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ABSTRACT

This paper suggests a new modified version of the traditional Weibull distribution by adding a new shape
parameter utilising the modified alpha power transformed technique. We refer to the new model as modified
alpha power transformed Weibull distribution. The attractiveness and significance of the new distribution lie in
its power to model monotone and non-monotone failure rate functions, which are quite familiar in environmental
investigations. Its hazard rate function can be decreasing, increasing, bathtub and upside-down then bathtub
shaped. Diverse structural properties of the proposed model are acquired including quantile function, moments,
entropies, order statistics, residual life and reversed failure rate function. The parameters of the distribution were
estimated using the maximum likelihood function. The maximum likelihood method is employed to estimate
the model parameters and the approximate confidence intervals are also computed. Via a simulation study, the
performance of the point and interval estimates are compared using different criteria. Employing real lifetime data
sets, we verify that the offered model furnishes a better fit than some other lifetime models including Weibull,
gamma and alpha power Weibull models.
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1 Introduction

The Weibull distribution is a wildly favoured lifetime distribution in reliability studies. It is natu-
rally employed for studying biological, hydrological and medical data sets. The Weibull distribution is
frequently employed as a suitable alternative to well-known distributions such as exponential, gamma
and inverse Weibull distributions. The random variable X is expressed to have a Weibull distribution
if its probability density function (PDF) is given by

g(x; λ, θ) = λθxθ−1e−λxθ

, x > 0, (1)
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where λ > 0 and θ > 0 are the scale and shape parameters respectively. Also, its cumulative distribution
function (CDF) takes the form

G(x; λ, θ) = 1 − e−λxθ

. x > 0. (2)

One of the major weaknesses of the Weibull distribution is that it does not deliver an adequate
fit for some applications, particularly, when the hazard rates are upside-down bathtub or bathtub
shapes. To overcome this disadvantage, several investigators have developed various generalizations
and modifications of the Weibull distribution to model different types of data in recent years. The
generalized Weibull distribution was introduced in reference [1,2] by adding a shape parameter to the
Weibull distribution. Likewise, Xie et al. [3] proposed the additive Weibull distribution, the generalized
modified Weibull distribution by [4], KumaraswamyWeibull distribution by [5], beta Sarhan-Zaindin
modified Weibull distribution by [6], Weibull-Weibull distribution by [7], alpha power Weibull (APW)
distribution by [8], log-normal modified Weibull distribution and its reliability implications by [9],
generalized extended exponential-Weibull distribution by [10], Poisson modified weibull distribution
by [11], alpha logarithmic transformed Weibull distribution by [12] and logarithmic transformed
Weibull by [13].

Recently, Mahdavi et al. [14] suggested a new approach to present an additional parameter to
a class of distributions for more additional flexibility. The offered technique is named alpha power
transformation (APT) and it is worthwhile to incorporate skewness into a family of distributions.
They studied the main properties of the APT method and introduced an extension to the exponential
distribution using the new approach. Many authors used the same technique to introduce new
generalizations of some well-known distribution. For example, alpha power Weibull distribution by
[8], alpha power generalized exponential by [15], alpha power transformed inverse Lindley distribution
by [16] and alpha power Gompertz distribution by [17]. To add more flexibility to the APT method,
Alotaibi et al. [18] proposed a new form of the APT method which is called the modified APT (MAPT)
method. The CDF and the PDF of the MAPT method are, respectively, given by

FMAPT (x) = αG(x) − 1
(α − 1) (1 + α − αG(x))

, α > 0, α �= 1 (3)

and

fMAPT (x) = α1+G(x) log(α)g(x)

(α − 1) (1 + α − αG(x))
2 , α > 0, α �= 1, (4)

where α is a shape parameter, G(x) is a baseline distribution and g (x) = Ǵ (x). Reference [18]
investigated the major properties of the new generator. They also used the new method to develop
a new version of the exponential distribution and studied some of its properties.

Modelling real data employing generalized distributions stays vital nowadays. Multiple general-
ized distributions have been considered and used in different domains. Nevertheless, there still remain
considerable necessary issues applying real data, which are not handled by available models. The main
purpose of this article is to offer a new unexplored version of the traditional Weibull distribution. To
achieve this goal, we utilize the MAPT method to add a new shape parameter to the baseline CDF
given by (2). We refer to the new model as modified alpha power transformed Weibull (MAPTW)
distribution which contains one scale and two shape parameters. The main properties of the new
model including, quantile, mixture expansion, moments, entropies and order statistics are derived.
The unknown parameters are estimated using the maximum likelihood estimation method and the
approximate confidence intervals (ACIs) of the unknown parameters are also constructed. We are
encouraged to introduce the MAPTW distribution because
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1. It contains some well-known distributions as special cases including, exponential, Weibull and
MAPT exponential (MAPTE) distributions. So, at least, the MAPTW distribution contains
the main properties of these important distributions which are commonly used in modelling
lifetime data. Also, the main characteristics of these distributions can be obtained directly from
the MAPTW distribution.

2. It is appropriate to model positively skewed, negatively skewed and approximately symmetric
data which may not be adequately modelled by other competitive models.

3. It can model decreasing, increasing, bathtub and upside-down then bathtub hazard rates which
are often faced in real-life problems.

4. It is indicated in Section 2 that the MAPTW distribution can be shown as a combination of the
Weibull distribution. This property is especially helpful to derive the properties of the MAPTW
distribution directly from the Weibull distribution.

5. The analysis of two real data sets demonstrate that the MAPTW distribution compares
satisfactorily with different competing lifetime distributions in modelling engineering data sets.
As a results, the MAPTW distribution can be able to model engineering applications rather that
some well known and recently proposed generalized models. This is due to the flexibility of its
PDF and hazard rate function (HRF).

One of the main advantages of this distribution over many other generalized distributions is that it
gives the main forms of the HRF with two shape parameters only. The same advantage can be found
in its PDF which can be used to model positively and negatively skewed as well as approximately
symmetric data which may not be adequately fitted by other distributions. This makes the new
distribution more flexible, especially for modelling data sets when studying reliability experiments,
electronics, materials, automotive industries and many engineering applications. Another motivation
for this study is examining the behaviour of the maximum likelihood estimators as well as the ACIs
by considering different sample sizes and different true parameter values. The rest of the paper is
classified as follows: We present the MAPTW distribution in Section 2. The main properties of the
MAPTW distribution are derived in Section 3. In Section 4, we discuss the maximum likelihood
estimates (MLEs) as well as the ACIs of the model parameter. In Section 5, a simulation study is
conducted to compare the performance of point and interval estimates. The effectiveness of the
MAPTW distribution is depicted by studying two real data sets from the engineering field in Section 6.
Finally, in Section 7 we conclude the paper.

2 The Modified Alpha Power Transformed Weibull Distribution

The MAPTW distribution is discussed in this section. If X has a Weibull distribution with PDF
and CDF, respectively, provided by (1) and (2), then the CDF of the MAPTW distribution is given
by (3).

F (x; α, λ, θ) = α1−e−λxθ − 1

(α − 1)
(

1 + α − α1−e−λxθ
) , x > 0, α, θ , λ > 0, α �= 1, (5)

and the corresponding PDF is given by

f (x; α, λ, θ) = λθ log(α)xθ−1e−λxθ
α2−e−λxθ

(α − 1)
(

1 + α − α1−e−λxθ
)2 , x > 0, α, θ , λ > 0, α �= 1, (6)
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where α and θ are the shape parameters while λ is the scale parameter. It is observed that F(x; α, λ, 1)

reduces to the MAPTE by [18], F(x; → 1, λ, 1) tends to the exponential distribution, F(x; → 1, λ, 2)

tends to the Rayleigh distribution, F(x; α, λ, 2) tends to the MAPT Rayleigh distribution and F(x; →
1, λ, θ) tends to the Weibull distribution. It is to mentioned hare that the MAPTW distribution can be

considered as a weighted version of the APW distribution with weight function
(

1 + α − α1−e−λxθ
)−2

.

