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ABSTRACT

Nonparametric (distribution-free) control charts have been introduced in recent years when quality characteristics
do not follow a specific distribution. When the sample selection is prohibitively expensive, we prefer ranked-set
sampling over simple random sampling because ranked set sampling-based control charts outperform simple
random sampling-based control charts. In this study, we proposed a nonparametric homogeneously weighted
moving average based on the Wilcoxon signed-rank test with ranked set sampling (NPHWMARSS) control chart
for detecting shifts in the process location of a continuous and symmetric distribution. Monte Carlo simulations
are used to obtain the run length characteristics to evaluate the performance of the proposed NPHWMARSS

control chart. The proposed NPHWMARSS control chart’s performance is compared to that of parametric and
nonparametric control charts. These control charts include the exponentially weighted moving average (EWMA)
control chart, Wilcoxon signed-rank with simple random sampling based the nonparametric EWMA control
chart, the nonparametric EWMA sign control chart, Wilcoxon signed-rank with ranked set sampling-based
the nonparametric EWMA control chart, and the homogeneously weighted moving average control charts. The
findings show that the proposed NPHWMARSS control chart performs better than its competitors, particularly
for the small shifts. Finally, an example is presented to demonstrate how the proposed scheme can be implemented
practically.
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1 Introduction

The statistical process control (SPC) toolkit collects various statistical tools used to monitor the
production and service processes. Control charts are one of the most important tools in the SPC toolkit
for detecting changes in process parameters (location and/or dispersion). There are numerous control
charts for efficient process monitoring in the SPC literature. Shewhart [1] introduced the basic control
charts, called the Shewhart control charts. These control charts are also known as memoryless control
charts because they only use current process information. Although the Shewhart control charts are
simple to design and implement, they are less sensitive for small to moderate shifts detection. The
other control charts that are more sensitive than the Shewhart control charts are the Cumulative
sum (CUSUM) control chart, introduced by Page [2], and the exponentially weighted moving average
(EWMA) control chart suggested by Roberts [3]. The CUSUM and EWMA control charts are also
called the memory control chart, as these control charts use both current and previous information
about the process.

Generally, it is assumed that the process often follows a specific distribution. When this assump-
tion is violated, the quality of these objects may be affected. Nonparametric (NP) control charts
are used in this scenario because they do not require the assumption of specified distribution. In
addition, the population variance is unnecessary when employing NP control charts to observe the
shifts in the process location. The sign (SN) and Wilcoxon signed-rank (SR) are commonly used NP
techniques in the control charts context. For instance, Yang et al. [4] studied the NP EWMA sign
(NPEWMA-SN) control chart for monitoring shifts in process location. Similarly, Graham et al. [5]
and Graham et al. [6] investigated single observation-based NP EWMA sign and NP EWMA
signed-rank control charts to monitor process location, respectively. Likewise, Chakraborty et al. [7]
introduced the generally weighted moving average SN (GWMA-SN) control chart to detect the process
location shifts. Later, Abid et al. [8] offered the ranked set sampling (RSS) based NP EWMA Wilcoxon
signed-rank (NPREWMA-SR) control chart for monitoring shifts in process location efficiently.
Moreover, Ali et al. [9] recommended NP control charts to detect location parameter changes. Also,
Ali et al. [9] designed the RSS-based NP EWMA SN (NPREWMA-SN) control chart for monitoring
shifts in process location.

The CUSUM and EWMA types schemes and modified versions are used for efficient process
monitoring. For instance, Lucas et al. [10] offered the combined Shewhart-EWMA (CS-EWMA)
control chart to enhance the shift detection ability in the process location. Similarly, Shamma et al. [11]
proposed a double EWMA (DEWMA) chart, outperforming the EWMA control chart in early
process location shifts detection. Likewise, Zhang et al. [12] introduced the DEWMA chart’s run length
(RL) features. They suggested that DEWMA and EWMA charts are equally beneficial for detecting
large shifts in process parameters. Later, Abbas et al. [13] and Zaman et al. [14] designed the mixed
EWMA-CUSUM (MEC) and mixed CUSUM-EWMA (MCE) charts, respectively, to efficiently
monitor process location shifts. Also, Anwar et al. [15] suggested auxiliary information-based (AIB)
MEC and MCE control charts for monitoring the process location parameter. For other CUSUM and
EWMA based studies, the readers are referred to the work of Adegoke et al. [16], Sanusi et al. [17],
Haq [18], Zaman et al. [19], Aslam et al. [20], Adeoti et al. [21], Anwar et al. [15], Abbasi et al. [22],
Rasheed et al. [23], Rasheed et al. [24], Anwar et al. [25], Liu et al. [26], and Rasheed et al. [27].

