,M, (25)

where ζ rm = ξ rm− drm and lrm = h2[f rm− f̃ rm].

The boundary conditions can be rewritten as

b1ζ
r+1
m−1+ b2ζ r+1

m + b1ζ
r+1
m+1 = 0, m= 0,M.

Moreover, following [34], we have

‖Dj(v(s, t)− Ṽ (s, t)
)‖∞ ≤�jh4−j, j= 0, 1, 2, (26)

Therefore, |lrm| = h2|f rm− f̃ rm| ≤�h4, where � does not depend on mesh spacing.

Now, we introduce lr= M
max
m=0

{|lrm|}, ẽrm = |ζ rm| and ẽr = M
max
m=0

{|erm|}. For r= 0, Eq. (25) transforms

into following relation

(α1b2+β1b2+ γ1b2+ γ2b5)ζ 1m = (α1b1+ γ2b4)(ζ 1m+1− ζ 1m−1)+ (β1b1+ γ1b1)(ζ 1m+1− ζ 1m−1)+
1
h2
l1m.

Involving the absolute values of lrm and ζ rm, we obtain

ẽ1m ≤ 6�h4

2α1h2(2+ κ)+ 12(2+ κ)γ1 + 6γ2h

Hence, employing the end constraints, we get ẽ1 ≤ �1h2, where �1 is independent of spatial
grid spacing.
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Now, assuming that ẽkm ≤ �rh2 for r> 1, we set � = r
max
j=0

{�j} and plug in absolute values of

lrm and ζ rm in Eq. (25)

ẽr+1
m ≤ 6�h2

(α1+β1+ γ1)h2(2+ κ)− 12(2+ κ)γ2

[
(2α1+β1)

(
b1ζ rm−1+ b2ζ rm+ b1ζ rm+1

)
−α1

(
b1ζ

r−1
m−1+ b2ζ

r−1
m + b1ζ

r−1
m+1

)−(
α1

r−1∑
k=0

(pj−1 − 2pj+ pj+1)

+β1
r−1∑
j=0

(pj−1− pj)
)

�h2+�h2
]
.

Utilizing the boundary conditions, we obtain ẽr+1
m ≤�h2.

Hence, the last result is true for all r. Using the result
∑M

m=0 |λm(s,κ)| ≤ 1.75 [34], we get

‖Ṽ(s, t)−V(s, t)‖∞ =
∥∥∥∥ M∑
m=0

(
dm(t)− ξm(t)

)
λm(s,κ)

∥∥∥∥∞ ≤ 1.75�h2, (27)

Consequently, using (26) and (27), we get

‖v(s, t)−V(s, t)‖∞ ≤ ‖v(s, t)− Ṽ (s, t)‖∞ +‖Ṽ (s, t)−V(s, t)‖∞
≤�0h

4+ 1.75�h2.

Hence, in the light of above discussion together with (11) and (13), we conclude that the
scheme is O(h2) accurate in spatial direction. However, (11) and (12) imply that the truncation
error in temporal direction is O(�t2−α +�t1−β). This work is restricted to the class of problems
involving α = β + 1 and α = 2β. Therefore, theoretically the scheme is O(�t2−α) when α = 1+ β
and O(�t1−α/2) when α = 2β.

6 Numerical Results

To investigate the accuracy of presented technique, some numerical experiments are presented.
For this purpose, following error norms have been used

L∞ = M
max
m=0

|Vm− vm|, L2 =
√√√√h

M∑
m=0

|Vm− vm|2,

Also, the experimental order of convergence (EOC) is computed by following important
formula [35]:

EOC= 1
log2

log
[
L∞(2m)
L∞(m)

]
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Example 6.1. As the first experiment, we take the following multi term TFTE [29]

∂α

∂tα
v(s, t)+ ∂β

∂tβ
v(s, t)+ v(s, t)− ∂2

∂s2
v(s, t)= f (s, t), (s, t) ∈ [−1, 1]× [0,T ],

v(s, 0)= 0, vt(s, 0)= 0,

v(−1, t)= v(1, t)= 0,

where α= β + 1 and

f (s, t)= 2

[
t1−β


(2−β) +
t2−β


(3−β) +
t2

2
+ π2t2

2

]
sin(πs).

