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ABSTRACT

Laplace transform is one of the powerful tools for solving differential equations in engineering and other science
subjects. Using the Laplace transform for solving differential equations, however, sometimes leads to solutions in
the Laplace domain that are not readily invertible to the real domain by analytical means. Thus, we need numerical
inversion methods to convert the obtained solution from Laplace domain to a real domain. In this paper, we propose
a numerical scheme based on Laplace transform and numerical inverse Laplace transform for the approximate
solution of fractal-fractional differential equations with order α, β . Our proposed numerical scheme is based
on three main steps. First, we convert the given fractal-fractional differential equation to fractional-differential
equation in Riemann-Liouville sense, and then into Caputo sense. Secondly, we transform the fractional differential
equation in Caputo sense to an equivalent equation in Laplace space. Then the solution of the transformed equation
is obtained in Laplace domain. Finally, the solution is converted into the real domain using numerical inversion of
Laplace transform. Three inversion methods are evaluated in this paper, and their convergence is also discussed.
Three test problems are used to validate the inversion methods. We demonstrate our results with the help of tables
and figures. The obtained results show that Euler’s and Talbot’s methods performed better than Stehfest’s method.

KEYWORDS
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1 Introduction

Fractional calculus (FC) is the generalization of classical calculus in which we study the differential
and integral operators of non integer order. FC can explain numerous real world phenomena with a
better memory effect. Initially, fractional calculus was treated as an abstract mathematical idea with
almost no application. But within the last few decades, a significant development has been observed in
the fields of FC, such as Geo-Hydrology, chaotic processes [1,2], wave propagation, rheology, finance
system [3], groundwater flow, and fluid mechanics [4,5], fractional-order dynamical systems in control
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theory [6], fractional order controller [7], fractional Brownian motion [8], generalized Mittag-Leffler
function [9] etc. Until now, various operators of arbitrary order have been introduced in which the
two most commonly used with singular kernels are Riemann-Liouville (RL) and Caputo. Similarly,
the two famous fractional derivatives with non singular kernels which have been used in literature
are the Caputo-Fabrizio (CF) and Atangana-Baleanu (AB) [1,10]. Applications of these fractional
derivatives with non singular kernels have been investigated by many researchers in various fields of
science and engineering. Some of the reported work is discussed here. For instance, Wang et al. [11]
studied fractional Fredholm integro differential equation with AB derivative. Liu et al. [12] investigated
Riccati differential equation with AB derivative. Qiang et al. [13] studied Volterra integro differential
equation with AB derivative. Gorenflo et al. [14] derived some results for Mittag-Leffler function and
related applications. Yavuz et al. [15] investigated a fractional predator-prey model. Sulaiman et al. [16]
established some numerical results for fractional coupled viscous Burger’s equation involving Mittag-
Leffler kernel.

In literature, numerous methods have been proposed for the analytical and numerical solutions of
problems from FC, such as the sinc-collocation method [17], Taylor collocation method [18], Adomian
decomposition method [19], variation iteration method [20], RBFs method [21,22], operation matrix
method [5], finite difference method [23], etc.

Recently, in [1], the author developed a new idea of fractal-fractional derivative. Fractal-fractional
derivative is very suitable in many situations in dealing with real world complex phenomena. This oper-
ator has two orders, one is the fractional order and the second is fractal dimension. As compared to
other fractional order operators, fractal-fractional derivative is a powerful tool to describe the complex
geometry more precisely and efficiently. Usually for the description of irregular and complex geometry
fractal-fractional derivative has been used as a powerful tool. The said irregular or complex geometry
could not be described by the Caputo fractional derivatives [24,25]. Fractal-fractional operators have
not yet been studied extensively. However, few but valuable research articles are available related
to the study of fractal fractional differential operators. For instance, authors [26] have developed a
numerical method for the numerical solutions of differential equations of fractal-fractional order.
In [27], authors have investigated the advection dispersion model. Atangana et al. [25] have derived
the exact solution of some important fractal-fractional differential equations. They have also studied
the numerical solution for nonlinear cases. Owolabi et al. [28] have developed numerical methods
for fractal-fractional Scnakenberg reaction diffusion system. The authors in [5] have proposed an
efficient operation matrix method for solving fractal-fractional differential equations. Other valuable
work on fractal-fractional differential operators can be found in [29–31] and references therein. But
most of these methods are based on the finite difference method for temporal discretization, and
they encounter an increase of computing cost with advancing time and thus these methods have low
efficiency in the simulation of the long time history of fractional differential equations.

In order to overcome the drawback of the finite difference method for temporal discretization,
in this work, we propose a method based on Laplace transform (LT) and numerical inverse Laplace
transform (NILT) method. The main idea of the proposed work is to use the LT to reduce the time
dependent problem in Caputo sense to an equivalent time independent problem and then solve it in the
LT space. Further, a solution of the considered original problem is obtained using NILT. The purpose
of using the LT and NILT instead of step-by-step finite difference method for temporal discretization
is to avoid the calculation of costly convolution integral in fractal-fractional derivative approximation,
and avoid the time stepping technique and the severe stability restrictions in time. In this article, we
have utilized three NILT methods: the Talbot’s method, the Euler’s method, and the Stehfest’s method.
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The rest of the paper is organized as: in Section 1, some important definitions are given. In
Section 2, the methodology of the proposed numerical scheme is described. In Section 3, the numerical
examples are given.