Hunter [28] noticed that the EWMA control chart assigns a higher weight to current observations
and less weight to prior observations of the process. Later, Abbas [29] proposed the homogeneously
weighted moving average (HWMA) control chart for observing shifts in process location. After that,
Abid et al. [30] introduced the mixed HWMA-CUSUM (MHC) control chart for monitoring shifts
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in the process location. Similarly, Adeoti et al. [31] advocated a hybrid HWMA (HHWMA) control
chart to detect the process location shifts. In addition, Abid et al. [32] offered the double HWMA
(DHWMA) control chart to observe process location shifts. They showed that the DHWMA control
chart has better detection ability than the HWMA control chart. Recently, Anwar et al. [33] suggested
an AIB DHWMA control chart for improved process location monitoring.

Simple random sampling (SRS) and perfect RSS are frequently used in SPC to monitor underlying
process data. These sampling techniques are commonly used with parametric and nonparametric
control charts. However, when actual measurements are difficult to obtain, or the cost of sampling is
prohibitively expensive, the RSS should be used instead of SRS. Ranking errors can impact estimator
performance and result in ambiguous estimates. Dell et al. [34] studied the impacts of inaccuracy
and imperfect RSS on the performance of mean estimators. They claim that the RSS mean estimator
remains unbiased when imperfect ranking is used and outperforms the SRS estimator. Besides that,
the RSS’s efficiency remains higher than that of the imperfect RSS and SRS. Numerous NP HWMA
type control charts based on simple random sampling (SRS) are available. Still, according to the
author’s knowledge, no NP HWMA control chart based on perfect and imperfect RSS is present
in the literature. Capitalizing this research gap, this article introduces an NP HWMA SR control
chart with perfect and imperfect RSS (NPHWMARSS) for monitoring process location shifts for
continuous and symmetric distributions. The performance measures, such as average run length
(ARL), median run length (MDRL), and standard deviation of run-length (SDRL), are computed
under different distributions, including the normal, student’s t, contaminated normal (CN), Laplace,
and logistic distributions. Based on these performance measures, the proposed NPHWMARSS control
chart is compared to the competing control charts, such as EWMA, NPEWMA-SR, NPEWMA-SN,
NPREWMA-SR, and HWMA control charts. The comparison indicates the superiority of proposed
NPHWMARSS control chart over the competing control charts in small to moderate shift detection.

The remainder of the paper is structured as follows: Section 2 offers the proposed control chart’s
methodology and design and the competing control chart. Section 3 evaluates the IC and OOC
performance of the proposed NPHWMARSS control chart. Section 4 covers a comparative study of
the proposed NPHWMARSS chart, whereas Section 5 addresses a real-life application. Lastly, Section 6
provides the concluding remarks of the study.

2 Competing and Proposed Control Charts

This section explains the design structure of the proposed control chart and the competing control
charts. The competing control charts include EWMA, NPEWMA-SR, NPEWMA-SN, NPREWMA-
SR, and HWMA control charts. More details are included in the following subsections, given as
follows.

2.1 Classical EWMA Control Chart
Suppose X is the process characteristic that follows a normal distribution, i.e., X∼N (μ0 + δσ0, σ0).

Let X t = ∑n

i=1Xit/n be the t-th sample mean and St =
√∑n

i=1

(
Xit − X t

)2
/ (n − 1) be the t-th sample

standard deviation, so for the in-control (IC) situation, X t∼N
(
μ0, σ 2

0 /n
)

for t = 1, 2, . . .. Roberts [3]
introduced the classical EWMA control chart, which effectively identifies small to moderate shifts in
process location. The classical EWMA control chart is defined by the plotting statistic given as follows:

Et = ηX t + (1 − η) Et−1, (1)
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where η is a smoothing constant such that η ∈ (0, 1] and the initial value E0 = μ0. The control limits
are based on the statistic Et can be defined as follows:

LCL(EWMA)t = μ0 − Lσ0

√
η

n (2 − η)

{
1 − (1 − η)

2t
}

CL(EWMA)t = 0

UCL(EWMA)t = μ0 + Lσ0

√
η

n (2 − η)

{
1 − (1 − η)

2t
}

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (2)

The L is the control chart coefficient, and its value is determined so that IC ARL is equal to desired
pre-assumed value. The process is considered to IC if LCL(EWMA)t < Et < UCL(EWMA)t; otherwise, the
process is declared out of control (OOC).

