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ABSTRACT

Auto-grading, as an instruction tool, could reduce teachers’ workload, provide students with instant feedback
and support highly personalized learning. Therefore, this topic attracts considerable attentions from researchers
recently. To realize the automatic grading of handwritten chemistry assignments, the problem of chemical notations
recognition should be solved first. The recent handwritten chemical notations recognition solutions belonging to
the end-to-end trainable category suffered from the problem of lacking the accurate alignment information between
the input and output. They serve the aim of reading notations into electrical devices to better prepare relevant e-
documents instead of auto-grading handwritten assignments. To tackle this limitation to enable the auto-grading
of handwritten chemistry assignments at a fine-grained level. In this work, we propose a component-detection-
based approach for recognizing off-line handwritten Organic Cyclic Compound Structure Formulas (OCCSFs).
Specifically, we define different components of OCCSFs as objects (including graphical objects and text objects),
and adopt the deep learning detector to detect them. Then, regarding the detected text objects, we introduce an
improved attention-based encoder-decoder model for text recognition. Finally, with these detection results and
the geometric relationships of detected objects, this article designs a holistic algorithm for interpreting the spatial
structure of handwritten OCCSFs. The proposed method is evaluated on a self-collected data set consisting of 3000
samples and achieves promising results.
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1 Introduction

Preparation and grading of tests are the key activities in instruction, which could reflect the
students’ cognitive level and provide sources for teachers to improve their teaching. To realize auto-
grading is meaningful as it has multiple functions such as reducing the workload of teachers, providing
immediate feed-backs to students and supporting highly personalized learning. It has been widely used
in subjects of English and Computer to grade English composition [1] and computer program [2,3].
This paper will be focused on automatic grading of handwritten chemistry assignments. Obviously,
handwritten chemical notations recognition is the preliminary technique.
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Handwriting recognition could be divided into online and offline two cases. In the online case,
the input is a sequence of stokes while the input is an image for the offline. The published works
regarding handwritten chemical notations recognition were mainly focused on the online case as more
information (time) is available compared to the offline case. However, the offline case could support
more application scenarios, such as auto-grading of chemistry paper tests. In daily study of chemistry,
examinations for a long time to come will still be based on paper tests. Thus, in this work, we expect to
solve the problem of offline handwritten OCCSFs recognition. This task is very challenging from two
respects: (1) Large intra-class variance. Handwritten cases contain deformations in size, shape, and
other variations. (2) Complex 2-dimensional structures. OCCSFs usually contain one or more rings
accompanied by multiple text chains. These features make the task become a tricky problem.

With the development of deep learning techniques, many landmark achievements were released
in the offline handwriting recognition field. Dominant methods belong to the end-to-end trainable
class including ones based on connectionist temporal classification (CTC) [4] and others based on
attention mechanism [5]. These methods achieved significant success on 1D text recognition [6] or
2D handwritten math expressions recognition tasks [7,8] owing to the strong capabilities of learning
robust feature representation and accessing the global contextual information. They usually take as
input an image of handwritten texts and output the sequence of labels directly. However, the accurate
alignment between the output sequence of labels and the input image is difficult to determine with the
existing approaches, which is important for auto-grading to diagnose errors or generate fine-grained
feed-backs.

Currently, the published solutions to handwritten chemical notations recognition serve only the
aim of reading notations into electrical devices to better prepare relevant e-documents instead of auto-
grading students’ assignments. The recent handwritten chemical notations recognition solutions [9]
belonging to the end-to-end trainable category suffered from the problem of lacking the accurate
alignment information between the input and the output. However, this accurate alignment informa-
tion is required in grading assignments to diagnose errors and generate feed-backs at a fine-grained
level. To tackle this limitation, we propose an auto-grading oriented approach for off-line handwritten
OCCSFs Recognition. OCCSFs, as a typical two dimensional graphics language, have a complex
spatial structure. Hand-drawn OCCSFs recognition is an appealing task as it exhibits big challenges
for the complex spatial structure and variable writing style. Fig. 1 presents some examples of offline
handwritten OCCSFs. In this work, we focus on OCCSFs with one or two ring structures. These types
cover almost all the OCCSFs appearing in K12 education. To obtain the accurate alignment between
the input and the output, we propose a components-detection-based approach for offline handwritten
OCCSFs recognition.