1.1 Preliminaries
This section is devoted to some basic definitions from fractional calculus.

Definition 1.1. If G (t) is continuous on (a, b), and G (t) is fractal-differentiable in (a, b) with order
β, then the fractal-fractional derivative of G (t) of order α in RL sense is defined in [25] as

1. with power law kernel

FFP
a Dα,β

t G (t) = 1
�(1 − α)

d
dtβ

∫ t

a

G (ϑ)(t − ϑ)−αdϑ , (1)

where
dG (ϑ)

dϑβ
= lim

t→ϑ

G (t) − G (ϑ)

tβ − ϑβ
. (2)

2. With exponential decay kernel

FFE
a Dα,β

t G (t) = M(α)

1 − α

d
dtβ

∫ t

a

G (ϑ)exp
( −α

1 − α
(t − ϑ)

)
dϑ , 0 < α, β ≤ 1. (3)

3. With generalized Mittag-Leffler (ML) kernel

FFM
a Dα,β

t G (t) = AB(α)

1 − α

d
dtβ

∫ t

a

G (ϑ)Eα

( −α

1 − α
(t − ϑ)

α

)
dϑ , 0 < α, β ≤ 1, (4)

where

AB (α) = 1 − α + α

�(α)
.

Definition 1.2. Let G (t) be piecewise continuous function defined for t > 0. The LT of G (t) is
defined in [25] as

L {G (t)} = Ĝ (z) =
∫ ∞

0

exp (−zt) G (t)dt. (5)

The three famous derivatives Caputo, CF and AB satisfy the following relations [25]:

C
0 Dα

t G (t) = dG (t)
dt

t−α

�(1 − α).
(6)

CF
0 Dα

t G (t) = dG (t)
dt

M(α)

1 − α
exp

[ −α

1 − α
t
]

. (7)

ABC
0 Dα

t G (t) = dG (t)
dt

AB(α)

1 − α
Eα

[ −α

1 − α
tα

]
. (8)

The LT of these derivatives is given as

L
{

C
0 Dα

t G (t)
} = zαL {G (t)} − G (0)z(α−1), (9)

L
{

CF
0 Dα

t G (t)
} = −[zL {G (t)} − G (0)]

M(α)

zα − z − α
(10)
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and

L
{

ABC
0 Dα

t G (t)
} = [zL {G (t)} − G (0)]

AB(α)‡α−1

zα(1 − α) + α
. (11)

2 Proposed Method

In this section, we propose our numerical method for the approximation of the solution fractal-
fractional differential equations with different kernels.

2.1 Power Law Kernel
A power law is a functional relationship between two quantities, where a relative change in

one quantity results in a proportional relative change in the other quantity. Power law kernels have
significant applications in mathematical modeling of various real world problems. For instance, those
problems are related to machines learning, where power law kernels play central role in modeling the
process. Furthermore, positive definite kernels are considered as a measure of similarity between points
in the kernel based machine learning procedure. Also, theoretic quantities and information based on
kernels are usually used in image processing and text mining. The most significant use of power law
kernels can be found in the probability distribution theory. Besides, from the mentioned fields, the
important applications of the said kernels can be studied in mathematical modeling of various process
of cosmology, physics and astronomy as well as in biology. Here, we consider a differential equation
with power law kernel of the form [25]
FFP
0 Dα,β

t G (t) = Q(t), (12)

which implies

1
�(1 − α)

d
dtβ

∫ t

0

G (ϑ) (t − ϑ)
−α dϑ = Q(t), (13)

then
1

�(1 − α)

1
βtβ−1

d
dt

∫ t

0

G (ϑ) (t − ϑ)
−α dϑ = Q(t), (14)

then
1

�(1 − α)

d
dt

∫ t

0

G (ϑ) (t − ϑ)
−α dϑ = βtβ−1Q(t), (15)

then, we get
RL
0 Dα

t G (t) = βtβ−1Q(t). (16)

Using the relation between the Caputo and RL derivatives, (16) can be written as

C
0 Dα

t G (t) = βtβ−1Q(t) − G (0)

�(1 − α)
t−α. (17)

Now we take LT of both side of given equation as

L {C
0 Dα

t G (t)} = L

{
βtβ−1Q(t) − G (0)

�(1 − α)
t−α

}
,
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zαL {G (t)} − G (0)zα−1 = L {βtβ−1Q(t)} − L

{
G (0)

�(1 − α)
t−α

}
,

which implies

zαL {G (t)} = Ĥ(z),

where

Ĥ(z) = L
{
βtβ−1Q(t)

}
,

and

L

{
G (0)

�(1 − α)
t−α

}
= G (0)zα−1.

Simplifying, we get

Ĝ (z) = L {G (t)} = z−αĤ(z). (18)

Now the inverse LT of (18) gives

G (t) = L −1
{
Ĝ (z)

}
= L −1

{
z−αĤ(z)

}
. (19)

2.2 Exponential Decay Kernel
We consider a differential equation with exponential decay kernel [25] as

FFE
0 Dα,β

t G (t) = Q(t), (20)

which implies

M(α)

(1 − α)

d
dtβ

∫ t

0

G (ϑ)exp
[ −α

1 − α
(t − ϑ)

]
dϑ = Q(t), (21)

then
M(α)

(1 − α)

1
βtβ−1

d
dt

∫ t

0

G (ϑ)exp
[ −α

1 − α
(t − ϑ)

]
dϑ = Q(t), (22)

then
M(α)

(1 − α)

d
dt

∫ t

0

G (ϑ)exp
[ −α

1 − α
(t − ϑ)