The exact solution of the problem is v(s, t)= t2 sin(πs).

The absolute error and temporal order of convergence for Example 6.1 along temporal
direction using M = 24 and different values of β are reported in Tab. 1. It can easily be seen
that our results are more accurate than the scheme based on generalized finite difference method
(GFDM) [29]. In Tab. 2, we have computed the absolute errors by setting M = 24, 28 and �t= 0.1
corresponding to different grid points in spatial direction. Tab. 3 gives spatial order of convergence
(EOC) subject to β = 0.6 and �t = 0.1. The experimental rate of convergence of the current
method is found to be in line with the theoretical appraisal. Fig. 1 shows the physical behaviour
of approximate solutions at different time levels when β = 0.1, M = 24 and �t = 0.1. The 3D
visuals of exact and numerical solutions with β = 0.1, M = 24 and �t= 0.1 are shown in Fig. 2,
whereas, Fig. 3 depicts the absolute error between the exact and approximate solutions using
β = 0.1, M = 36 and �t= 0.1.

The piecewise defined approximate solution for Example 6.1 using proposed algorithm, when
β = 0.50, −1≤ s≤ 1, M = 20, �t= 0.01, is given by

V(s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1.48811+ s(10.1756+ s(12.1734+ (2.91397− 0.571918s)s)), if s ∈ [−1.00,−0.90]

0.736724+ s(6.87798+ s(6.74703+ (−1.05394− 1.65977s)s)), if s ∈ [−0.90,−0.80]
0.307397+ s(4.79421+ s(2.95783+ (−4.11339− 2.58515s)s)), if s ∈ [−0.80,−0.70]

0.0996004+ s(3.67304+ s(0.697273+ (−6.1311− 3.25748s)s)), if s ∈ [−0.70,−0.60]
...

...

−0.0000571467+ s(3.13881+ s(−0.0497796+ (−5.58514− 1.65977s)s)), if s ∈ [−0.20,−0.10]
−2.33841× 10−15 + s(3.14161+ s(2.84217× 10−14 + (−5.20164− 0.571918s)s)), if s ∈ [−0.10, 0.00]
...

...
−0.0996004+ s(3.67304+ s(−0.697273+ s(−6.1311+ 3.25748s))), if s ∈ [0.60, 0.70]

−0.307397+ s(4.79421+ s(−2.95783+ s(−4.11339+ 2.58515s))), if s ∈ [0.70, 0.80]
−0.736724+ s(6.87798+ s(−6.74703+ s(−1.05394+ 1.65977s))), if s ∈ [0.80, 0.90]

−1.48811+ s(10.1756+ s(−12.1734+ (2.91397+ 0.571918s)s)), if s ∈ [0.90, 1.00]

Example 6.2. Consider the TFTE [27]

∂α

∂tα
v(s, t)+ ∂β

∂tβ
v(s, t)− ∂2

∂s2
v(s, t)+ v(s, t)= f (s, t), (s, t) ∈ [0,π ]× [0,T ], v(s, 0)= sin(s),

vt(s, 0)= 0, v(0, t)= v(π , t)= 0,
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Table 1: Experimental order of convergence (EOC) for Example 6.1 when M = 24 using different
values of β

GFDM [29] Proposed method GFDM [29] Proposed method

�t β = 0.1 EOC β = 0.1 EOC β = 0.5 EOC β = 0.5 EOC
1
10 3.9589e−4 – 4.6912e−11 – 3.0103e−3 – 7.63669e−10 –