Figure 1: Samples of offline handwritten OCCSFs

Deep convolutional neural networks (DCNNs) [10] demonstrated excellent performance on
image classification tasks. It also boosted the developments in the object detection field, bringing
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on dramatic improvements on accuracy. Currently, CNN-based object detection algorithms generally
could be divided into two categories, being two-stage detectors and one-stage detectors. The two-stage
methods such as Faster-RCNN [11] firstly generate region proposals and then address detection as
a classification problem over region proposals. The one-stage methods like SSD [12,13], and YOLO
[14] skip the region proposal generation step and predict bounding boxes and confidences for multiple
categories directly. These one-stage methods have comparable performance with two-stage methods
and yet are faster [12].

OCCSFs contain both graphical components and text components. The idea proposed in this
work for handwritten OCCSFs recognition is to regard these components as different objects and
use object detection algorithms to detect them. Then with detection results and spatial relationships
between detected components, we analyse the structure. As the problem involves both graphical objects
and text objects detection, the common detectors SSD and YOLO are adopted both to detect the
predefined objects in OCCSFs. Next, the detected text components need to be recognized further.
As reported in [15], attention-based methods can achieve higher recognition accuracy than CTC-
based methods on isolated word recognition tasks, but perform worse on sentence recognition tasks.
Apparently, text components in chemical OCCSFs appearing in K12 are similar to words instead
of sentences. Thus we use an improved attention-based model for text components recognition by
mitigating the existing error accumulation problem. Finally, an algorithm is proposed for interpreting
the formula structure, which takes the detection results as input and outputs the interpretation results.
This work is an extended version of the paper [16] published in 2021 International Conference on
Engineering, Technology, and Education. Compared with [16], the work is extended from several
aspects. Firstly, component detection is improved by introducing YOLOv5. Secondly, text components
recognition is performed via integrating scheduled sampling into Decoupled Attention Network.
Thirdly, OCCSFs with multiple rings are considered in this paper.

The main contributions of this work are as follows:

• We propose an auto-grading oriented approach for off-line handwritten OCCSFs recognition,
which could output the final recognition results, as well as the accurate alignment between the
input and output. This accurate alignment information is indispensable for auto-grading to
diagnose errors or generate fine-grained feed-backs. The approach addresses the problem by
defining the different types of components as objects, then adopting object detection algorithms
to detect different components, next recognizing the text objects if exist and finally using the
detection results to interpret the structure.

• An improved attention-based model for text components recognition is proposed via mitigating
the existing error accumulation problem.

• Several metrics at the object level are defined to better analyze the effects of components
detection results on later structure interpretation.

• An off-line handwritten OCCSFs dataset which consists of 3000 samples is built and later will
be released freely for the research aim.

This article will explain the related works in Section 2. Section 3 introduces the built dataset and
Section 4 details the proposed approach. Section 5 gives the experimental details and results. Finally,
Section 6 concludes this work and puts forward some ideas for future work.
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2 Related Works

In this section, we review the literatures from three aspects, being chemical structure formulas
recognition, object detection and text recognition which are closely related to our work.

2.1 Chemical Structure Formulas Recognition
The data to be handled could be in print format or handwritten format. Further, handwriting data

could be again divided into on-line and off-line two cases. In the on-line case, the input is a sequence
of stokes while the input is an image for the off-line. Even though time information is not available
compared to the on-line case, the off-line case could support more application scenarios, such as the
auto-grading of chemistry paper tests.

Regarding chemical structural formulas recognition, the published works mainly focused on the
on-line case. In 2007, Ouyang et al. designed an on-line recognition system for hand-drawn chemical
diagrams [17]. The system used a trained classifier to locate and recognize chemical symbols, and
then generated the initial structure considering the spatial context. Finally, the system used chemical
knowledge to check the legitimacy of the interpreted structure and modified it if necessary. To
promote the work in [17], they proposed “ChemInk” [18] a real-time recognition system which used a
jointly trained conditional random field to combine multiple levels of visual features. The framework
accessed different levels of details to enhance the system robustness to noise and drawing variations,
thus improving the performance. Sadawi et al. [19] proposed a rule-based method where they used
rules to identify atoms and bonds and deal with possible ambiguities. Sun et al. proposed a free-
sketch recognition method [20] for chemical structural formulas. A dual-mode method was used to
distinguish character input and non-character input first. Then they adopted an attribute graph to
model sketched chemical structural formula and utilized domain knowledge to rectify the relationships
among elements.