]
dϑ = βtβ−1Q(t), (23)

then, we get
CFR
0 Dα

t G (t) = βtβ−1Q(t). (24)

Using the relation between the CF and RL derivatives, (24) can be written as

CF
0 Dα

t G (t) = βtβ−1Q(t) − M(α)

(1 − α)
G (0)exp

[ −α

1 − α
(t)

]
. (25)

Now we take LT of both side of given equation

L {CF
0 Dα

t G (t)} = L

{
βtβ−1Q(t) − M(α)

(1 − α)
G (0)exp

[ −α

1 − α
(t)

]}
,
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− [zL {G (t)} − G (0)]
M(α)

zα − α − z
= L

{
βtβ−1Q(t)

} − L

{
M(α)

(1 − α)
G (0)exp

[ −α

1 − α
(t)

]}
,

− [zL {G (t)} − G (0)]
M(α)

zα − α − z
= L

{
βtβ−1Q(t)

} − M(α)

(1 − α)
G (0)

1
α

1 − α
+ z

,

which implies

− [zL {G (t)}] M(α)

zα − α − z
= Ĥ(z),

where

Ĥ(z) = L
{
βtβ−1Q(t)

}
,

simplifying, we get

Ĝ (z) = L {G (t)} = zα − α − z
−zM(α)

Ĥ(z). (26)

Now the inverse LT of (26) gives

G (t) = L −1
{
Ĝ (z)

}
= L −1

{
zα − α − z
−zM(α)

Ĥ(z).
}

(27)

2.3 Generalized Mittag-Leffler (ML) Kernel
We consider a differential equation with generalized ML kernel of the form [25]

FFM
0 Dα,β

t G (t) = Q(t), (28)

which implies

AB(α)

(1 − α)

d
dtβ

∫ t

0

G (ϑ)Eα

[ −α

1 − α
(t − ϑ)

α

]
dϑ = Q(t), (29)

then
AB(α)

(1 − α)

1
βtβ−1

d
dt

∫ t

0

G (ϑ)Eα

[ −α

1 − α
(t − ϑ)

α

]
dϑ = Q(t), (30)

then

AB(α)

(1 − α)

d
dt

t∫
0

G (ϑ)Eα

[ −α

1 − α
(t − ϑ)

α

]
dϑ = βtβ−1Q(t), (31)

then, we get
ABR
0 Dα

t G (t) = βtβ−1Q(t). (32)

Using the relation between the AB and RL derivatives, (32) can be written as

ABC
0 Dα

t G (t) = βtβ−1Q(t) − AB(α)

(1 − α)
G (0) Eα

[ −α

1 − α
(tα)

]
. (33)
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Now we take LT of both sides of given equation

L
{

ABC
0 Dα

t G (t)
} = L

{
βtβ−1Q(t) − AB(α)

(1 − α)
G (0)Eα

[ −α

1 − α
(tα)

]}

(zL {G (t)} − G (0))
AB(α)zα−1

(zα(1 − α) + α)
= L {βtβ−1Q(t)} − L

{
AB(α)

(1 − α)
G (0)Eα

[ −α

1 − α
(tα)

]}

[zL {G (t)} − G (0)]
AB(α)zα−1

(zα(1 − α) + α)
= L {βtβ−1Q(t)} − AB(α)

(1 − α)
G (0)

zα−1

α

1−α
+ zα

which implies

[zL {G (t)}] AB(α)zα−1

(zα(1 − α) + α)
= Ĥ(z),

where

Ĥ(z) = L
{
βtβ−1Q(t)

}
,

Simplifying, we get

Ĝ (z) = L {G (t)} = (zα(1 − α) + α)

zαAB(α)
Ĥ(z). (34)

Now the inverse LT of (34) gives

G (t) = L −1
{
Ĝ (z)

}
= L −1

{
(zα(1 − α) + α)

zαAB(α)
Ĥ(z)

}
. (35)

Now we need to approximate the inverse LT in (19), (27), and (35) numerically. In this work,
we have utilized three different approaches for this purpose which are (i) Talbot’s method (ii) Euler’s
method (iii) Stehfest’s method. The flowchart of the proposed numerical scheme is shown in Fig. 1.

Fractal-fractional
differential equation

Fractional differential
equation in RL sense

Fractional differ-
ential equation

in Caputo sense

Transformed Equation
Solution in

Laplace SpaceFinal Solution

Laplace Transform

Inverse Laplace

Direct solution

Figure 1: The flowchart of the proposed numerical scheme

2.4 Talbot’s Method (TM)
Using Talbot’s method, the solution of the given problem is obtained as

G (t) = 1
2πι

ρ+ι∞∫
ρ−ι∞

eztĜ (z)dz = 1
2πι

∫
C

eztĜ (z)dz, Reρ > ρ0 (36)
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where ρ0 is the converging abscissa and C is a suitably chosen line which connects ρ − ι∞ and ρ + ι∞,
which means that all the singularities of the function G (z) lie to the left of C. Its very difficult to
approximate the integral defined in (36) due to the highly oscillatory exponential factor ezt and the slow
decaying transform G (z). Talbot has suggested in his article [32] that this issue can be resolved using
the contour deformation. Furthermore, he suggested that the deformation be done in such a way that
real part of the contour starts and ends in the left complex plane inclosing all the singularities of the
transform Ĝ (z). On such contours, the integrand decays rapidly owing to the exponential factor, which
makes the integral (36) suitable for approximation using the trapezoidal rule or mid point [32,33]. In
this work, we consider a contour of the form [33]:

C : z = z(θ), −π ≤ θ ≤ π (37)

where Rez(±π) = − inf, and z(θ) is given as

z(θ) = MT

t
ζ(θ), ζ(θ) = −δ + σθcot (μθ) + γ ιθ , (38)

where μ, ν, γ are to be chosen by the user, using (38) in (36), we have

G (t) = 1
2πι

∫
C

eztĜ (z)dz = 1
2πι

π∫
−π

ez(θ)tĜ (z(θ)) z′(θ)dθ . (39)

We approximate the latter integral by the N-panel midpoint rule spacing h = 2π

MT

, which yields

GApp(t) ≈ 1
MT ι

MT∑
k=1

ez(θk)tĜ (z (θk)) z′ (θk) , θk = −π +
(

k − 1
2

)
h (40)

2.4.1 Convergence of Talbot’s Method

In the approximation of the integral defined in Eq. (39), the convergence of the proposed
numerical scheme is achieved at different rates depending on the the contour of integration C. Also
the convergence of the proposed scheme depends on the quadrature step h. In order to have optimal
results we need to search for optimal contour of integration, which can be done by using the optimal
values of the parameters involved in (38). The authors in [33] have proposed optimal values of the
parameters as

δ = 0.61220, σ = 0.50170, γ = 0.26450, and μ = 0.64070,

with error estimate as

Errorest = |GApp(t) − G (t)| = 0(e−1.3580MT ).

2.5 Euler’s Algorithm (EA)
In Euler’s inversion formula, to numerically calculate G (t) for the real value of G (t), we have

GApp(t) = 10
ME

3

t

2ME∑
k=0

ηkRe

(
Ĝ

(
βk

t

))
(41)

where

βk = MEln(10)

3
+ πιk, ηk = (−1)

k
ξk (42)
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with ι = √−1 and ξ0 = 1
2
, ξk = 1, 1 ≤ k ≤ ME, ξ2ME

= 1

2
M′

E

ξ2ME−k = ξ2ME−k+1 + 2−ME

(
ME

k

)
, 0 < K < ME. (43)

2.5.1 Convergence of Euler’s Method

To study the effect of the parameter on numerical accuracy, the authors in [34,35] performed a
large number of numerical experiments, and they concluded that “if ζ significant digits are required,
then suppose ME = [1.7ζ ] positive-integer. Set the precision of the system to ME. Given ME and the
precision of the system, calculate ηk and βk defined in (42) and (43). Then, given the transform Ĝ (z)
and the argument t, calculate the sum GApp(t) in (41)”.

2.6 Stehfest’s Method (SM)
In Stehfest’s method, the approximate value of G (t) is given as

GApp(t) = ln2
t

MS∑
i=1

ωiĜ

(
ln2
t

i
)

, (44)

where the weights ωi are given by

ωi = (−1)
MS

2 +i

min
(

i,
MS

2

)
∑

h=� i+1
2 	

h
MS

2 (2h! )(MS
2

− h
)

! h! (h − 1) ! (i − h) ! (2h − i) !
. (45)

Solving (18) for the corresponding Laplace parameters z = ln2
t

i, i = 1, 2, 3, . . . , MS. The solution
of the original problem can be obtained using (44).

2.6.1 Convergence of Stehfest’s Method

To study the effect of the parameter on numerical accuracy, the authors in [34,35] performed a
large number of numerical experiments, and they concluded that “If ζ significant digits are required,
suppose MS = 
2.2ζ� be a positive integer. Set the system precision at δ = 
1.1MS�. Given MS and
the system precision, calculate ωi, 1 ≤ i ≤ 2MS, using (45). Then, given the transform Ĝ (z) and the
argument t, calculate G (t) in (44).” According to these conclusions, we obtain the following error
estimation:

Remark 1.

If the error of input data is 10−(δ+1) ≤ ‖Ĝ (z) − G (t)‖
‖G (t)‖ ≤ 10−δ with even positive integer MS via

δ = 
1.1MS�, then the final error is 10−(ζ+1) ≤ ‖Ĝ (z) − G (t)‖
‖G (t)‖ ≤ 10−ζ , where MS = 
2.2ζ�. It can be

found from Remark 1, that the Stehfest’s method tends to demand highly precise input data Ĝ (z) in
order to yield best accuracy in the numerical inverse Laplace transform calculations. For example, if
input data Ĝ (z) is single-precision data, namely, δ = 7 with MS = 8, then ζ = 4. If input Ĝ (z) are
double-precision data, namely, δ = 16 with MS = 16, then ζ = 7 (see [36]).
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3 Applications

In this section, we validate our proposed method using numerical experiments. We consider three
different fractal-fractional differential equations first with power law kernel, second with exponential
decay kernel and third with generalized Mittag-Leffler kernel. The performance of the proposed
numerical scheme is evaluated using two error measures. The maximum absolute error AError and the
relative error RError are defined as

AError = max|GApp(t) − G (t)|
and

RError = max

∣∣∣∣GApp(t) − G (t)
G (t)

∣∣∣∣ .

Problem 1.