The reliability function (RF) and HRF of the MAPTW distribution are given, respectively, by

R (x; α, λ, θ) = 1 − α1−e−λxθ − 1

(α − 1)
(

1 + α − α1−e−λxθ
) (7)

and

h (x; α, λ, θ) = λθ log(α)xθ−1e−λxθ
α1−e−λxθ(

1 + α − α1−e−λxθ
) (

α − α1−e−λxθ
) . (8)

Henceforward, X is used to denote the random variable that has the PDF in (6). Fig. 1 shows the
various forms of the PDF of the MAPTW distribution given by (6) by assuming different values of the
shape parameters and by considering the scale parameter λ to be one in all the issues. Fig. 1 indicates
that the MAPTW distribution can model the left-skewed, right-skewed and approximated symmetric
data. Also, Fig. 2 presents the different shapes of the HRF given by (8) by considering various values
of the shape parameters and by assuming the scale parameter to be one in all the cases. Fig. 2 reveals
that the HRF of the MAPTW distribution can be decreasing, increasing, bathtub and upside-down
then bathtub shaped.
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Figure 1: Plots for the PDF of the MAPTW distribution
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Figure 2: Plots for the HRF of the MAPTW distribution

To derive the main properties of the MAPTW distribution, we provide a valuable expansion for
the PDF in (6). Consider the following power series:

αy =
∞∑

m=0

(log α)m

m!
ym (9)

and the generalized binomial expansion in the form

(1 − y)
−2 =

∞∑
k=0

(k + 1) yk, |y| < 1. (10)

Using the series in (9) and (10), one can write the PDF in (6) as a mixture representation of the
Weibull densities as follows:

f (x) =
∞∑

m=0

m∑
j=0

�m,j g (x; (j + 1) λ, θ) . (11)

where g(x; (j + 1)λ, θ) is the PDF of the Weibull distribution with scale parameter (j + 1)λ and shape
parameter θ , where

�m,j = (−1)
j

(
m + 1
j + 1

) ∞∑
k=0

α(k + 1)m+1(log α)m+1

(m + 1)! (α − 1)(α + 1)k+2
.
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Moreover, we can write the linear representation of the CDF of the MAPTW distribution after
integrating (11), as follows:

FMAPTW (x) =
∞∑

m=0

m∑
j=0

�m,jG (x; (j + 1) λ) . (12)

where G(x; (j + 1)λ) is the CDF of the Weibull distribution with scale and shape parameters (j + 1)λ

and θ , respectively.

3 Structure Properties

We provide some essential properties for the MAPTW distribution in this section, such as quantile,
moments, entropies, order statistics, residual life, and reversed failure rate function.

3.1 Quantile Function
The quantile function (QF) of the MAPTW distribution, say x = Q(p), can be obtained from the

CDF in (5) as

xp = Q (p) =
⎧⎨⎩−1

λ
log

⎡⎣1 −
⎡⎣ log

(
1+p(α2−1)

1+p(α−1)

)
log α

⎤⎦⎤⎦⎫⎬⎭
1
θ

, 0 < p < 1. (13)

The QF in (13) can be used to generate a random sample from the MAPTW distribution by taking
p to be U(0, 1).

3.2 Moments
Moments play an essential feature in statistical theory and numerous necessary characteristics of

any distribution can be examined via moments. For the MAPTW distribution, the nth moment can be
derived as

μ
′
n = E(X n) =

∫ ∞

−∞
xnf (x)dx

=
∞∑

m=0

m∑
j=0

�m,j

∫ ∞

0

xng (x; (j + 1) λ) dx

=
∞∑

m=0

m∑
j=0

�m,j

�
(

n
θ
+ 1

)
[(j + 1) λ]

n
θ

, n = 1, 2, 3, . . . , (14)

where �(.) is the gamma function. Similarly, for the MAPTW distribution we can obtain the nth inverse
moment by using (6) as follows:

E
(

1
X n

)
=

∞∑
m=0

m∑
j=0

�m,j�
(

1 − n
θ

)
[(j + 1) λ]

n
θ ,

n
θ

≥ 1.
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Practically, the mean of the MAPTW distribution can be obtained from (14) by setting n = 1 as
follows:

μ
′
1 = E (X) =

∞∑
m=0

m∑
j=0

�m,j

�

(
1
θ

+ 1
)

[(j + 1) λ]
1
θ

.

Similarly, the second moment can be obtained by putting n = 2 in (14) as

μ
′
2 = E

(
X 2
) =

∞∑
m=0

m∑
j=0

�m,j

�
(

2
θ
+ 1

)
[(j + 1) λ]

2
θ

Then, once can obtain the variance of the MAPTW distribution using the following relation:

Var(X) = μ
′
2 − μ

′2
1 .

The rth central moment μr of X is derived as Moreover, The skewness (Sk) and kurtosis (Ku)
measures can be calculated employing the next formulas

Sk = μ3

[Var (X)]
3
2

and

Ku = μ4

[Var(X)]2 ,

where μ3 = μ
′
3 − 3μ

′
2μ

′
1 + 2μ

′3
1 and μ4 = μ

′
4 − 4μ

′
3μ

′
1 + 6μ

′
2μ

′2
1 − 3μ

′4
1 are the third and fourth central

moments, receptively. Based on the above measures of mean, variance, skewness and kurtosis and for
various values for α and θ with λ = 1, Fig. 3 displays the plots for the mean, variance, skewness and
kurtosis of the MAPTW distribution. It is seen from Fig. 3 the skewness of the MAPTW distribution
can be positive or negative and decreases as α and θ increase. It is also observed that the kurtosis of
the MAPTW distribution decreases as α and θ increase.

The following Lemma explain various kinds of moments of the MAPTW distribution such as
incomplete moments (IMs), moment generating function (MGF), characteristic generating function
(CGF) and conditional moments (CMs).

Lemma 3.1. If X ∼ MAPTIW, then

1. The IMs of X is

ψr (t) =
∞∑

m=0

m∑
j=0

�m,j

γ (r + 1, (j + 1) λtθ )

[(j + 1) λ]
r
θ

,

where γ (., .) is the incomplete gamma function.

2. The MGF of X is

MX (t) =
∞∑

k=0

tk

k!
E
(
X k
)

=
∞∑

k,m=0

m∑
j=0

�m,j

tk

k!

�
(

k
θ
+ 1

)
[(j + 1) λ]

k
θ

.
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Figure 3: Mean, variance, skewness and kurtosis of the MAPTW distribution

3. The CGF of X is

MX (it) =
∞∑

k=0

(it)k

k!
E
(
X k
)

=
∞∑

k,m=0

m∑
j=0

�m,j

(it)k

k!

�
(

k
θ
+ 1

)
[(j + 1) λ]

k
θ

.
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4. The CMs of X is

CX(t) = E (X n|X > x) = ψn(x)

1 − F(x)
,

where ψn(t) is the IMs and F(x) is the CDF given by (5).

3.3 Entropies
Entropy is one of the numerous popular techniques used to calculate the uncertainty correspond-

ing to a random variable and it was initially employed in the field of physics. Estimating entropy is
a significant matter in many fields including statistics and biological phenomenon. High entropy is
guided to minor information found in data. For the MAPTW distribution and from (6), the Renyi
entropy (RE) can be acquired as follows:

Iρ (x) = 1
1 − ρ

log

⎧⎪⎨⎪⎩
(

λθ log α

α − 1

)ρ ∫ ∞

0

xθα(2+e−λxθ
)ρe−λρxθ(

α − (α + 1)αe−λxθ
)2ρ

dx

⎫⎪⎬⎪⎭
= 1

1 − ρ
log

{(
λθ log α

α − 1

)ρ ∞∑
j=0

∞∑
m=0

(
2ρ + j − 1

j

)(
α + 1

α

)j
(j + ρ)

m
(log α)

m

m!

�
(

1
θ
+ 1

)
[λ (m + ρ)]

1
θ

}
.