The research on off-line chemical structure formulas recognition goes into two branches—the rule-
based category [21] and the end-to-end trainable category [9]. Bukhari et al. [21] proposed a system
to automatically analyse the printed 2-D chemical structures in document images using traditional
image processing techniques. The proposed recognition process consisted of a series of operations
(totally 9) based on open-source libraries such as OpenCV-3.3. However, with embedded algorithms
like Line Segment Detector and Hough Circle, it is difficult to deal with handwritten inputs which
have multi-variations. Literature [9] published an attention-mechanism-based method which translated
a bitmap image of a molecule directly into a SMILES—a machine-readable chemical format. This
deep-learning-based method has a stronger generalization capability compared to the rule-based
one. However, the accurate alignment between the output sequence of labels and the input image is
difficult to determine. Unfortunately, the alignment information is indispensable for auto-grading to
diagnose students’ errors and generate fine-grained feedback. Thus, to break these limitations to enable
auto-grading of handwritten chemical assignments at a fine-grained level, we propose a component-
detection-based approach for off-line handwritten OCCSFs recognition.

2.2 Object Detection
Before the era of CNNs, traditional object detection methods mainly consisted of three steps,

being region selection, feature extraction and classification. Deformable Part Model (DPM) [22] and
Selective Search [23] were two state-of-the-art methods.

In 2014, Girshick proposed the R-CNN [24] detection algorithm which is the first CNN-based
object detection algorithm achieving impressive results. This method combined selective search region
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proposals and CNN-based post-classification together. The subsequent research [11,25,26] improved
the quality of region proposal generation or post-classification stage alternatively. Post-classification is
costly and time-consuming as it needs to process thousands of image regions. SPPnet [25] speeded up
the R-CNN detection algorithm notably by introducing a spatial pyramid pooling layer between the
convolutional layer and fully connected layer to improve feature extraction. However, the training of
SPPnet was still a multi-stage pipeline, far away from being end-to-end. Fast R-CNN [26] strengthened
SPPnet again by proposing a single-stage training algorithm that jointly learned to classify object
proposals and refine their spatial locations. Faster R-CNN [11] improved the quality of proposal
generation by replacing selective search method with a region proposal network (RPN). Furthermore,
it proposed an alternative training method to integrate RPN with Fast R-CNN. In general, these
methods consist of region proposal generation and proposal classification and are named as two-stage
detectors.

Different from the above-mentioned two-stage detectors, YOLO [14] and SSD [12] discarded
region proposal generation step and predicted bounding boxes and confidences for multiple categories
directly, therefore possessing high speed. They were named as one-stage detectors. The common
understanding is that YOLO performs better on smaller objects and SSD performs better on larger
objects. Overall, one-stage detectors have comparable performance with two-stage methods and yet
possess high speed. Thus we propose a method for component detection of handwritten OCCSFs
based on the one-stage detectors. Both YOLO and SSD will be tested in our task to compare the
performances.

2.3 Text Recognition
The proposed methods for text recognition can be roughly divided into 2 classes, being

segmentation-based and segmentation-free. The segmentation-based methods [27–29] usually involve
segmenting characters, recognizing characters and combining the recognition results into the final
outputs. However, accurate character segmentation is very difficult, especially for the handwriting
input.

The segmentation-free methods encode the text input as a whole and decode the encoded features
directly into the sequence of labels in an end-to-end trainable manner. With the strong ability of visiting
global context information, this type of method achieved promising performance on a series of text
recognition tasks. Two representative methods were CTC-based and attention-based. In [6], a novel
neural network architecture was proposed, which integrated CNN (for feature extraction), RNN (for
sequence modelling) and CTC (for transcription) into a unified framework. The attention mechanism
was originally proposed in neural machine translation [5] and later was introduced into text recognition
[30,31]. Different neural network models were proposed to work as the encoder to encode an input text
image into a one-dimensional feature sequence [30,31] or a two-dimensional feature map [7]. The latter
one retained the vertical spatial information. The attention model learned to focus on a specific region
of the feature sequence or feature map at each time step. The conventional soft-attention mechanism
proposed in [5] was developed in later works [7,32] to achieve better alignments. The decoder outputted
the sequence of labels in an auto-regressive way. For the decoder module, the recurrent neural network
was the most widely used model.