We consider a linear fractal fractional differential equation of the form
FFP
0 Dα,β

t z(t) = t3, (46)

with exact solution

z(t) = β�(3 + β)t(α+β+2)

�(α + β + 3)
. (47)

The problem is solved using three NILT schemes. In Table 1, the absolute and relative errors of
the problem using the Euler’s method are displayed. Tables 2 and 3 show the results obtained using
the Talbot’s and Stehfest’s methods for various values of α and β. Fig. 2 shows the plots of numerical
and analytic solutions for various values of α and β using the Talbot’s method. The plot of absolute
and relative errors for different values of α and β using Euler’s method is shown in Fig. 3. In Fig. 4,
the plots of absolute and relative errors of the problem using Talbot’s method are shown. In Fig. 5, the
absolute and relative errors for various values of α and β using Stehfest’s method are shown. Similarly
in Fig. 6, a comparison between the absolute errors using the three numerical schemes is presented.
It is clear from the figure that the Euler’s and Talbot’s methods performed better than the Stehfest’s
method.

Table 1: The absolute and relative errors obtained for problem 1 using the Euler’s method for various
values of α, β with ME = 32

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.1 3.6874×10−12 6.4460×10−9 1.4153×10−13 6.2818×10−10 3.2175×10−15 9.8639×10−11

0.2 7.6858×10−12 2.9241×10−9 2.1007×10−12 1.0875×10−9 9.8268×10−14 2.1080×10−10

0.3 1.6146×10−11 2.5175×10−9 1.2389×10−11 1.8248×10−9 2.0692×10−13 8.7412×10−11

0.4 1.4706×10−10 1.2177×10−8 1.0179×10−11 6.1456×10−10 1.0001×10−13 1.3758×10−11

0.5 5.2012×10−11 2.6360×10−9 2.3509×10−11 7.1067×10−10 3.6359×10−12 2.0949×10−10

0.6 1.4320×10−10 4.8594×10−9 5.1648×10−11 8.8721×10−10 4.1280×10−12 1.1681×10−10

0.7 2.6466×10−10 6.3979×10−9 5.5615×10−11 5.9242×10−10 3.9232×10−12 6.0854×10−11

0.8 5.2949×10−11 9.5418×10−10 2.5291×10−12 1.7809×10−11 1.2124×10−11 1.1172×10−10

(Continued)
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Table 1 (continued)

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.9 4.2575×10−10 5.9210×10−9 1.6389×10−10 8.0103×10−10 5.0456×10−12 2.9370×10−11

1.0 9.0259×10−11 9.9556×10−10 1.6457×10−11 5.8021×10−11 7.9018×10−12 3.0497×10−11

Table 2: The absolute and relative errors obtained for problem 1 using the Talbot’s method for various
values of α, β with MT = 26

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.1 4.0668×10−13 7.1093×10−10 3.2530×10−12 1.4439×10−8 5.5186×10−12 1.6918×10−7

0.2 1.8686×10−12 7.1093×10−10 2.7892×10−11 1.4439×10−8 8.2384×10−11 1.6918×10−7

0.3 4.5595×10−12 7.1093×10−10 9.8031×10−11 1.4439×10−8 4.0050×10−10 1.6918×10−7

0.4 5.5858×10−12 7.1093×10−10 2.3915×10−10 1.4439×10−8 1.2299×10−9 1.6918×10−7

0.5 1.4028×10−11 7.1093×10−10 4.7763×10−10 1.4439×10−8 2.9364×10−9 1.6918×10−7

0.6 2.0950×10−11 7.1093×10−10 8.4054×10−10 1.4439×10−8 5.9788×10−9 1.6918×10−7

0.7 2.9408×10−11 7.1093×10−10 1.3555×10−9 1.4439×10−8 1.0907×10−8 1.6918×10−7

0.8 3.9450×10−11 7.1093×10−10 2.0505×10−9 1.4439×10−8 1.8360×10−8 1.6918×10−7

0.9 5.1119×10−11 7.1093×10−10 2.9542×10−9 1.4439×10−8 2.9065×10−8 1.6918×10−7

1.0 6.4454×10−11 7.1092×10−10 4.0953×10−8 1.4439×10−8 4.3835×10−8 1.6918×10−7

Table 3: The absolute and relative errors obtained for problem 1 using the Stehfest’s method for various
values of α, β with MS = 18

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.1 7.6220×10−11 1.3324×10−7 2.8980×10−11 1.2863×10−7 1.7920×10−10 5.4938×10−6

0.2 3.1962×10−10 1.2160×10−7 2.3270×10−10 1.2046×10−7 2.6758×10−9 5.4950×10−6

0.3 2.7965×10−10 4.3603×10−8 9.2099×10−10 1.3565×10−7 1.3029×10−8 5.5038×10−6

0.4 1.4675×10−9 1.2152×10−7 1.9202×10−9 1.1593×10−7 4.0023×10−8 5.5057×10−6

0.5 1.5634×10−9 7.9236×10−8 4.8078×10−9 1.4534×10−7 9.5620×10−8 5.5093×10−6

0.6 2.4542×10−9 8.3281×10−8 8.4890×10−9 1.4582×10−7 1.9493×10−7 5.5160×10−6

0.7 3.7552×10−9 9.0780×10−8 1.3568×10−8 1.4452×10−7 3.5573×10−7 5.5179×10−6

0.8 7.1170×10−9 1.2825×10−7 1.6489×10−8 1.1611×10−7 5.9764×10−7 5.5071×10−6

0.9 3.6298×10−9 5.0480×10−8 3.2485×10−8 1.5877×10−7 9.4955×10−7 5.5272×10−6

1.0 6.4557×10−9 7.1206×10−8 4.4359×10−8 1.5640×10−7 1.4288×10−6 5.5144×10−6
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Figure 2: The plot shows the numerical (markers) and exact (dashed lines) solutions for various values
of α, β using Talbot’s method with MT = 24. We can see that the numerical solutions have good
approximations to the exact solutions
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Figure 3: The plot shows the convergence rate of the relative errors (markers) and absolute errors
(dashed lines) vs. time for various values of α, β using Talbot’s method with MT = 26

Problem 2.