1
20 1.0880e−4 1.8634 1.2419e−11 1.9162 1, 0807e−3 1.4780 2.28311e−10 1.7419

1
40 3.0137e−5 1.8521 3.18929e−12 1.9592 3.9389e−4 1.4560 6.56104e−11 1.7990

1
80 8.4082e−6 1.8417 7.89931e−13 2.0166 1, 4267e−4 1.4652 1.83413e−11 1.8388

1
160 2.3492e−6 1.8397 2.00589e−13 1.9774 5.1324e−5 1.4749 5.40187e−12 1.7635

Table 2: Absolute errors for Example 6.1 when �t= 0.1 using different values of β

M (s) β = 0.1 β = 0.5 β = 0.9

24 −1.00 7.26595× 10−18 4.80272× 10−17 5.11306× 10−17

−0.75 4.40115× 10−12 1.81199× 10−11 7.79246× 10−11

−0.50 6.22458× 10−12 2.56256× 10−11 1.10202× 10−10

−0.25 4.40159× 10−12 1.81199× 10−11 7.79243× 10−11

0 4.58002× 10−16 4.88921× 10−16 1.60412× 10−15

+0.25 4.40081× 10−12 1.81209× 10−11 7.79241× 10−11

+0.50 6.22435× 10−12 2.56267× 10−11 1.10201× 10−10

+0.75 4.40115× 10−12 1.81208× 10−11 7.79241× 10−11

+1.00 7.26595× 10−18 4.80271× 10−17 5.11306× 10−17

28 −1.00 8.51627× 10−20 5.67507× 10−19 9.38887× 10−18

−0.75 1.41256× 10−12 8.17508× 10−12 3.11147× 10−11

−0.50 2.76383× 10−12 1.19518× 10−11 7.25131× 10−12

−0.25 3.99081× 10−13 1.03972× 10−11 5.12742× 10−11

0 4.58002× 10−18 4.88920× 10−17 8.51047× 10−17

+0.25 3.99079× 10−13 1.03968× 10−11 5.12757× 10−11

+0.50 2.76369× 10−12 1.19514× 10−11 7.2514× 10−12

+0.75 1.41249× 10−12 8.17506× 10−12 3.11145× 10−11

+1.00 8.51619× 10−20 5.67502× 10−19 9.38887× 10−18

Table 3: Experimental order of convergence (EOC) for Example 6.1, when β = 0.6 and �t= 0.1

M L∞ EOC L∞ EOC

4 3.9840× 10−8 – 2.6317× 10−7 –
8 9.7614× 10−9 2.0291 6.4007× 10−8 2.0396
16 2.1891× 10−9 2.1567 1.4713× 10−8 2.1211
32 5.1687× 10−10 2.0827 3.6537× 10−9 2.0096
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where α= 2, 0<β ≤ 1 and

f (s, t)= sin(s)
(
6t+ 6

t3−β


(4−β) + 2(t3 + 1)
)
.

-1.0 0.5 1.0
s

-5

5

10

V(s,t)

t = 0.5

t = 1.5

t = 2.5

t = 3.5
-0.5

-10

Figure 1: Exact and numerical solution for Example 6.1 at different time levels when �t = 0.1,
β = 0.1 and M = 24

(a) (b)

Figure 2: Exact and approximate solution for Example 6.1 with M = 24, �t = 0.1 and β = 0.1.
(a) 3D plot for exact solution. (b) 3D plot for approximate solution
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0.2 0.4 0.6 0.8 1.0
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1.×10-14

8.×10-15

6.×10-15

4.×10-15

2.×10-15

Absolute error

Figure 3: Absolute error for Example 6.1 when M = 36, β = 0.1 and �t= 0.1

The analytical solution to this problem is sin(s)(t3 + 1).