(15)

Also, Shannon’s entropy can be derived by Limiting ρ ↑ 1 in (15) as

E [− log f (X)] = − log
[
λθ log α

α − 1

]
− (θ − 1) E (log (x)) + λE

(
xθ
)+ log (α) E

(
2 − e−λxθ

)
− 2E

(
log

[
1 + α − α1−e−λxθ

])
= − log

[
λθ log α

α − 1

]
+

∞∑
m=0

∞∑
j=0

�m,j

(θ − 1) (log((j + 1)λ) + γ )

θ
+

∞∑
m=0

∞∑
j=0

�m,j

(1 + j)λ

+ log (α)

∞∑
m=0

∞∑
j=0

�m,j

(
j + 3
j + 2

)
− 2E

(
log

[
1 + α − α1−e−λxθ

])
3.4 Order Statistics

Order statistics contain a broad range of applications in statistics, including nonparametric
statistics, life testing, quality control monitoring and reliability analysis. Let X1, . . . , Xn be a random
sample from the MAPTW distribution with CDF and PDF given by (5) and (6), respectively. Suppose
also that the order statistics of X1, . . . , Xn are denoted by X(1), . . . , X(n). Then, the PDF of the ith order
statistic, X(i), is expressed as

fX(i)
(x) = f (x)

B(i, n − i + 1)
Fi−1 (x) [1 − F(x)]n−i

= f (x)

B(i, n − i + 1)

n−i∑
k=0

(−1)k

(
n − i
k

)
Fk+i−1 (x) , (16)
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where B(.,.) is the beta function. Using (5), (6) and a power series expansion, we obtain

f (x) Fk+i−1 (x) = α log α

(α2 − 1)i+k

∞∑
a,b,c,d=0

(−1)i+k+b+d−1

(α + 1)a+1

((a + b + 1) log α)
c

c!

(
a + i + k
a

)

×
(

i + k − 1
b

)(
c
d

)
λθxθ−1e−λ(d+1)xθ

, (17)

Substituting (17) in Eq. (16), the PDF of X(i) reduces to

fX(i)
(x) =

∞∑
d=0

ωd g (x; (d + 1) λ, θ) (18)

where g(x; (d + 1)λ, θ) is the PDF of the Weibull distribution with scale parameter (d + 1)λ and shape
parameter θ , where

ωd =
n−i∑
k=0

∞∑
a,b,c=0

(−1)i+2k+b+d−1

(α + 1)a+1

α log α

(α2 − 1)i+kB(i, n − s + 1)

((a + b + 1) log α)
c

c!

×
(

a + i + k
a

)(
i + k − 1

b

)(
n − i

k

)(
c
d

)
.

3.5 Probability Weighted Moments
The (u, v)th probability weighted moments can be defined as

ϑu,v = E {X uF(X)v} =
∫ ∞

−∞
xuf (x)Fv(X)dx. (19)

For the of the MAPTW distribution, it follows from (5) and (6) that

f (x) Fv (x) = α log α

(α2 − 1)v+1

∞∑
a,b,c,d=0

(−1)v+b+d

(α + 1)a+1

((a + b + 1) log α)
c

c!

(
a + v + 1

a

)

×
(

v
b

)(
c
d

)
λθxθ−1e−λ(d+1)xθ

, (20)

Substituting (20) in Eq. (19), the probability weighted moments of the MAPTW distribution is
given by

ϑu,v =
∞∑

a,b,c,d=0

(−1)v+b+d

(α + 1)a+1

α log α

(α2 − 1)v+1

[(a + b + 1) log α]c

c!

(
a + v + 1

a

)

×
(

v
b

)(
c
d

)
�
(
1 + u

θ

)
θ [(1 + d) λ]1+ u

θ
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3.6 Residual Life and Reversed Failure Rate Function
The rth moment of the residual life (RL) of the random variable X is defined as follows:

Rr (t) = E ((X − t)r |X > t) = 1
1 − F(t)

∫ ∞

t

(x − t)rf (x) dx, r ≥ 1

Using (6) and applying the binomial expansion of (x − t)r, we have

Rr (t) = 1
1 − F(t)

r∑
k=0

(−t)r−k

(
r
k

)∫ ∞

t

xrf (x) dx

= 1
1 − F(t)

r∑
k=0

∞∑
m,j=0

�m,j (−t)r−k

(
r
k

)∫ ∞

t

xrg (x; (j + 1) λ, θ) dx

where g(x; (j + 1)λ, θ) is the PDF of the Weibull distribution, then

Rr (t) =
(α − 1)

(
1 + α − α1−e−λxθ

)
α2 + (α − 2)α1−e−λxθ − 1

r∑
k=0

∞∑
m,j=0

�m,j (−t)r−k

(
r
k

)
�
(

r
θ
+ 1, (j + 1) λtθ

)
[(j + 1) λ]

r
θ

,

where � (a, y) = ∫ ∞
y

za−1e−zdz denotes the incomplete gamma function. The rth moment of the reversed
RL can be derived using the general formula

mr (t) = E ((t − X)
r |X ≤ t) = 1

F(t)

∫ t

0

(t − x)rf (x) dx, r ≥ 1.

Using (5), (6) and applying the binomial expansion of (t − x)r, we can write

mr (t) =
(α − 1)

(
1 + α − α1−e−λxθ

)
α1−e−λxθ − 1

r∑
k=0

∞∑
m,j,a=0

�m,j (−1)
a+r−k

(
r
k

)
θ ((j + 1)λ)

a+1 t2r−k+(a+1)θ

r + (a + 1)θ

3.7 Stress-Strength Model
Let Y1 ∼ MAPTW(α1, θ , λ) and Y2 ∼ MAPTW(α2, θ , λ). If Y1 represents stress and Y2 represents

strength, then the stress-strength parameter, denoted by R, for the MAPTW distribution. Here, we
consider two cases as follows:

Case one: When α1 �= α2

R = P(Y2 > Y1) =
∫ ∞

0

F1(y)dF2(y)dy

= λθ log(α2)

(α1 − 1)(α1 + 1)(α2 − 1)(α2 + 1)2

∫ ∞

0

yθ−1e−λyθ

α2−e−λyθ

2

(
α1−e−λyθ

1 − 1
)

×
(

1 − α1−e−λyθ

1

α1 + 1

)−1 (
1 − α1−e−λyθ

2

α2 + 1

)−2

dy
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Using the series expansion in (10), the last equation takes the form

R =
∞∑

j=0

∞∑
k=0

T1 (j, k)

∫ ∞

0

λθyθ−1e−λyθ
(
α1α

e−(j+1)λyθ

1 − αe−jλyθ

1

)
α−(k+1)e−λyθ

2 dy.

Employing the series expansion in (9), we obtain

R =
∞∑

j=0

∞∑
k=0

T1 (j, k)

∫ ∞

0

λθyθ−1e−λyθ
(
αe−λyθ

1 − 1
)

αje−λyθ

1 α−(k+1)e−λyθ

2 dy

=
∞∑

j,k=0

∞∑
n,m=0

T1 (j, k) T2 (n, m)

∫ ∞

0

λθyθ−1e−(n+m+1))λyθ

dy

=
∞∑

j,k=0

∞∑
n,m=0

T1(j, k)T2(n, m)

n + m + 1

where

T1 (j, k) = (k + 1)αk+2
2 α

j
1 log(α2)

(α1 − 1)(α2 − 1)(α1 + 1)j+1(α2 + 1)k+2

and

T2 (n, m) = (−1)n+m(k + 1)m (log(α1))
n
(log(α2))

m

n! m!
(α1(j + 1)n − jn) .