As reported in [15], attention-based methods can achieve higher recognition accuracy than CTC-
based methods on isolated word recognition tasks, but perform worse on sentence recognition tasks.
The text components in chemical organic structure formulas appearing in K12 could be regarded as
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words instead of sentences, which do not contain vertical structures. Thus, in this paper, we adopt the
attention-based encoder-decoder model for text components recognition.

The typical attention-based method generates the target sequence of tokens one by one. It
predicts the current token depending on both the previous token and the feature currently focused.
Furthermore, the computation of the feature currently focused also depends on the previous token.
That means once there is a mistake happening in the historical decoding, the error could be propagated
quickly along the sequence via these dependencies. To tackle the limitations, Decoupled Attention
Network (DAN) was proposed in [33] which decoupled the dependency of the computation of the
feature currently focused on the previous token. It used a convolutional alignment module that
computed the focused weights of each time step based on visual features from the encoder only.
However, DAN solved this error accumulation problem of the attention-based model partially not
totally since the prediction of the current token still related to the previous token. At the training stage,
the ground-truth previous tokens are available but not available at inference. This discrepancy between
training and inference could lead to errors that propagate quickly along the sequence. Scheduled
sampling [34] was proposed by Google to mitigate this discrepancy. In this work, we combine DAN
and scheduled sampling to improve the attention-based model and then apply it for text components
recognition.

3 The Off-Line Handwritten OCCSFs Dataset

In this work, we focus on OCCSFs with one or two-ring structures. These types cover almost all
the OCCSFs appearing in K12 education. To our knowledge, there is no public offline handwritten
OCCSFs data set available yet. Thus a data set should be created first. We collected common
handwritten OCCSF images such as aromatic hydrocarbon, halogenated hydrocarbon, cyclohexane,
cyclohexene, xylene, trinitrotoluene and other derivatives. As this work aims for auto-grading even-
tually, some samples collected may not follow the chemical grammar rules. Totally, a data set was
built consisting of 2000 one-ring structure images and 1000 two-ring structure images. For the data
annotation, we labelled the collected samples by 4 predefined objects (benzene, ring, doublebond,
textchain. Details can be found in Section 4.1) and save the annotation information as VOC2007
format which is supported by both SSD and YOLO. Table 1 provides the statistics of the built data
set. According to these statistics, it is known that each sample contains 3.485 objects in average. Fig. 2
illustrates some collected samples (two-ring structures only).

Table 1: The statistics of the off-line handwritten OCCSFs dataset

Items No.

Objects 10455
benzene 3105
ring 897
doublebond 1689
textchain 4764
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Figure 2: Samples of two-ring structure

4 The Proposed Method

In this paper, we consider the idea of using deep learning object detector to locate and classify
the components in hand-drawn OCCSFs and interpreting the structure with the detection results.
Specifically, a components-detection-based method (as shown in Fig. 3) was proposed which includes
mainly 3 steps, being components detection, text components recognition and structure interpretation
respectively. In the coming paragraphs, we will introduce these 3 steps in detail.

Components 
detection

Structure 
interpretation

Text components 
recognition

Results

Figure 3: Illustration for the framework of the proposed method

4.1 Components Detection
We define 4 types of components as objects, namely benzene, ring, doublebond (bond2), textchain

shown in Fig. 4, with which the structure could be interpreted unambiguously. These 4 types of
components, not only have distinctive visual features considering the outlook but correspond to the
minimum knowledge units in chemistry domain. The former point could ease the burden of object
detector; the latter one could support auto-grading and personalized feedback generation at fine-
grained level which is meaningful for intelligent education. One point that needs to be noted is that only
a regular hexagon with a circle inside is annotated as benzene and the other cases are labelled as ring
no matter how many bonds are inside. As explained previously, we use one-stage detectors to locate
and classify the predefined graphical and text objects in OCCSFs. As verified by the experimental
results, YOLO is more friendly to our task than SSD. Thus, we introduce the main procedures of
components detection based on YOLOv5 which was initially released in 2020. As illustrated in Fig. 5,
YOLOv5 consists of three parts: backbone, neck and prediction. To improve the robustness of the
model, different data augmentation techniques are used first such as mosaic, random affine (scale
and translation), augment HSV, random horizontal flip. Then these images are adjusted into a fixed
size (such as 512 × 512) to be fed into YOLOv5’s backbone for feature extraction. The backbone of
YOLOv5 is mainly composed of CBS, CSP and SPPF, generating three feature maps of different scales.
Then, the neck which includes CBS, Upsample, Concat and CSP is adopted to fuse these feature maps.
Finally, the fused features will be sent to the prediction part to produce a diverse set of predictions.
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Figure 4: Illustration for the predefined objects
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Figure 5: The overall network structure of YOLOv5