The approximate analytical solution for Example 6.2 using proposed method, when β = 0.50,
0≤ s≤ π , M = 20 and �t= 0.01 is given by

V(s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−6.76345× 10−33+ s(1.99275+ s(2.22585× 10−15+ (0.837877− 5.58309s)s)), if s ∈
[
0.00,

π

20

]
−0.0338266+ s(2.68154+ s(−4.92919+ (14.7627− 16.6118s)s)), if s ∈

[ π
20

,
π

10

]
−0.565727+ s(8.09009+ s(−24.2414+ (41.9261− 27.2315s)s)), if s ∈

[
π

10
,
3π
20

]
−3.18079+ s(25.7792+ s(−66.1976+ (80.9809− 37.1806s)s)), if s ∈

[
3π
20

,
π

5

]
...

...

−218.272+ s(658.404+ s(−739.358+ (369.326− 69.1931s)s)), if s ∈
[
2π
5
,
9π
20

]
−350.039+ s(942.959+ s(−947.621+ (423.37− 70.9399s)s)), if s ∈

[
9π
20

,
π

2

]
...

...

−1686.35+ s(2603.73+ s(−1504.72+ (386.245− 37.1806s)s)), if s ∈
[
4π
5
,
17π
20

]
−1567.02+ s(2280.23+ s(−1241.68+ (300.275− 27.2315s)s)), if s ∈

[
17π
20

,
9π
10

]
−1200.66+ s(1651.46+ s(−849.506+ (193.987− 16.6118s)s)), if s ∈

[
9π
10

,
19π
20

]
−511.604+ s(665.642+ s(−322.721+ (69.3213− 5.58309s)s)), if s ∈

[
19π
20

,π
]
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The absolute numerical errors in RECBS solution for Example 6.2 setting �t= h at different
values of β are listed in Tab. 4. It is clear that our results have better agreement with the exact
solution in comparison to the theta-method (TM) [27]. Fig. 4 shows the physical behaviour of
approximate solutions at different time levels when β = 0.5, M = 40 and �t = 0.025. The 3D
visuals of exact and numerical solutions with β = 0.5, M = 40 and �t= 0.025 are shown in Fig. 5.
Whereas, Fig. 6 depicts the absolute error between the exact and approximate solutions using β =
0.75, M = 40 and �t= 0.025.

Table 4: Absolute error norms for Example 6.2 using different values of M and β

TM [27] Proposed method

β M = 40 M = 80 M = 160 M = 40 M = 80 M = 160

0.05 0.00900 0.0044 0.0022 1.536× 10−13 1.2182× 10−13 9.703× 10−14

0.10 0.0092 0.0046 0.0023 1.0975× 10−13 8.4915× 10−14 7.246× 10−14

0.50 0.0097 0.0052 0.0028 9.325× 10−15 8.3641× 10−15 7.811× 10−15

0.90 0.0020 8.8958× 10−4 4.0349× 10−4 4.729× 10−14 4.0619× 10−14 3.847× 10−14

0.95 0.0035 0.0017 7.7405× 10−4 8.3301× 10−15 8.1622× 10−15 7.766× 10−15

0.5 1.0 1.5 2.0 2.5 3.0
s

10

20

30

40

V(s,t)

t = 0.5

t = 1.5

t = 2.5

t = 3.5

Figure 4: Exact and numerical solution for Example 6.2 at different time levels when �t= 0.025,
β = 0.5 and M = 40

Example 6.3 Consider the multi term TFTE [30]

∂α

∂tα
v(s, t)+ ∂β

∂tβ
v(s, t)− ∂2

∂s2
v(s, t)+ v(s, t)= f (s, t), (s, t) ∈ [0, 1]× [0,T ],

v(s, 0)= ∂

∂t
v(s, 0)= s2− s,

v(0, t)= v(1, t)= 0.
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where β = α− 1

f (s, t)= (s2− s)

[
t2−α


(3−α) + t

]
− 2t.