Case two: When α1 �= α2, λ1 �= λ2 and θ1 �= θ2

Let Y1 ∼ MAPTW(α1, θ1, λ1) and Y2 ∼ MAPTW(α2, θ1, λ2). If Y1 represents stress and Y2

represents strength, then the stress-strength parameter, denoted by R, for the MAPTW distribution is
given by

R = P(Y2 > Y1) =
∫ ∞

0

F1(y)dF2(y)dy

= λ2θ2 log(α2)

(α1 − 1)(α1 + 1)(α2 − 1)(α2 + 1)2

∫ ∞

0

yθ2−1e−λ2yθ2
α2−e−λ2yθ2

2

(
α1−e−λ1yθ1

1 − 1
)

×
(

1 − α1−e−λ1yθ1

1

α1 + 1

)−1 (
1 − α1−e−λ2yθ2

2

α2 + 1

)−2

dy

Using the series expansion in (10), we have

R =
∞∑

j=0

∞∑
k=0

T1 (j, k)

∫ ∞

0

λ2θ2yθ2−1e−λ2yθ2

(
α1−e−λ1yθ1

1 − 1
)

α−je−λ1yθ1

1 α−(k+1)e−λ2yθ2

2 dy.

Utilizing the series expansion in (9), it comes

R =
∞∑

j=0

∞∑
k=0

T1 (j, k)

∫ ∞

0

λ2θ2yθ2−1e−λ2yθ2

(
α1−e−λ1yθ1

1 − 1
)

α−je−λ1y

1 α−(k+1)e−λ2yθ2

2 dy

=
∞∑

j,k=0

∞∑
n,m=0

T1 (j, k) T2 (n, m)

∫ ∞

0

λ2θ2yθ2−1e−(nλ1yθ1 +(m+1)λ2yθ2)dy,
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where

T1 (j, k) = (k + 1)α
j
1α

2+k
2 log(α2)

(α1 − 1)(α2 − 1)(α1 + 1)j+1(α2 + 1)k+2

and

T2 (n, m) = (−1)
n+m (k + 1)m (log(α1))

n
(log(α2))

m

n! m!
(α1(j + 1)n − jn) .

4 Estimation of the Parameters

Here, the method of maximum likelihood is employed to estimate the unknown parameters of
the MAPTW distribution. Moreover, the approximate confidence intervals (ACIs) of the unknown
parameters are obtained. Assume that we have a random sample of size n taken from the MAPTW
distribution with PDF given by (6), then we can express the log-likelihood function in this case as
follows:

� (α, λ, θ) = n log
(

λθ log α

α − 1

)
+ (θ − 1)

n∑
i=1

log xi − λ

n∑
i=1

xθ

i + (log α)

n∑
i=1

(
2 − e−λxθ

i

)

− 2
n∑

i=1

log
(

1 + α − α1−e
−λxθ

i

)
. (21)

To get the maximum likelihood estimates (MLEs) of α, λ and θ denoted by α̂, λ̂ and θ̂ , one can
maximize the objective function in (21) with respect to α, λ and θ . An alternative approach to compute
the required estimates is to solve the following normal equations simultaneously:

∂�(α, λ, θ)

∂α
= n

α log(α)
− n

α − 1
+ 1

α

n∑
i=1

(
2 − e−λxθ

i

)
− 2

n∑
i=1

ϕα = 0, (22)

∂�(α, λ, θ)

∂λ
= n

λ
−

n∑
i=1

xθ

i + log (α)

n∑
i=1

xθ

i e
−λxθ

i − 2
n∑

i=1

ϕλ = 0 (23)

and

∂�(α, λ, θ)

∂θ
= n

θ
− 2

n∑
i=1

ϕθ +
n∑

i=1

log (xi)
[
1 + λxθ

i

(
log(α)e−λxθ

i − 1
)]

= 0, (24)

where

ϕα =
1 −

(
1 − e−λxθ

i

)
α−e

−λxθ
i

α − α1−e
−λxθ

i + 1
,

ϕλ = − log(α)xθ

i e
−λxθ

i α1−e
−λxθ

i

α − α1−e
−λxθ

i + 1
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and

ϕθ = −αλ log(α)xθ

i log (xi) e−λxθ
i

(α + 1)αe
−λxθ

i − α
.

It is to note that there are no closed-form solutions for Eqs. (22)–(24). To get the MLEs in this
case, one can direct to any numerical technique for this purpose. Using the asymptotic properties of the

MLEs, we can obtain the ACIs of α, λ and θ . It is known that (α, λ, θ) ∼ N
((

α̂, λ̂, θ̂
)

, I−1
0 (α, λ, θ)

)
,

where I−1
0 (α, λ, θ) is the asymptotic variance-covariance (AVC) of the MLEs. Practically, it is not easy

to compute I−1
0 (α, λ, θ), thus, the approximate AVC of the MLEs denoted by I−1

0

(
α̂, λ̂, θ̂

)
can be used

as follows:

I0

(
α̂, λ̂, θ̂

)
=
⎡⎣−Iαα −Iαλ −Iαθ

−Iαλ −Iλλ −Iλθ

−Iαθ −Iλθ −Iθθ

⎤⎦−1

(α,λ,θ)=(α̂,λ̂,θ̂)

=

⎡⎢⎢⎢⎣
v̂ar

(
α̂
)

ĉov
(
α̂, λ̂

)
ĉov

(
α̂, θ̂

)
ĉov

(
λ̂, α̂

)
v̂ar

(
λ̂
)

ĉov
(
λ̂, θ̂

)
ĉov

(
θ̂ , α̂

)
ĉov

(
θ̂ , λ̂

)
v̂ar

(
θ̂
)

⎤⎥⎥⎥⎦ . (25)

where Iαα, Iαλ = Iλα, Iαθ = Iθα, Iλθ = Iθλ, Iλλ and Iθθ are the second derivatives of (21) and given by

Iαα = n
[

1
(α − 1)2

− log(α) + 1

α2 log2
(α)

]
− 1

α2

n∑
i=1

(
2 − e−λxi

θ
)

− 2
n∑

i=1

ϕαα,

Iλλ = − n
λ2

− log (α)

n∑
i=1

x2θ

i e−λxθ
i − 2

n∑
i=1

ϕλλ,

Iθθ = n
θ 2

+ λ log (α)

n∑
i=1

[
xθ

i

(
1 − xθ

i

)
e−λxθ

i log2
(xi)

]
− λ

n∑
i=1

xθ

i log2
(xi) − 2

n∑
i=1

ϕθθ ,

Iαλ =
∑n

i=1 xθ

i e
−λxθ

i

α
− 2

n∑
i=1

ϕαλ,

Iαθ = 1
α

n∑
i=1

e−λxθ
i λxθ

i log (xi) − 2
n∑

i=1

ϕαθ

and

Iλθ = −
n∑

i=1

xθ

i log (xi) − log(α)

n∑
i=1

xθ

i log (xi) e−λxθ
i
(
λxθ

i − 1
)− 2

n∑
i=1

ϕλθ ,

where

ϕαα =
e−λxθ

i

(
1 − e−λxθ

i

)
α−e

−λxθ
i −1

α − α1−e
−λxθ

i + 1
−

(
1 −

(
1 − e−λxθ

i

)
α−e

−λxθ
i

)2

(
α − α1−e

−λxθ
i + 1

)2 ,

ϕλλ =
α log(α)x2θ

i e−2λxθ
i

(
eλxθ

i − log(α)
)

(α + 1)αe
−λxθ

i − α
− log2

(α)x2θ

i e−2λxθ
i α2−2e

−λxθ
i(

α − α1−e
−λxθ

i + 1
)2 ,
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ϕθθ =
αλ log(α)xθ

i log2
(xi) e−2λxθ

i

(
(α + 1)αe

−λxθ
i
(
λxθ

i

(
eλxθ

i − log(α)
)

− eλxθ
i

)
− αeλxθ

i
(
λxθ

i − 1
))

(
α − (α + 1)αe

−λxθ
i
)2 ,

ϕαθ =
α log(α)x2θ

i e−2λxθ
i

(
eλxθ

i − log(α)
)

(α + 1)αe
−λxθ

i − α
− log2

(α)x2θ

i e−2λxθ
i α2−2e

−λxθ
i(

α − α1−e
−λxθ

i + 1
)2 ,

ϕαλ =
log(α)xθ

i e
−λxθ

i

(
1 −

(
1 − e−λxθ

i

)
α−e

−λxθ
i

)
α1−e

−λxθ
i

(
α − α1−e

−λxθ
i + 1

)2

+
xθ

i

(
−e−λxθ

i

)
α−e

−λxθ
i − log(α)xθ

i e
−λxθ

i

(
1 − e−λxθ

i

)
α−e

−λxθ
i

α − α1−e
−λxθ

i + 1
,

ϕλθ = α log(α)xθ

i log (xi) e−λxθ
i
(
λxθ

i − 1
)

(α + 1)αe
−λxθ

i − α
− (α + 1)λ log2

(α)x2θ

i log (xi) e−2λxθ
i αe

−λxθ
i +1(

α − (α + 1)αe
−λxθ

i
)2 .