We consider a linear fractal fractional differential equation of the form
FFE
0 Dα,β

t u(t) = t3 (48)

With exact solution

u(t) = β�(3 + β)

M(α)

[
αt

�(β + 4)
+ 1 − α

�(β + 3)

]
tβ+2 (49)
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Figure 4: The plot shows the convergence rate of the relative errors (markers) and absolute errors
(dashed lines) vs. time for various values of α, β using Euler’s method with ME = 32
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Figure 5: The plot shows the convergence rate of the relative errors (markers) and absolute errors
(dashed lines) vs. time for various values of α, β using Stehfest’s method with MS = 18

The problem is solved using three NILT schemes. In Table 4, the absolute and relative errors of
the problem using the Euler’s method are displayed. Tables 5 and 6 show the results obtained using the
Talbot’s and Stehfest’s methods for various values of α and β. Fig. 7 shows the plots of numerical and
analytic solutions for various values of α and β using the Talbot’s method. The plot of absolute and
relative errors for different values of α and β using Euler’s method is shown in Fig. 8. Fig. 9 shows the
plot of absolute and relative errors of the problem using Talbot’s method. In Fig. 10, the absolute and
relative errors for various values of α and β using Stehfest’s method are shown. Similarly in Fig. 11, a
comparison between the absolute errors using the three schemes is presented. It is clear from the figure
that the Euler’s and Talbot’s methods performed better than the Stehfest’s method.
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Figure 6: The plot shows the comparison of the convergence rate of the absolute errors of the three
methods, Euler’s method with ME = 32, Stehfest’s method with MS = 18, and Talbot’s method with
MT = 28. E = 0.1, S = 0.1, T = 0.1 refers to absolute error of Euler’s, Stehfest’s and Talbot’s method
with α = β = 0.1 respectively and similarly for others

Table 4: The absolute and relative errors obtained for problem 2 using the Euler’s method for various
values of α, β with ME = 32

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.1 4.7422×10−12 6.0182×10−9 2.0100×10−12 2.2016×10−9 2.4688×10−14 3.0372×10−10

0.2 1.9023×10−11 5.6112×10−9 2.1493×10−11 3.8902×10−9 1.6759×10−13 2.0140×10−10

0.3 1.6094×10−11 2.0189×10−9 4.4789×10−11 2.7929×10−9 2.7511×10−12 8.0280×10−10

0.4 1.8084×10−10 1.2355×10−8 1.9638×10−10 5.7022×10−9 6.7891×10−12 7.0842×10−10

0.5 4.1788×10−11 1.7805×10−9 4.1181×10−11 6.5701×10−10 3.3167×10−13 1.5387×10−11

0.6 5.0780×10−11 1.4702×10−9 7.4560×10−12 7.2593×10−11 2.2851×10−11 5.4249×10−10

0.7 1.4821×10−10 3.0936×10−9 1.0430×10−10 6.6644×10−10 2.7006×10−12 3.6205×10−11

0.8 3.1467×10−10 4.9446×10−9 1.0576×10−10 6.6776×10−10 1.4040×10−11 1.1435×10−10

0.9 5.0891×10−10 6.2228×10−9 8.6238×10−10 2.7503×10−9 2.9609×10−11 1.5498×10−10

1.0 5.5828×10−10 5.4526×10−9 1.5721×10−10 3.7349×10−10 2.0063×10−11 7.0591×10−11

Table 5: The absolute and relative errors obtained for problem 2 using the Talbot’s method for various
values of α, β with MT = 24

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.1 4.3238×10−13 5.4872×10−10 3.8864×10−12 4.2567×10−9 5.6695×10−12 6.9747×10−8

0.2 2.0278×10−12 5.9815×10−10 3.3241×10−11 6.0167×10−9 8.3841×10−11 1.0075×10−7

0.3 5.1596×10−12 6.4723×10−10 1.2295×10−10 7.6669×10−9 4.0967×10−10 1.1955×10−7

0.4 1.0187×10−11 6.9597×10−10 3.1744×10−10 9.2172×10−9 1.2665×10−9 1.3216×10−7

0.5 1.7470×10−11 7.4436×10−10 6.6919×10−10 1.0676×10−8 3.0437×10−9 1.4121×10−7

(Continued)
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Table 5 (continued)

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.6 2.7369×10−11 7.9241×10−10 1.2379×10−9 1.2052×10−8 6.2349×10−9 1.4802×10−7

0.7 4.0250×10−11 8.4012×10−10 2.0897×10−9 1.3352×10−8 1.1437×10−8 1.5332×10−7

0.8 5.6480×10−11 8.8750×10−10 3.2969×10−9 1.4581×10−8 1.9349×10−8 1.5758×10−7

0.9 7.6429×10−11 9.3456×10−10 4.9373×10−9 1.5746×10−8 3.0771×10−8 1.6107×10−7

1.0 1.0047×10−10 9.8128×10−10 7.0941×10−9 1.6851×10−8 4.6605×10−8 1.6398×10−7

Table 6: The absolute and relative errors obtained for problem 2 using the Stehfest’s method for various
values of α, β with MS = 18