(a) (b)

Figure 5: Exact and approximate solution for Example 6.2 with �t= 0.025, β = 0.50 and M = 40.
(a) 3D plot for exact solution. (b) 3D plot for approximate solution

0.2 0.4 0.6 0.8 1.0
s

Absolute error

6.×10-15

4.×10-15

2.×10-15

8.×10-15

Figure 6: Absolute error for Example 6.2 when M = 40, β = 0.75 and �t= 0.025



CMES, 2021, vol.127, no.1 377

The exact solution is (s2− s)t.
The numerical solution for Example 6.3, when α = 1.50, 0 ≤ s ≤ 1, M = 20, �t = 0.01 is

given by

V(s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.+ s(−1.+ s(1.+ (3.75255× 10−12 − 3.824× 10−11s)s)), if s ∈ [0.00, 0.05]

−9.92262× 10−16+ s(−1.+ s(1.+ (1.15108× 10−11− 3.824× 10−11s)s)), if s ∈ [0.05, 0.10]

−8.65974 ∗ 10−15+ s(−1.+ s(1.+ (1.90994 ∗ 10−11− 3.824 ∗ 10−11s)s)), if s ∈ [0.10, 0.15]

−3.4639 ∗ 10−14+ s(−1.+ s(1.+ (2.67164 ∗ 10−11− 3.824 ∗ 10−11s)s)), if s ∈ [0.15, 0.20]
...

...

−1.23634× 10−12+ s(−1.+ s(1.+ (6.51426× 10−11− 3.824× 10−11)s)), if s ∈ [0.40, 0.45]

−1.93268× 10−12+ s(−1.+ s(1.+ (7.25322× 10−11− 3.824× 10−11s)s)), if s ∈ [0.45, 0.50]
...

...

−1.77351× 10−11+ s(−1.+ s(1.+ (1.26306× 10−10− 3.824 ∗ 10−11s)s)), if s ∈ [0.80, 0.85]

−2.24532× 10−11+ s(−1.+ s(1.+ (1.33952× 10−10− 3.824 ∗ 10−11s)s)), if s ∈ [0.85, 0.90]

−2.79385× 10−11+ s(−1.+ s(1.+ (1.41483× 10−10− 3.824 ∗ 10−11s)s)), if s ∈ [0.90, 0.95]

−3.4575× 10−11 + s(−1.+ s(1.+ (1.49157× 10−10 − 3.824 ∗ 10−11s)s)), if s ∈ [0.95, 1.00]

The absolute numerical errors in RECBS solution to Example 6.3 using �t = 0.1, α = 1.95
corresponding to different grid points are listed in Tab. 5. It is observed that our results are better
than the localized kernel–based method (LKBM) [30]. Fig. 7 shows the physical behaviour of
approximate solutions at different time levels when α = 1.5, M = 100 and �t = 0.01. The 3D
visuals of exact and numerical solutions with α = 1.5, M = 100 and �t= 0.01 are shown in Fig. 8.
Whereas, Fig. 9 depicts the absolute error between the exact and approximate solutions using α =
1.5, M = 100 and �t= 0.01.

Table 5: Absolute error for Example 6.3 when �t= 0.1 for different values of s and α= 1.95