Thus, the (1 − γ )% ACIs of α, λ and θ can be obtained as follows:

α̂ ± zγ /2

√
v̂ar

(
α̂
)
, λ̂ ± zγ /2

√
v̂ar

(
λ̂
)

and θ̂ ± zγ /2

√
v̂ar

(
θ̂
)

where zγ /2 is the upper (γ /2)th percentile point of a standard normal distribution.

5 Simulation Study

To evaluate the performance of the MLEs of the MAPTW distribution, a Monte Carlo simulation
is conducted based on a sufficiently large 5,000 independent from the MAPTW distribution using
different sample sizes n(= 50, 100, 150, 200) and different choices for true values of the model
parameters α, λ and θ as α(= 0.1, 0.3, 0.5, 0.7), λ(= 0.5, 0.8, 1.2, 1.6) and θ(= 0.5, 0.8, 1.5, 2.5). The
simulation procedure is carried out based on following the steps:

Step 1: Determine the sample size and the starting values for the parameters.

Step 2: Generate a random sample of size n from the MAPTW distribution from (9).

Step 3: Compute the average estimates with their root mean squared-errors (RMSEs) and relative
absolute biases (RABs) of α, λ and θ .

Step 4: Obtain the (1 − γ )%CLs of the parameters α, λ and θ .

Step 5: Repeat steps 2–5 5000 times.

Step 6: Calculate the average values (AV) of MLEs, RMSEs, RABs and CLs of any function of α,
λ and θ (say ϕ) are given, respectively, by

AV − MLE (ϕ) = 1
5000

5000∑
i=1

ϕ̂i,
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AV − RMSE (ϕ) =
√√√√ 1

5000

5000∑
i=1

(
ϕ̂i − ϕ

)2
,

AV − RAB (ϕ) = 1
5000

5000∑
i=1

1
ϕ

∣∣ϕ̂(i) − ϕ
∣∣ ,

and

AV − CL (ϕ) = 1
5000

5000∑
i=1

(ϕiU − ϕiL),

where φL
i and φU

i are the lower and upper ACI bounds, respectively.

All required numerical results are obtained via R software version 4.0.4 utilizing ‘maxLik’ package
proposed by [19] and later recommended by [20,21]. The simulation results are shown in Tables 1 and 2.
From Table 1, we observe that the maximum likelihood estimates of the parameters α, λ and θ are quite
satisfactory in terms of minimum RMSEs and RABs. It can also be shown that, as n increases, the AV-
MLEs of the parameters α, λ and θ close to the true parameter values. This result implies the fact
that the MLEs behaved as asymptotically unbiased estimators. For each set of parameter values, as n
increases, the AV-RMSEs and AV-RABs decrease which implying that the MLEs are also consistent.
To be more specific, it is noted that the AV-RMSE and AV-RAB for the parameter θ decrease rapidly
after the sample size exceeds 50. On the other hand, the AV-RMSEs and AV-RABs for the parameters α

and λ need a larger sample size to get a small value for these measures. After revising the computation
results, we have observed that some samples from the 1000 generated samples give high estimated
values for α and λ and this is the reason for the high values of AV-RMSEs and AV-RABs in this
case, but the majority of the generated samples get satisfactory results. Further, Table 2 shows that the
AV-CLs decrease are narrowed down with the increase in the sample size n as expected. Graphically,
the AV-MSEs, AV-RABs and AV-CLs of the parameters α, λ and θ are displayed in Fig. 4 (when
(α, λ, θ) = (0.1, 0.5, 0.5) as an example). This conclusion refers to the fact that when n increases more
additional information is gathered.

Table 1: The AV-MLEs (first-line), AV-RMSEs (second-line) and AV-RABs (third-line) of α, λ and θ

n α λ θ α λ θ α λ θ

(α, λ, θ) → (0.1, 0.5, 0.5) (0.1, 0.5, 1.5) (0.1, 1.2, 0.5)

50 0.3276 1.2799 0.4944 0.4080 1.3106 1.4792 0.3531 2.8568 0.4929
1.4922 1.6136 0.0836 2.3084 1.6559 0.2496 1.6978 3.3836 0.0839
2.7765 2.0645 0.1303 3.5617 2.1072 0.1267 3.0082 1.8548 0.1297

100 0.2009 0.9377 0.4953 0.2008 0.9295 1.4898 0.2007 2.0963 0.4959
0.8258 0.9819 0.0570 0.8590 0.9726 0.1737 0.9016 2.0010 0.0571
1.4394 1.3183 0.0893 1.4596 1.3221 0.0905 1.4403 1.1803 0.0890

150 0.1535 0.7856 0.4975 0.1600 0.7883 1.4926 0.1505 1.8220 0.4962
0.3216 0.7001 0.0464 0.4828 0.7482 0.1428 0.1289 1.5486 0.0453
0.9391 0.9892 0.0733 1.0271 1.0205 0.0749 0.9018 0.9222 0.0723

200 0.1377 0.7191 0.4976 0.1364 0.7157 1.4969 0.1382 1.6788 0.4979

(Continued)
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Table 1 (continued)

n α λ θ α λ θ α λ θ

(α, λ, θ) → (0.1, 0.5, 0.5) (0.1, 0.5, 1.5) (0.1, 1.2, 0.5)

0.1061 0.5815 0.0389 0.1052 0.5781 0.1184 0.1075 1.3015 0.0399
0.7503 0.8300 0.0620 0.7578 0.8404 0.0625 0.7620 0.7865 0.0640

(α, λ, θ) → (0.3, 0.8, 0.8) (0.3, 1.2, 1.5) (0.3, 1.6, 2.5)

50 0.8343 1.1866 0.7943 0.8676 1.7296 1.4894 0.8664 2.2263 2.4707
3.4966 1.1367 0.1625 4.1765 1.4595 0.3045 3.4567 1.7301 0.5169
2.1779 0.8791 0.1535 2.2763 0.8074 0.1518 2.2832 0.7594 0.1549

100 0.5576 1.0018 0.7976 0.5904 1.4675 1.4905 0.5373 1.9295 2.4833
2.4068 0.7699 0.1165 2.5529 0.9918 0.2202 2.1014 1.1634 0.3536
1.2053 0.5942 0.1079 1.3094 0.5490 0.1079 1.1229 0.5186 0.1058

150 0.4300 0.9444 0.7947 0.4632 1.3864 1.4941 0.4557 1.8158 2.4902
1.3920 0.5907 0.0920 1.8020 0.7941 0.1750 1.8408 0.9196 0.2840
0.7281 0.4753 0.0862 0.8502 0.4489 0.0868 0.8161 0.4101 0.0847

200 0.3810 0.9026 0.7977 0.3706 1.3209 1.4972 0.3593 1.7507 2.5000
1.0746 0.4749 0.0774 1.0369 0.6135 0.1429 0.8092 0.7428 0.2406
0.5402 0.3976 0.0745 0.5134 0.3684 0.0732 0.4771 0.3508 0.0747

(α, λ, θ) → (0.5, 0.5, 0.8) (0.5, 0.8, 1.5) (0.5, 1.6, 2.5)