4.2 Text Components Recognition
Different from the other 3 types of components, textchain need to be recognized further to

obtain the sequence of labels. In [35], an end-to-end trainable system was proposed for recognizing
handwritten chemical formulas. The proposed system adopted the CNN + RNN + CTC framework.
With the strategy of introducing additional labels, this framework could interpret the ‘subscript’ and
‘superscript’ existing in chemical formula. As stated in work [15], the attention-based method can
achieve a higher recognition accuracy than the CTC-based method on isolated word recognition tasks
and the text components in OCCSFs appearing in K12 are very similar to words. Therefore, we will
adopt the attention-based encoder-decoder model for text components recognition. However, the
classical attention-based encoder-decoder model suffers from the error accumulation problem. In [33],
a decoupled attention network was proposed which solves the error accumulation problem partially.
In this work, we combine DAN and scheduled sampling [34] to further mitigate the problem and then
apply the improved attention-based model for text components recognition.

The improved attention-based encoder-decoder model is composed of three major parts: encoder,
convolutional alignment module and text decoder with scheduled sampling. The details will be given
in the following paragraphs.
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4.2.1 Encoder

Resnet is adopted as the encoder to extract features from textchain components image regions. As
Fig. 6 shows, it stacks 23 residual blocks. The size and number of kernels we use are embedded in each
block.

Figure 6: The structure of encoder

4.2.2 Convolutional Alignment Module

This module takes a FCN-like architecture to compute the attention map directly, which is
different from the traditional attention mechanism where the computation of the features currently
attended depends on the previous token generated by the decoder. First, the features at each scale
extracted by the encoder are fed into the convolution stage which contains several down-sampling
convolutional layers; Then the deconvolution stage, by adding the feature in the corresponding
convolution layer, makes dense predictions per-pixel channel-wise. The number of channels equals
to the number of decoding steps.

4.2.3 Decoder with Scheduled Sampling

The decoder takes the feature map (from the encoder) and the attention map (from the convo-
lutional alignment module) as input and outputs the sequence of labels. During the procedure of
decoding, the decoder uses a GRU (gated recurrent unit) layer to model the contextual information.
As illustrated in Fig. 7, The current hidden state of GRU is determined by three sources: the previous
hidden state ht−1, the previous token yt−1 or gt−1 and the current context vector ct. The current hidden
state ht is computed as the following formula:

ht = GRU((et−1, ct), ht−1)) (1)

where et−1 is the embedding vector of the previous token yt−1 or gt−1. The computation of ct depends
on the encoded features and the attention map.

The previous token adopted being the ground truth token gt−1 or the decoded output yt−1 is decided
by scheduled sampling. We use εi to represent the probability of taking the ground truth token in the
ith mini-batch of the training phase. By intuition, εi should favor the ground truth token more at the
beginning as the model is not well trained yet and pay more attention to the decoded token since it is
the real case in the inference phase. To decrease εi from 1 to 0, different decay functions can be chose,
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being linear decay, exponential decay and inverse sigmoid decay. Here we provide the linear decay
function in detail. For more information, please refer to literature [34].

εi = max(εmin, k − c ∗ i) (2)

where εmin ∈ (0, 1) represents the minimum probability to use the ground truth label, and k, c are the
offset and slope of the decay, respectively.

Figure 7: Detailed structure of the decoder with scheduled sampling. gi represents the ground truth
label

4.3 Structure Interpretation
In this work, we focus on the task of multi-ring structure interpretation. Ideally, we can obtain the

accurate bounding boxes and categories of the predefined components in hand-drawn OCCSFs. With
these bounding boxes and categories information, the structure can be interpreted unambiguously via
analysing the spatial relationships between them. We introduce the proposed interpretation algorithm
in detail as follows.