s M = 15 M = 30 M = 40 M = 50

Our method 0.1 1.9026× 10−14 4.6490× 10−15 3.5665× 10−15 9.714× 10−16

0.2 2.6118× 10−14 8.2434× 10−15 6.3005× 10−15 1.971× 10−15

0.3 3.5860× 10−14 1.0935× 10−14 8.3821× 10−15 2.553× 10−15

0.4 3.8580× 10−14 1.2573× 10−14 9.5201× 10−15 3.225× 10−15

0.5 3.9940× 10−14 1.3101× 10−14 9.8809× 10−15 3.192× 10−15

0.6 3.8580× 10−14 1.2601× 10−14 9.6867× 10−15 3.358× 10−15

0.7 3.1669× 10−14 1.0963× 10−14 8.3430× 10−15 3.013× 10−15

0.9 2.6090× 10−14 8.2156× 10−15 6.4278× 10−15 2.003× 10−15

0.9 1.8998× 10−14 4.5796× 10−15 3.5690× 10−15 9.563× 10−16

LKBM [30] 0.1 9.7426× 10−4 2.4335× 10−5 1.5203× 10−5 4.0412× 10−6

0.2 1.7345× 10−3 4.0736× 10−5 2.9554× 10−5 9.715× 10−6

0.3 2.2774× 10−3 5.2554× 10−5 3.9710× 10−5 1.366× 10−5

0.4 2.6032× 10−3 5.9667× 10−5 4.5773× 10−5 1.601× 10−5

0.5 2.7118× 10−3 6.2035× 10−5 4.7793× 10−5 1.679× 10−5

0.6 2.6032× 10−3 5.9666× 10−5 4.5773× 10−5 1.601× 10−5

0.7 2.2774× 10−3 5.2553× 10−5 3.9711× 10−5 1.366× 10−5

0.9 1.7345× 10−3 4.0737× 10−5 2.9553× 10−5 9.714× 10−6

0.9 9.7426× 10−4 2.4337× 10−5 1.5201× 10−5 4.040× 10−6
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Figure 7: Exact and numerical solution for Example 6.3 at different time levels when �t = 0.01,
M = 100 and α= 1.5

(a) (b)

Figure 8: Exact and approximate solution for Example 6.3 with M = 100, �t= 0.01 and α= 1.50.
(a) 3D plot for exact solution. (b) 3D plot for approximate solution

Example 6.4

∂α

∂tα
v(s, t)+ ∂β

∂tβ
v(s, t)− ∂2

∂s2
v(s, t)= f (s, t), (s, t) ∈ [0, 1]× [0,T ],

v(s, 0)= ∂

∂t
v(s, 0)= 0, v(0, t)= v(1, t)= 0.

where α = 2β,

f (s, t)= 1/2t2
[
8π2tβ + (

1+ 2t−β


(3−β)(
(3+β))
)]

sin(2πs).
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Figure 9: Absolute error for Example 6.3 when M = 100, α = 1.50 and �t= 0.01

The analytical solution is t2+β sin(2πs). The piecewise defined approximate solution for
Example 6.4, when β = 0.6, 0≤ s≤ 1, M = 20, �t= 0.01 is given by

V(s)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−8.71974× 10−18+ 6.28324s− 41.6278s3+ 9.36996s4, if s ∈ [0.00, 0.05]
0.0000705375+ s(6.27678+ s(0.218315+ s(−44.8655+ 27.1927s))), if s ∈ [0.05, 0.10]
0.00096495+ s(6.23478+ s(0.941467+ s(−50.3082+ 42.3536s))), if s ∈ [0.10, 0.15]
0.00365344+ s(6.14384+ s(2.04345+ s(−56.0616+ 53.3686s))), if s ∈ [0.15, 0.20]
...

...
−0.715608+ s(13.5577+ s(−26.2909+ s(−9.51985+ 27.1927s))), if s ∈ [0.40, 0.45]
−1.47623+ s(20.2526+ s(−48.3868+ s(22.8879+ 9.36996s))), if s ∈ [0.45, 0.50]
...

...
−5.49802+ s(55.5206+ s(−154.071+ (157.413− 53.3686s)s)), if s ∈ [0.80, 0.85]
0.77739+ s(26.6075+ s(−104.138+ (119.106− 42.3536s)s)), if s ∈ [0.85, 0.90]
11.1777+ s(−19.1124+ s(−28.7779+ (63.9052− 27.1927s)s)), if s ∈ [0.90, 0.95]
25.9746+ s(−81.1203+ s(68.6637+ (−4.14797− 9.36996s)s)), if s ∈ [0.95, 1.00]