50 1.2764 0.7463 0.7995 1.2572 1.0986 1.5003 1.2717 2.0291 2.4811
4.9076 0.8618 0.1859 4.2794 1.0341 0.3509 4.4629 1.4009 0.5789
1.9483 0.9083 0.1769 1.9087 0.7590 0.1766 1.9226 0.6017 0.1755

100 0.9119 0.6511 0.7939 0.9276 0.9833 1.4885 0.9421 1.8211 2.4773
2.9873 0.6381 0.1384 2.9742 0.7861 0.2609 2.8717 1.0544 0.4385
1.1460 0.6484 0.1285 1.1812 0.5536 0.1286 1.2125 0.4313 0.1287

150 0.7530 0.6026 0.7964 0.8178 0.9306 1.4911 0.7789 1.7474 2.4880
2.2514 0.5091 0.1145 2.6348 0.6551 0.2180 2.4189 0.8289 0.3535
0.7939 0.5127 0.1056 0.9239 0.4464 0.1060 0.8409 0.3405 0.1037

200 0.6947 0.5761 0.7962 0.6465 0.8806 1.4976 0.6705 1.7198 2.4906
1.9819 0.4328 0.0988 1.5406 0.4796 0.1783 1.8017 0.6925 0.3041
0.6494 0.4317 0.0909 0.5497 0.3548 0.0879 0.5956 0.2967 0.0908

(α, λ, θ) → (0.7, 0.5, 0.5) (0.7, 1.6, 1.5) (0.7, 1.6, 2.5)

50 1.5141 0.7029 0.5075 1.4719 1.8578 1.5230 1.5725 1.8803 2.5346
4.4358 0.7941 0.1263 4.552 1.2110 0.3800 5.2958 1.2553 0.6355
1.5795 0.8625 0.1957 1.5251 0.5269 0.1967 1.6656 0.5406 0.1975

100 1.3351 0.6632 0.4974 1.2923 1.7848 1.4982 1.4450 1.8164 2.4838
3.6671 0.6911 0.1012 3.8406 1.0201 0.3005 4.2214 1.0754 0.5137
1.2460 0.7013 0.1528 1.1877 0.4165 0.1501 1.3992 0.4269 0.1523

150 1.1256 0.6121 0.4987 1.0566 1.7266 1.4971 1.2184 1.1778 2.4779
2.9534 0.5669 0.0841 2.5628 0.8228 0.2474 3.1269 0.9301 0.4434
0.9055 0.5509 0.1241 0.8068 0.3350 0.1226 1.0327 0.3608 0.1293

(Continued)
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Table 1 (continued)

n α λ θ α λ θ α λ θ

(α, λ, θ) → (0.1, 0.5, 0.5) (0.1, 0.5, 1.5) (0.1, 1.2, 0.5)

200 1.0145 0.5887 0.4984 1.0047 1.7126 1.4948 1.0113 1.7155 2.4858
2.3841 0.4989 0.0746 2.4321 0.7464 0.2218 2.2830 0.7586 0.3716
0.7220 0.4772 0.1090 0.7055 0.2979 0.1095 0.7122 0.2995 0.1091

Table 2: The AV-CLs for 95% ACIs of α, λ and θ

n α λ θ α λ θ α λ θ

(α, λ, θ) → (0.1, 0.5, 0.5) (0.1, 0.5, 1.5) (0.1, 1.2, 0.5)

50 0.6398 1.6286 0.2888 0.4501 1.5871 0.8745 0.6675 4.3819 0.2438
100 0.4366 0.9167 0.1933 0.3436 0.8953 0.5931 0.4720 2.2415 0.1705
150 0.3712 0.6272 0.1626 0.2990 0.6644 0.4963 0.4158 1.6898 0.1504
200 0.3520 0.5294 0.1542 0.2699 0.4933 0.4217 0.3767 1.3960 0.1370

(α, λ, θ) → (0.3, 0.8, 0.8) (0.3, 1.2, 1.5) (0.3, 1.6, 2.5)

50 0.5462 0.7186 0.5815 0.4617 1.2692 1.1405 0.3509 1.2701 1.8358
100 0.3766 0.4567 0.3843 0.3346 0.7653 0.7495 0.2430 0.8869 1.2782
150 0.3061 0.3577 0.3065 0.2734 0.6031 0.5935 0.2036 0.7296 1.0769
200 0.2700 0.2970 0.2635 0.2397 0.4736 0.4829 0.1724 0.5984 0.8662

(α, λ, θ) → (0.5, 0.5, 0.8) (0.5, 0.8, 1.5) (0.5, 1.6, 2.5)

50 0.4802 0.3169 0.6563 0.5882 0.4514 1.3570 0.3967 0.8468 2.1047
100 0.3484 0.2384 0.4952 0.4186 0.3152 0.9789 0.2739 0.6045 1.5690
150 0.2783 0.1952 0.3957 0.3287 0.2537 0.7459 0.2232 0.5058 1.3428
200 0.2446 0.1764 0.3568 0.2908 0.2236 0.6775 0.1903 0.4388 1.1480

(α, λ, θ) → (0.7, 0.5, 0.5) (0.7, 1.6, 1.5) (0.7, 1.6, 2.5)

50 0.3924 0.3150 0.5406 0.4856 0.7322 1.4961 0.4695 0.6705 2.5082
100 0.2705 0.2503 0.4005 0.3476 0.5040 1.0909 0.3268 0.4647 1.8220
150 0.2333 0.2277 0.3589 0.2832 0.4254 0.9454 0.2502 0.3844 1.5078
200 0.2000 0.2112 0.3252 0.2473 0.3814 0.8705 0.2123 0.3497 1.4222

6 Engineering Applications

To show how our proposed model works in practice, in this section we present the analysis of two
real data sets from engineering science for illustrative purposes. The first data set (denoted by Data-I)
consists of 40 observations of the active repair times for airborne communication transceiver, see [22].
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Figure 4: Plot of the RMSEs, RABs (left-panel) and CLs (right-panel) of α, λ and θ

The second data set (denoted by Data-II) represents the failure times of 84 Aircraft Windshields and
been obtained from [23]. The values of both data sets I and II are arranged with ascending order and
reported in Table 3.

Table 3: The failure times of communication transceiver and aircraft windshields

Data Failure times

I 0.50, 0.60, 0.60, 0.70, 0.70, 0.70, 0.80, 0.80, 1.00, 1.00,
1.00, 1.00, 1.10, 1.30, 1.50, 1.50, 1.50, 1.50, 2.00, 2.00,
2.20, 2.50, 2.70, 3.00, 3.00, 3.30, 4.00, 4.00, 4.50, 4.70,
5.00, 5.40, 5.40, 7.00, 7.50, 8.80, 9.00, 10.2, 22.0, 24.5

II 0.040, 0.301, 0.309, 0.557, 0.943, 1.070, 1.124, 1.248, 1.281, 1.281,
1.303, 1.432, 1.480, 1.505, 1.506, 1.568, 1.615, 1.619, 1.652, 1.652,
1.757, 1.866, 1.876, 1.899, 1.911, 1.912, 1.914, 1.981, 2.010, 2.038,
2.085, 2.089, 2.097, 2.135, 2.154, 2.190, 2.194, 2.223, 2.224, 2.229,
2.300, 2.324, 2.385, 2.481, 2.610, 2.625, 2.632, 2.646, 2.661, 2.688,
2.823, 2.890, 2.902, 2.934, 2.962, 2.964, 3.000, 3.103, 3.114, 3.117,
3.166, 3.344, 3.376, 3.443, 3.467, 3.478, 3.578, 3.595, 3.699, 3.779,
3.924, 4.035, 4.121, 4.167, 4.240, 4.255, 4.278, 4.305, 4.376, 4.449,
4.485, 4.570, 4.602, 4.663

First, to identify the shape of the HRF of MAPTW distribution, we shall consider a graphical
method, given by [24], based on the total time on test (TTT) plot. However, the scaled TTT transform
based on both observed data sets I and II is given by
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Gn (m/n) = (∑m

i=1 z(i) + (n − m) z(m)

)
/
∑n

i=1 z(i), m = 1, 2, . . . , n, where z(i) is the ith order statistic of
the observed sample. Graphically, the scaled TTT transform is displayed by plotting (m/n, Gn(m/n)).
Using both data sets I and II in Table 3, plots of the empirical and estimated scaled TTT-Transform
of the MAPTW distribution are provided in Fig. 5. It shows that the TTT plot for the data sets I and
II is convex and concave, respectively. So, the failure rate shape for the Data-I set decreases while it for
the Data-II set increases.
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Figure 5: Empirical and estimated scaled TTT-transform plot of the MAPTW distribution

To monitored the applicability and flexibility of the MAPTW distribution, we compare fit the
MAPTW distribution to both data sets I and II with several other competitive models exhibiting
various hazard rates, namely: alpha power transformed generalized-exponential (APTGE), alpha
power exponential (APE), APW, generalized-exponential (GE), Nadarajah-Haghighi (NH), gamma
(G) and Weibull (W) distributions. The corresponding PDFs of the competing models (for x > 0) are
listed in Table 4.