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.1 6.6106×10−11 8.3894×10−8 1.0138×10−10 1.1104×10−7 1.6250×10−10 1.9991×10−6

0.2 3.7064×10−10 1.0933×10−7 1.2131×10−10 2.1958×10−8 2.5246×10−9 3.0338×10−6

0.3 7.6877×10−10 9.6436×10−8 9.9798×10−10 6.2253×10−8 1.2641×10−8 3.6889×10−6

0.4 1.0592×10−9 7.2364×10−8 2.0246×10−9 5.8786×10−8 3.9242×10−8 4.0947×10−6

0.5 8.2967×10−10 3.5351×10−8 1.0624×10−8 1.6950×10−7 9.5428×10−8 4.4272×10−6

0.6 2.5900×10−9 7.4987×10−8 2.1123×10−8 2.0566×10−7 1.9570×10−7 4.6460×10−6

0.7 2.0223×10−9 4.2210×10−8 4.3829×10−8 2.8004×10−7 3.6040×10−7 4.8316×10−6

0.8 6.8646×10−9 1.0787×10−7 6.7384×10−8 2.9802×10−7 6.0853×10−7 4.9561×10−6

0.9 3.1277×10−9 3.8245×10−8 1.1782×10−7 3.7576×10−7 9.7259×10−7 4.0909×10−6

1.0 3.6599×10−9 3.5746×10−8 1.6143×10−7 3.8347×10−7 1.4770×10−6 5.1969×10−6
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Figure 7: The plot shows the numerical solutions (markers) and exact solutions (dashed lines) for
various values of α, β using Euler’s method with ME = 34. We can see that the numerical solutions
have good approximations to the exact solutions
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Figure 8: The plot shows the convergence rate of the relative errors (markers) and absolute errors
(dashed lines) vs. time for various values of α, β using Euler’s method with ME = 34
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Figure 9: The plot shows the convergence rate of the relative errors (markers) and absolute errors
(dashed lines) vs. time for various values of α, β using Talbot’s method with MT = 26

Problem 3.

We consider a linear fractal fractional differential equation of the form
FFM
0 Dα,β

t u(t) = t3, (50)

with exact solution

u(t) = tβ+2β�(3 + β)

AB(α)

[
1 − α

�(β + 3)
+ αtα

�(β + α + 3)

]
(51)
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Figure 10: The plot shows the convergence rate of the relative errors (markers) and absolute errors
(dashed lines) vs. time for various values of α, β using Stehfest’s method with MS = 24
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Figure 11: The plot shows the comparison of the convergence rate of the absolute errors of the three
methods Euler method with ME = 34, Stehfest’s method with MS = 24, and Talbot’s method with
MT = 26. E = 0.1, S = 0.1, T = 0.1 refers to absolute error of Euler’s, Stehfest’s and Talbot’s method
with α = β = 0.1 and similarly for others

The problem is solved using three NILT schemes. In Table 7, the absolute and relative errors of
the problem using the Euler’s method are displayed. Tables 8 and 9 show the results obtained using
the Talbot’s and Stehfest’s methods for various values of α and β. Fig. 12 shows the plots of numerical
and analytic solutions for various values of α and β using the Talbot’s method. The plots of absolute
and relative errors for various values of α and β using Euler’s method are shown in Fig. 13. Fig. 14
shows the plots of absolute and relative errors of the problem using Talbot’s method. In Fig. 15, the
absolute and relative errors for various values of α and β using Stehfest’s method are shown. Similarly
in Fig. 16 a comparison between the absolute errors using the three schemes is presented. It is clear
from the figure that the Euler’s and Talbot’s methods performed better than the Stehfest’s method.
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Table 7: The absolute and relative errors obtained for problem 3 using the Euler’s method for various
values of α, β with ME = 32

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.1 4.8920×10−12 5.7689×10−9 2.5959×10−12 2.4975×10−9 3.1719×10−14 3.6543×10−10

0.2 2.3377×10−11 6.3965×10−9 2.5951×10−11 3.9844×10−9 4.4840×10−14 4.9793×10−11

0.3 1.9705×10−12 2.2936×10−10 4.8641×10−11 2.5254×10−9 2.7697×10−12 7.4480×10−10

0.4 1.9496×10−10 1.2373×10−8 2.1884×10−10 5.2358×10−9 6.3922×10−12 6.1526×10−10

0.5 5.4545×10−11 2.1652×10−9 4.5956×10−11 6.0077×10−10 5.3324×10−13 2.2875×10−11

0.6 7.5537×10−11 2.0389×10−9 4.6059×10−11 3.6660×10−10 2.1156×10−11 4.6585×10−10

0.7 4.7268×10−12 9.2175×10−11 1.2987×10−10 6.7836×10−10 1.1121×10−11 1.3875×10−10

0.8 3.2974×10−10 4.8519×10−9 5.8020×10−12 2.1013×10−11 1.3224×10−11 1.0056×10−10

0.9 5.6956×10−10 6.5374×10−9 1.1348×10−9 2.9725×10−9 2.1583×10−11 1.0584×10−10

1.0 5.1497×10−10 4.7330×10−9 1.3778×10−10 2.6986×10−10 7.7066×10−12 2.5484×10−11

Table 8: The absolute and relative errors obtained for problem 3 using the Talbot’s method for various
values of α, β with MT = 24