The comparison of L2 − norm for Example 6.4 using h = 5, �t = 1
R , (R = 20, 40, 80) is

reported in Tab. 6. It is found that our proposed algorithm has better accuracy when compared to
ECBSM [36]. Tab. 7 shows the comparison of the calculated values of the order of convergence
with proposed method for different values of spatial grid points M using β = 0.75 and �t= 0.01.
Fig. 10 shows the physical behaviour of numerical solutions at different time levels when β = 0.5,
M = 40 and �t = 0.01. The 3D visuals of exact and numerical solutions with β = 0.5, M = 40
and �t= 0.01 are shown in Fig. 11, whereas, Fig. 12 depicts the absolute error between the exact
and approximate solutions using β = 0.5, M = 40 and �t= 0.01. Fig. 13 represents the behaviour
of solution curve for different values of β.
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Table 6: Absolute error norms for Example 6.4 using different values of M and β

ECBS [36] Proposed method

β M = 20 M = 40 M = 80 M = 20 M = 40 M = 80

0.6 1.889× 10−3 9.139× 10−4 1.667× 10−4 5.364× 10−14 2.216× 10−14 6.0153× 10−15

0.7 8.051× 10−4 2.122× 10−4 5.258× 10−5 9.554× 10−15 6.991× 10−15 4.196× 10−15

0.8 6.053× 10−4 5.195× 10−5 3.409× 10−6 7.113× 10−15 5.381× 10−15 3.072× 10−15

0.9 2.000× 10−5 3.203× 10−6 2.4375× 10−7 2.046× 10−15 9.0619× 10−16 8.471× 10−16

Table 7: Experimental order of convergence for Example 6.4 using different values of M and
�t= 0.01

ECBS [36] Proposed method

M L∞ L2 EOC L∞ L2 EOC

05 4.558× 10−4 3.389× 10−4 − 4.712× 10−12 3.504× 10−12 −
10 9.136× 10−5 6.792× 10−5 2.3188 9.818× 10−13 7.2932× 10−13 2.262
20 1.584× 10−5 1.121× 10−5 2.5273 1.857× 10−13 1.3112× 10−13 2.403
40 9.249× 10−7 6.541× 10−7 4.0987 2.264× 10−14 1.4402× 10−14 3.035

0.2 0.4 0.6 0.8 1.0
s

-20

-10

10

20

V(s,t)

t = 0.5

t = 1.5

t = 2.5

t = 3.5

Figure 10: Exact and numerical solution for Example 6.4 at different time levels when �t= 0.01,
β = 0.5 and M = 40

(a) (b)

Figure 11: Exact and approximate solution for Example 6.4 with M = 20, �t= 0.01 and β = 0.5.
(a) 3D plot for exact solution. (b) 3D plot for approximate solution
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Figure 12: Absolute error for Example 6.4 when M = 20, β = 0.5 and �t= 0.01

0.2 0.4 0.6 0.8 1.0
s

-0.2

-0.1

0.1

0.2

V(s,t)

Β = 0.1

Β = 0.4

Β = 0.7

Β = 0.9

Β = 0.95
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Figure 13: Exact and numerical solutions for Example 6.4 with different values of β

7 Conclusion

This work is concluded with following remarks:

1. An efficient algorithm based on a redefined set extended basis splines is proposed for
numerical solution of multi-term time-fractional telegraph equation.

2. The fractional time derivatives have been considered in the Caputo sense.
3. The finite difference formulae have been used to discretize time-fractional derivatives while

the discretization of spatial derivatives has been achieved by means of redefined extended
B-spline functions.

4. The spatial discretization used in this manuscript is superior to the other existing methods
because the proposed method give continuous approximation with high accuracy to the
solution curve of the unknown function and its derivatives at each and every point of the
range of integration.

5. The stability of presented algorithm has been proved along temporal grid.
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6. The theoretical results show that the accuracy of presented numerical approach in spatial
direction is of order O(h2) whereas in time direction it is O(�t2−α) when α = 1+ β and
O(�t1−α/2) when α= 2β.

7. The numerical rate of convergence is in the line with theoretical results.
8. The comparison of error norms reveals that in terms of accuracy and straightforward

implementation, the proposed algorithm performs better than the methods in [27,29,30,36].
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