4.3.1 Geometric Property of OCCSFs

The standard benzene structure is a regular hexagon with a circle or 3 bonds inside. There also
exist other cases where a regular hexagon is with 0, 1, 2 bonds inside [36]. No matter circle or bonds
are inside, no matter where the bonds are, a regular hexagon (ring) could be drawn in 2 formats, being
horizontal and vertical as shown in Fig. 8. Obviously, each hexagon (ring) has 6 vertices and 6 edges.
In some cases, the edge and the internal bond form a double bond together. If we link each vertex
and edge of the hexagon to the origin, 12 axes (6 vertex axes and 6 edge axes) could be obtained and
the angle between the adjacent axes is 30◦ . Being aware of chemical knowledge, we can conclude that
textchain is linked to the vertex axis and doublebond is on the edge axis.

Figure 8: The vertical (left) and horizontal (right) formats of the ring structures which have a circle
and 0 bond inside, respectively
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4.3.2 Interpretation Algorithm

Given the geometric property of OCCSFs, it is intuitive to consider using the angle offset
information between detected objects and standard formats to analyse the hand-drawn structure.
Motivated by this idea, we design a bottom-up hand-drawn OCCSFs interpretation algorithm which
analyzes the single-ring structure first, then connects two interpreted rings.

With respect to the single-ring structure interpretation, we first take the geometric center of
detected benzene or ring object box as the origin to establish a rectangular coordinate system. Then
draw an axis every 30° generating 12 axes totally. As shown in Fig. 9, the printed formula is presented
with 12 axes. It can be seen that for the standard (printed) benzene structure, all doublebond objects
are on the short dashed lines representing edge axes of the vertical format, and all textchain objects
are more close to the long dashed lines representing vertex axes of the vertical format. We use the
angle offset between detected objects (doublebond, textchain) and 12 axes to identify the format of the
single-ring structure being horizontal or vertical. To achieve this, we propose a concept of angle offset
index (AOI). The definition of AOI is as follows:

AOI = S

(∑
i

�H
i −

∑
i

�V
i

)
(3)

where
∑

i �
H
i is the angle offset between the hand-drawn structure and the standard horizontal format.∑

i �
V
i is the angle offset between the hand-drawn structure and the standard vertical format. S(x) is

the sigmoid function. When the first offset is greater than the second offset, the output is >0.5, which
means that there is a high probability the structure is written in vertical format. Otherwise, the output
is <0.5 representing that the structure is more likely written in horizontal format.

S (x) = 1
1 + e−x

(4)

Next, we introduce how to compute the angle offset between the hand-drawn ring structure and
the standard format. �H

i denotes the angle offset between the ith object (doublebond or textchain) and
the standard horizontal format.

• If it is a textchain object, we compute the angle differences with 6 vertex axes of standard
horizontal format and take the minimum one as �H

i = min(θ
v
1, θ

v
2, θ

v
3, θ

v
4, θ

v
5, θ

v
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• If it is a doublebond object, we compute the angle differences with 6 edge axes of standard
horizontal format and take the minimum one as �H

i = min(θ
e
1, θ

e
2, θ

e
3, θ

e
4, θ

e
5, θ

e
6).

Figure 9: Printed formula is presented with 12 axes
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Each angle difference is calculated by measuring the angle between the line connecting two origins
(the origin of the detected benzene or ring box and the origin of the detected textchain or doublebond
box) and the corresponding axis. In the similar way, we can compute �V

i . In Fig. 10, the computation
process of �H

i and �V
i for a textchain object is illustrated, respectively. Among 6 angles, θ 1 is the

smallest one then we assign �H
i and �V

i with θ 1. Then the angle offsets of all the objects (textchain
and doublebond) are combined to compute angle offset index (AOI). With the resulting AOI, we can
determine the writing format being horizontal or vertical. Next step is to locate the textchain and
doublebond. To address this problem, we compute the angle differences between the component to be
located and 6 corresponding axes and find the minimum one to locate the component at the found axis.

Figure 10: Illustration for the computation process of �H
i (left) and �V

i (right) for a textchain object

When the single-ring structure is interpreted, the rest task is to connect two rings if exist. The
strategy we take is regarding one ring as textchain of the other ring and locating it with the same
method aforementioned. Algorithm 1 provides the whole process for structure interpretation.