Table 4: Some competing lifetime models of the MAPTW distribution

Model PDF Author(s)

W θλxθ−1 exp(−λxθ ) [25]
G (λθ/�(θ))xθ−1 exp(−λx) [26]
GE θλ(1 − e−λx)θ−1 exp(−λx) [27]
NH θλ(1 + λ ∗ x)θ−1 exp(1 − (1 + λx)θ) [28]
APE λ log(θ) exp(−λx)θ (1−exp( − λx))/(θ − 1) [14]
APW λθ log(α)xθ−1 exp(−λxθ )α1−exp(−λxθ )/(α − 1) [8]
APTGE λθ log(α)α(1−exp(−λx))θ exp(−λx)(1 − exp(−λx))θ−1/(α − 1) [15]

To show the feasibility and validity of the MAPTW model along with other seven competing
models, several goodness-of-fit measures namely; estimated negative log-likelihood (NL), Akaike
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information criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information
criterion (BIC) and Hannan-Quinn information criterion (HQIC) are considered. Based on both data
sets I and II, the selection criteria as well as the MLEs along with their standard errors (SEs) of the
model parameters are calculated and provided in Table 5. It shows that the MAPTW distribution
has the smallest values of NCL, AIC, CAIC, BIC, HQIC, K-S and the highest P-value. Moreover,
Fig. 6 shows graphically the quantile-quantile (QQ) plots of all competitive distributions for given
data sets. Furthermore, the relative histograms of both data sets and the fitted densities, as well as
the fitted/empirical survival functions, are plotted in Fig. 7. It can be seen from Figs. 6 and 7, that the
graphical presentations support the same numerical findings presented in Table 5. Thus, the proposed
MAPTW distribution provides the best fit, for the given data sets, than the APTGE, APTW and
other popular lifetime distributions. Since the empirical HRFs of the two data sets are decreasing and
increasing, respectively, and most of the competitive models such as Weibull and APW distributions
can model such HRFs, the results show that the MAPTW distribution provides a better fit for the two
engineering applications in terms of goodness of fit statistics. This is because the MAPTW distribution
has a very flexible HRF with different shape behaviour as well as a flexible PDF, especially for skewed
data. To sum up, we recommend the use of MAPTW for real practical purposes.

Table 5: The MLEs(SEs) and selection criteria of the MAPTW distribution and other competing
models

Model Estimate (SE) NL AIC CAIC BIC HQIC KS (P-value)

α θ λ

Data-I

MAPTW 0.0599(0.0387) 1.6043(0.1847) 0.0052(0.0040) 91.761 189.52 190.19 194.59 191.35 0.1136(0.681)
APTGE 0.0434(0.0741) 1.3722(0.2458) 0.1539(0.0724) 92.937 191.87 192.54 196.94 193.71 0.1345(0.464)
APW 0.0282(0.0527) 1.1866(0.1375) 0.0698(0.0396) 93.472 192.94 193.61 198.01 194.77 0.1239(0.570)
APE - 0.0175(0.0975) 0.0798(0.1136) 94.448 192.90 193.22 196.27 194.12 0.1504(0.326)
GE - 1.1138(0.2446) 0.2677(0.0561) 95.458 194.92 195.24 198.29 196.14 0.1584(0.268)
NH - 0.7095(0.1764) 0.4556(0.2186) 94.745 193.49 193.81 196.87 194.71 0.1456(0.365)
W - 0.9604(0.1089) 3.9271(0.6872) 95.511 195.02 195.35 198.40 196.24 0.1290(0.518)
G - 1.0615(0.2101) 0.2646(0.0663) 95.532 195.06 195.39 198.41 196.28 0.1507(0.324)

Data-II

MAPTW 6.0494(6.6481) 1.2419(0.4767) 0.8456(0.8135) 128.29 262.58 262.88 269.87 265.51 0.0762(0.713)
APTGE 78.609(83.751) 1.8663(0.5869) 1.0131(0.0972) 131.18 268.35 268.65 275.64 271.28 0.0704(0.799)
APW 23.887(36.364) 1.5881(0.3198) 0.3736(0.2026) 128.53 263.07 263.37 270.36 265.99 0.0673(0.841)
APE - 85.771(43.101) 0.8121(0.0612) 274.53 272.58 272.72 277.44 274.53 0.1186(0.188)
GE - 3.5605(0.6110) 0.7579(0.0769) 139.84 283.68 283.83 288.54 285.64 0.1209(0.171)
NH - 33.663(26.334) 0.0083(0.0066) 143.79 291.58 291.72 296.44 293.54 0.2570(0.001)
W - 2.3747(0.2096) 2.8630(0.1375) 130.05 264.11 264.25 269.97 266.06 0.0536(0.969)
G - 3.4923(0.5125) 1.3655(0.2166) 136.94 277.87 278.02 282.74 279.83 0.1035(0.329)
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Figure 6: The QQ plots of MAPTW distribution and its competing models for Data-I and Data-II
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Figure 7: Histogram and fitted densities (left panel), empirical and fitted survival functions (right
panel) of MAPTW distribution and some competing models

7 Conclusion

In this paper, we have offered a fresh version of Weibull distribution named the modified alpha
power transformed Weibull distribution. The proposed distribution is acquired by taking the Weibull
distribution as the baseline distribution in the modified alpha power transformed method. Some
properties of the new distribution are derived. The hazard rate function of the new distribution
can take different shapes possessing decreasing, increasing, bathtub and upside-down then bathtub
shaped. Accordingly, it can be viewed perfectly effectively in modelling lifetime data. Via the maximum
likelihood method, the point and interval estimates of the model parameters are evaluated. The
performance of the point and interval estimates is assessed through a simulation study. The simulation
yields verified that the estimates are asymptotically unbiased and consistent. In addition, two real data
sets to active repair times for airborne communication transceiver and the failure times of aircraft
windshields are investigated. From the empirical results, we can conclude that the new distribution
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provides a more adequate fit than some known distributions including gamma, Weibull and alpha
power Weibull distributions. For future work, it is of interest to study the proposed distribution under
different censoring schemes including Type-II and progressive Type-II censoring. Another future work
is to investigate the Bayesian estimation of the unknown parameters of the suggested model.

Acknowledgement: The authors would like to thank the Editor, Assistant Editor and Reviewers for
their constructive recommendations which assisted us to improve the manuscript. The authors extend
their appreciations to Princess Nourah bint Abdulrahman University Researchers Supporting Project
No. (PNURSP2022R50), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding Statement: This research was funded by Princess Nourah bint Abdulrahman University
Researchers Supporting Project No. (PNURSP2022R50), Princess Nourah bint Abdulrahman Uni-
versity, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
1. Mudholkar, G. S., Srivastava, D. K., Friemer, M. (1995). The exponentiated weibull family: A reanalysis of

the bus-motor-failure data. Technometrics, 37, 436–445. DOI 10.1080/00401706.1995.10484376.
2. Mudholkar, G. S., Srivastava, D. K., Kollia, G. D. (1996). A generalization of the weibull distribution with

application to the analysis of survival data. Journal of the American Statistical Association, 91(436), 1575–
1583. DOI 10.1080/01621459.1996.10476725.