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.1 4.3641×10−13 5.1464×10−10 4.3605×10−12 4.1952×10−9 5.8884×10−12 6.7840×10−8

0.2 1.8847×10−12 5.1568×10−10 3.1689×10−11 4.8653×10−9 8.4381×10−11 9.3701×10−8

0.3 4.4359×10−12 5.1632×10−10 1.0275×10−10 5.3348×10−9 4.0433×10−10 1.0873×10−7

0.4 8.1429×10−12 5.1678×10−10 2.3834×10−10 5.7022×10−9 1.2325×10−9 1.1863×10−7

0.5 1.3044×10−11 5.1715×10−10 4.5942×10−10 6.0059×10−9 2.9292×10−9 1.2566×10−7

0.6 1.9171×10−11 5.1745×10−10 7.8716×10−10 6.2653×10−9 5.9460×10−9 1.3093×10−7

0.7 2.6549×10−11 5.1771×10−10 1.2429×10−9 6.4920×10−9 1.0823×10−8 1.3503×10−7

0.8 3.5199×10−11 5.1795×10−10 1.8481×10−9 6.6935×10−9 1.8188×10−8 1.3832×10−7

0.9 4.5143×10−11 5.1815×10−10 2.6245×10−9 6.8747×10−9 2.8755×10−8 1.4101×10−7

1.0 5.6396×10−11 5.1834×10−10 3.5939×10−9 7.0393×10−9 4.3322×10−8 1.4326×10−7

Table 9: The absolute and relative errors obtained for problem 3 using the Stehfest’s method for various
values of α, β with MS = 18

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.1 1.0367×10−10 1.2226×10−7 1.1780×10−10 1.1334×10−7 1.7103×10−10 1.9705×10−6

0.2 4.2240×10−10 1.1558×10−7 6.0834×10−10 9.3401×10−8 2.5842×10−9 2.8996×10−6

0.3 9.9255×10−10 1.1553×10−7 1.1082×10−9 5.7537×10−8 1.2728×10−8 3.4227×10−6

0.4 2.3472×10−9 1.4896×10−7 3.7290×10−9 8.9216×10−8 3.8823×10−8 3.7368×10−6

0.5 2.4010×10−9 9.5189×10−8 4.1191×10−9 5.3848×10−8 9.3856×10−8 4.0264×10−6

0.6 4.2599×10−9 1.1498×10−7 3.0213×10−9 2.4048×10−8 1.9052×10−7 4.1953×10−6

0.7 2.4418×10−9 4.7617×10−8 2.4572×10−9 1.2835×10−8 3.4842×10−7 4.3469×10−6

0.8 4.9696×10−9 7.3126×10−8 1.9180×10−9 6.9465×10−8 5.8188×10−7 4.4250×10−6

(Continued)
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Table 9 (continued)

(α, β) = (0.1, 0.1) (α, β) = (0.55, 0.55) (α, β) = (0.95, 0.95)

t AError RError AError RError AError RError

0.9 3.2033×10−9 3.6768×10−8 3.2927×10−9 8.6248×10−9 9.3006×10−7 5.5608×10−6

1.0 6.9746×10−9 6.4103×10−8 1.3841×10−8 2.7110×10−8 1.4021×10−6 4.6364×10−6
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Figure 12: The plot shows the numerical solutions (markers) and exact solutions (dashed lines) for
different values of α, β using Stehfest’s method with ME = 26. We can see that the numerical solutions
have good approximations to the exact solutions
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Figure 13: The plot shows the convergence rate of the relative errors (markers) and absolute errors
(dashed lines) vs. time for various values of α, β using Euler’s method with ME = 30
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Figure 14: The plot shows the convergence rate of the relative errors (markers) and absolute errors
(dashed lines) vs. time for various values of α, β using Talbot’s method with MT = 22
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Figure 15: The plot shows the convergence rate of the relative errors (markers) and absolute errors
(dashed lines) vs. time for various values of α, β using Stehfest’s method with MS = 20
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Figure 16: The plot shows the comparison of the convergence rate of the absolute errors of the three
methods Euler method with ME = 30, Stehfest’s method with MS = 20, and Talbot method with
MT = 22. E = 0.1, S = 0.1, T = 0.1 refers to absolute error of Euler’s, Stehfest’s and Talbot’s
methods with α = β = 0.1 and similarly for others

4 Conclusions

New concepts of differentiation and integration have been introduced recently. The new differ-
entiation is a combination of fractal and fractional differentiation. In this paper, we have developed
a Laplace transformed method for numerical modeling of fractal-fractional differential equations. In
contrast to the standard finite difference method, the proposed method has used the Laplace transform
and numerical Laplace inversion to handle the time fractal-fractional derivative. Solving differential
equations of fractal-fractional order using time stepping technique may face the problem of time-
instability. However, this method avoids the time stepping method and hence the time-instability. We
have utilized three Laplace transform inversion methods to evaluate the time domain solution for three
fractal-fractional differential equations. In all cases, the inversion results have been proven excellent.
All three inversion methods have produced accurate results. From the obtained results, it has been
observed that Euler’s and Talbot’s methods are more accurate than Stehfest’s method. Furthermore,
it has also observed that using Stehfest’s method, optimal accuracy can be achieved for values of MS

around 20 or 22. Hence, the obtained results led us to the conclusion that these methods are excellent
alternatives for approximating the solutions of such types of differential equations. It was also found
that these inversion methods are applicable to such types of fractal-fractional differential equations.
The proposed methods are easy to implement and highly accurate.
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