5 Experiments
5.1 Components Detection
5.1.1 Experiment Settings

The off-line handwritten OCCSFs dataset is divided into the training set, validation set and test
set with the ratio of 6:2:2.

• GPU: Nvidia GeForce RTX 2080 Ti with 11G memory

• Library: Pytorch 1.9; CUDA 11.1

• Batch size: 16

• Learning rate: 0.01

• Learning rate decay: Cosine annealing
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5.1.2 Evaluation Metrics

In addition to the common evaluation metrics such as precision, recall and mAP in the field of
object detection, we define new metrics at the object level to better analyse the effects of components
detection results on later structure interpretation.

cor. = nc

n
wro. = nw

n
mis. = nm

n
(5)

where n denotes the number of objects of one category in the ground truth file, nc is the number
of objects correctly detected, nw is the number of objects wrongly detected (two types of errors: the
object is detected with the wrong label or detected by multiple times) and nm is the number of objects
undetected. Obviously, n = nc + nw + nm.

5.1.3 Results

In this section, we detail the components detection results using one-stage detectors, SSD and
YOLOv5. We first compare the performances of two detectors on our task with the metric of
mAP@0.5. As shown in Table 2, both SSD and YOLO v5 have nearly perfect performances on benzene,
ring and textchain detection. But YOLOv5 has achieved a higher mAP@0.5 on bond2 than SSD which
is consistent with the common conclusion that YOLO performs better on detecting smaller objects.

Algorithm 1: Structure Interpretation Algorithm
Input: detected boxes and their categories
Output: the interpretation results
1: Correlate textchain and double2 with the target benzene or ring via computing the minimum

Euclidean distance
2: for all benzene or ring ∈ objects do
3: Find benzene or ring object box and take the geometric center as the origin O(Ox,Oy).
4: Calculate the angle offset index (AOI)
5: for all textchain or double2 adhere to the selected benzene or ring do
6: if AOI > 0.5 then
7: if object.label == textchain then
8: � = min (the angle differences with 6 vertex axes of standard vertical format)

locate the object
9: else if object.label == bond2 then
10: � = min (the angle differences with 6 edge axes of standard vertical format)

locate the object
11: end if
12: else if AOI < 0.5 then
13: if object.label == textchain then
14: � = min (the angle differences with 6 vertex axes of standard horizontal format)

locate the object
15: else if object.label == bond2 then
16: � = min (the angle differences with 6 edge axes of standard horizontal format)

locate the object
17: end if
18: end if
19: end for

(Continued)
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Algorithm 1: (Continued)
20: end for
21: Connect two rings if required
22: Return the interpretation results

Table 2: Performance comparison of SSD and YOLOv5 on components detection task with the metrics
of precision (P), recall (R) and mAP@0.5

Detectors

Components SSD YOLOv5

P R mAP@0.5 P R mAP@0.5
benzene 0.995 1 0.994 0.998 0.998 0.995
ring 0.995 1 0.995 0.994 1 0.995
textchain 0.996 0.997 0.995 0.995 0.997 0.993
bond2 0.963 0.963 0.977 0.997 1 0.994
all 0.987 0.990 0.990 0.996 0.999 0.994

To deeply analyse the detection results from the point of view of structure interpretation, we also
give the detailed information with the proposed metrics in this work. Table 3 provides these interesting
data. From the statistics we can see that SSD misses around 4% bond2 components which will majorly
affect later structure interpretation step. Consequently, YOLOv5 is chosen as the components detector
in our work. Figs. 11 and 12 present some detection results using SSD and YOLOv5, respectively.

Table 3: Performance comparison of SSD and YOLOv5 on components detection task with the merics
of cor. wro. mis.

Object

Method benzene ring textchain bond2

cor. wro. mis. cor. wro. mis. cor. wro. mis. cor. wro. mis.
YOLOv5 0.998 0.002 0 1 0 0 1 0 0 1 0 0
SSD 1 0 0 1 0 0 0.995 0 0.005 0.957 0.003 0.040

5.2 Text Chain Recognition
5.2.1 Data set

There are 4764 textchain components in the off-line handwritten OCCSFs dataset which is in fact
very limited in terms of quantity, scope and sequence length. Text components of chemical organic
structure formulas look visually as same as chemical formulas, both composed of a sequence of
chemical symbols. In order to better evaluate the proposed improved attention-based encoder-decoder
model for text recognition, we use a larger handwritten chemical formulas dataset published in [35]
which consists of 12,224 samples covering 97 chemical formulas. The data is divided into the training
and test subset with the ratio of 8:2.
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Figure 11: Detection results using SSD