3. Xie, M., Lai, C. D. (1996). Reliability analysis using an additive weibull model with bathtub-shaped failure
rate function. Reliability Engineering & System Safety, 52(1), 87–93. DOI 10.1016/0951-8320(95)00149-2.

4. Carrasco, J. M., Ortega, E. M., Cordeiro, G. M. (2008). A generalized modified weibull distribution for life-
time modeling. Computational Statistics & Data Analysis, 53(2), 450–462. DOI 10.1016/j.csda.2008.08.023.

5. Cordeiro, G. M., Ortega, E. M., Nadarajah, S. (2010). The kumaraswamy weibull distribution
with application to failure data. Journal of the Franklin Institute, 347(8), 1399–1429. DOI
10.1016/j.jfranklin.2010.06.010.

6. Saboor, A., Bakouch, H. S., Khan, M. N. (2016). Beta sarhan-zaindin modified weibull distribution. Applied
Mathematical Modelling, 40(13–14), 6604–6621. DOI 10.1016/j.apm.2016.01.033.

7. Abouelmagd, T. H. M., Al-mualim, S., Elgarhy, M., Afify, A. Z., Ahmad, M. (2018). Properties of the
four-parameter weibull distribution and its applications. Pakistan Journal of Statistics, 33, 449–466.

8. Nassar, M., Alzaatreh, A., Mead, M., Abo-Kasem, O. (2017). Alpha power weibull distribution: Prop-
erties and applications. Communications in Statistics-Theory & Methods, 46(20), 10236–10252. DOI
10.1080/03610926.2016.1231816.

9. Shakhatreh, M. K., Lemonte, A. J., Moreno–Arenas, G. (2019). The log-normal modified weibull
distribution and its reliability implications. Reliability Engineering & System Safety, 188, 6–22. DOI
10.1016/j.ress.2019.03.014.

10. Shakhatreh, M. K., Lemonte, A. J., Cordeiro, G. M. (2020). On the generalized extended exponential-
weibull distribution: Properties and different methods of estimation. International Journal of Computer
Mathematics, 97(5), 1029–1057. DOI 10.1080/00207160.2019.1605062.

11. Abd El-Monsef, M. M. E., Marei, G. A., Kilany, N. M. (2022). Poisson modified Weibull distribution with
inferences on stress-strength reliability model. Quality & Reliability Engineering International, 38(5), 2649–
2669. DOI 10.1002/qre.3096.

https://doi.org/10.1080/00401706.1995.10484376
https://doi.org/10.1080/01621459.1996.10476725
https://doi.org/10.1016/0951-8320(95)00149-2
https://doi.org/10.1016/j.csda.2008.08.023
https://doi.org/10.1016/j.jfranklin.2010.06.010
https://doi.org/10.1016/j.apm.2016.01.033
https://doi.org/10.1080/03610926.2016.1231816
https://doi.org/10.1016/j.ress.2019.03.014
https://doi.org/10.1080/00207160.2019.1605062
https://doi.org/10.1002/qre.3096


CMES, 2023, vol.135, no.3 2089

12. Nassar, M., Afify, A. Z., Dey, S., Kumar, D. (2018). A new extension of weibull distribution: Properties
and different methods of estimation. Journal of Computational & Applied Mathematics, 336, 439–457. DOI
10.1016/j.cam.2017.12.001.

13. Nassar, M., Afify, A. Z., Shakhatreh, M. K., Dey, S. (2020). On a new extension of weibull distribution:
Properties, estimation, and applications to one and two causes of failures. Quality & Reliability Engineering
International, 36(6), 2019–2043. DOI 10.1002/qre.2671.

14. Mahdavi, A., Kundu, D. (2017). A new method for generating distributions with an application to
exponential distribution. Communications in Statistics-Theory & Methods, 46(13), 6543–6557. DOI
10.1080/03610926.2015.1130839.

15. Dey, S., Alzaatreh, A., Zhang, C., Kumar, D. (2017). A new extension of generalized exponential
distribution with application to ozone data. Ozone: Science & Engineering, 39(4), 273–285. DOI
10.1080/01919512.2017.1308817.

16. Dey, S., Nassar, M., Kumar, D. (2019). Alpha power transformed inverse lindley distribution: A distribution
with an upside-down bathtub-shaped hazard function. Journal of Computational & Applied Mathematics,
348, 130–145. DOI 10.1016/j.cam.2018.03.037.

17. Eghwerido, J. T., Nzei, L. C., Agu, F. I. (2021). The alpha power gompertz distribution: Characterization,
properties, and applications. Sankhya A, 83(1), 449–475. DOI 10.1007/s13171-020-00198-0.

18. Alotaibi, R., Okasha, H., Rezk, H., Nassar, M. (2021). A new weighted version of alpha power transforma-
tion method: Properties and applications to COVID-19 and software reliability data. Physica Scripta, 96,
125–221. DOI 10.1088/1402-4896/ac2658.

19. Henningsen, A., Toomet, O. (2011). maxLik: A package for maximum likelihood estimation in R. Compu-
tational Statistics, 26(3), 443–458. DOI 10.1007/s00180-010-0217-1.

20. Elshahhat, A., Elemary, B. R. (2021). Analysis for xgamma parameters of life under type-II adaptive
progressively hybrid censoring with applications in engineering and chemistry. Symmetry, 13(11), 2112.
DOI 10.3390/sym13112112.

21. Elshahhat, A., Aljohani, H. M., Afify, A. Z. (2021). Bayesian and classical inference under type-II censored
samples of the extended inverse gompertz distribution with engineering applications. Entropy, 23(12), 1578.
DOI 10.3390/e23121578.

22. Jorgensen, B. (1982). Statistical properties of the generalized inverse gaussian distribution. New York, USA:
Springer.

23. Murthy, D. N. P., Xie, M., Jiang, R. (2004). Weibull models. Wiley, Hoboken: Wiley Series in Probability &
Statistics.

24. Aarset, M. V. (1987). How to identify a bathtub hazard rate. IEEE Transactions on Reliability, 36, 106–108.
DOI 10.1109/TR.1987.5222310.

25. Weibull, W. (1951). A statistical distribution function of wide applicability. Journal of Applied Mechanics,
18(3), 293–297. DOI 10.1115/1.4010337.

26. Johnson, N., Kotz, S., Balakrishnan, N. (1994). Continuous univariate distributions, 2nd ed. New York: John
Wiley & Sons.

27. Gupta, R. D., Kundu, D. (2001). Generalized exponential distribution: Different method of estimations.
Journal of Statistical Computation & Simulation, 69(4), 315–337. DOI 10.1080/00949650108812098.

28. Nadarajah, S., Haghighi, F. (2011). An extension of the exponential distribution. Statistics, 45(6), 543–558.
DOI 10.1080/02331881003678678.

https://doi.org/10.1016/j.cam.2017.12.001
https://doi.org/10.1002/qre.2671
https://doi.org/10.1080/03610926.2015.1130839
https://doi.org/10.1080/01919512.2017.1308817
https://doi.org/10.1016/j.cam.2018.03.037
https://doi.org/10.1007/s13171-020-00198-0
https://doi.org/10.1088/1402-4896/ac2658
https://doi.org/10.1007/s00180-010-0217-1
https://doi.org/10.3390/sym13112112
https://doi.org/10.3390/e23121578
https://doi.org/10.1109/TR.1987.5222310
https://doi.org/10.1115/1.4010337
https://doi.org/10.1080/00949650108812098
https://doi.org/10.1080/02331881003678678

	A Novel Modified Alpha Power Transformed Weibull Distribution and Its Engineering Applications
	1 Introduction
	2 The Modified Alpha Power Transformed Weibull Distribution
	3 Structure Properties
	4 Estimation of the Parameters
	5 Simulation Study
	6 Engineering Applications
	7 Conclusion