Figure 12: Detection results using YOLOv5

5.2.2 Experiment Settings

• GPU: Nvidia GeForce RTX 2080 Ti with 11 G memory

• Library: Pytorch 1.9; CUDA 11.1

• Batch size: 24

• Learning rate: 0.1

• Learning rate decay: 0.3162

5.2.3 Results

Table 4 provides the detailed results at character level and formula level of handwritten chemical
formulas recognition with different methods proposed in different literature [33,35,37]. As can be
seen, for the task of handwritten chemical formulas recognition, the vanilla attention-based method
[37] performs better than the CTC-based method [35] which is consistent with the conclusion in
[15] that attention-based methods can achieve higher recognition accuracy than CTC-based methods
on isolated word recognition tasks. When the decoupled attention [33] is introduced, the accuracies
increase again (96.70% → 98.61% at formula level) as it decouples the dependency of the computation
of the feature at current time step on the previous token in this way easing the problem of error
accumulation. Since the error propagation problem is not solved completely, we further integrate
scheduled sampling [34] into DAN to improve the model. From the statistics, we can tell that the
improved model performs better than DAN [33] which verifies the effectiveness of our method. Three



2282 CMES, 2023, vol.135, no.3

decay functions are tested in our task, among which linear decay performs better than the other two
functions. The best results are 99.62% at the character level and 98.92% at the formula level which are
quite fine.

Table 4: Performance comparison of the proposed methods for handwritten chemical formulas
recognition

Metrics

Methods Character level accuracy Formula level accuracy

[35]1 — 95.30%
[37]1 98.95% 96.70%
[33]2 99.40% 98.61%
Our method (Linear decay) 99.62% 98.92%
Our method (Exponential decay) 99.45% 98.51%
Our method (Inverse sigmoid decay) 99.56% 98.80%
Notes:

1
The results are extracted directly from the published literature.

2
The results are reproduced by us.

We use the proposed model to recognize the detected textchain components.

5.3 Structure Interpretation
As introduced in Algorithm 1, the interpretation algorithm takes detected boxes and their

categories as input and outputs the corresponding interpretation results. We respectively evaluate the
proposed algorithm on the single-ring and multi-ring samples from the test set. An overall accuracy
of 74.32% is achieved considering the errors from the components detection step, where 87.62% of
single-ring samples and 45.12% of multi-ring samples are correctly interpreted. It can be seen from
the statistics that the proposed algorithm performs well on single-ring samples. However, the result on
multi-ring samples is not ideal which could be caused by the conflict between the complex structures
of multi-rings and the limited representation capability of the proposed angle offset feature. In Fig. 13,
we present some interpreted samples including the correct cases, as well as some error cases to indicate
the directions to improve the structure interpretation algorithm in future works.

Overall, the proposed approach achieves a total accuracy of 73.52% for off-line handwritten
OCCSFs recognition on a self-collected data set.

Figure 13: (Continued)
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Figure 13: Illustration of some interpreted samples. (a) A correctly interpreted single-ring sample; (b)
A wrongly interpreted single-ring sample; (c) A correctly interpreted multi-ring sample; (d) A wrongly
interpreted multi-ring sample

6 Conclusion

In this work, we propose an auto-grading oriented approach for off-line handwritten OCCSFs
recognition. The proposed method firstly defines different components of OCCSFs as objects and
adopts the deep learning detector YOLOv5 to detect them. Then, for the detected text objects, we
introduce an improved attention-based encoder-decoder model for text recognition. Finally, a holistic
algorithm is designed for interpreting the single-ring structures. With the proposed method, the
accurate alignment information between the input and output is available which makes the auto-
grading of handwritten chemistry assignments at a fine-grained level possible.

At present, the structure interpretation algorithm works well for single-ring structures but has
limited performance on multi-ring samples. It could be caused by the conflict between the complex
structures of multi-rings and the limited representation capability of the proposed angle offset feature.
No doubt, low robustness, low generalization capability and limited representation capability are the
common problems of manually designed features. This weakness will be tackled by learning feature
representations automatically in future.
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