2.2 NPEWMA-SR Control Chart
Graham et al. [6] suggested the SRS-based NP EWMA SR (NPEWMA-SR) control chart for

monitoring shifts in the process location. If R+
tq is the rank of the absolute deviation of observations

from true median M0, i.e.,
∣∣Xtq − M0

∣∣ for t = 1, 2, 3, . . . and q = 1, 2, 3, . . . , n, then the Wilcoxon signed
rank statistic is denoted as SR(SRS)t and can be defined as follows:

SR(SRS)t = ∑n

q=1sig
(
Xtq − M0

)
R+

tq, where sig
(
Xtq − M0

) =

⎧⎪⎨
⎪⎩

−1 if
(
Xtq − M0

)
< 0

0 if
(
Xtq − M0

) = 0
1 if

(
Xtq − M0

)
> 0

Bakir [35] and Abbas et al. [36] suggested that SR(SRS)t is linearly associated to signed rank statistic

T+
n by the relation, that is, SR(SRS)t = 2T+

n − n (n + 1)

2
. As a result, the mean and variance of SR(SRS)t are,

respectively, given as E
(
SR(SRS)t

) = 0 and var
(
SR(SRS)t

) =
(

n (n + 1) (2n + 1)

6

)
. The plotting statistic

of the NPEWMA-SR control chart is defined as follows:

ESR(SRS)t
= ηSR(SRS)t + (1 − η) ESR(SRS)t−1

, (3)

where ESR(SRS)0
= μ0. The control limits are based on E(SR(SRS)t) and var(SR(SRS)t) are as follows:

LCL(NPEWMA−SR)t = μ0 − L

√
η

2 − η

(
n (n + 1) (2n + 1)

6

)
CL(NPEWMA−SR)t = 0

UCL(NPEWMA−SR)t = μ0 + L

√
η

2 − η

(
n (n + 1) (2n + 1)

6

)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (4)

If the plotting statistic ESR(SRS)t
> UCL(NPEWMA−SR)t or ESR(SRS)t

< LCL(NPEWMA−SR)t, the underlying
process is considered OOC; conversely, the process is IC.

2.3 NPEWMA-SN Control Chart
Suppose Xt1, Xt2, . . . , Xtm denotes the tth (t = 1, 2, 3, . . .) rational sub-groups of independent obser-

vations from an undefined continuous distribution of the process characteristic. Let M0 denotes the
true IC median of the process, and Xtq − M0 represent all possible differences for t = 1, 2, 3, . . . and
q = 1, 2, 3, . . . , n. In this case, the sign statistic, i.e., SNt = sign

(
Xtq − M0

)
, indicate values of −1,

0, and 1, where the value −1 implies that the difference is smaller than M0, 0 (zero) if the difference
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is equal to M0 and 1 if the difference is greater than M0. The mean and variance of the statistic SNt

are E (SNt) = n (2p − 1) and var (SNt) = 4np (1 − p), respectively. Graham et al. [6] introduced the
NPEWMA-SN control chart by defining the plotting statistic E(SN)t, based on the statistic SNt given
as follows:

E(SN)t = ηSNt + (1 − η) E(SNt)t−1, (5)

where E(SN)0 = μ0.The control limits are based on E(SNt) and var(SNt) can be defined as follows:

LCL(NPEWMA−SN) = n (2p − 1) − L
√

η

2 − η
(4np (1 − p))

CL(NPEWMA−SN) = n (2p − 1)

UCL(NPEWMA−SN) = n (2p − 1) − L
√

η

2 − η
(4np (1 − p))

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (6)

The underlying process is said to be IC if LCL(NPEWMA−SN) < E(SN)t < UCL(NPEWMA−SN); otherwise,
the process under the NPEWMA-SN control chart is considered OOC.

2.4 NPREWMA-SR Control Chart
Abid et al. [8] recommended the RSS-based NP EWMA SR (NPREWMA-SR) control chart for

monitoring the process location shifts. When obtaining measurements for a variable of interest is both
expensive and complicated, RSS is desirable to SRS; however, ranking these measurements can be
accomplished using a extensively available and cost-effective ranking technique.

When measured values are deleterious or costly, but ranking findings is comparatively simple, the
RSS is effective [37]. The proposed structure based on RSS is a more efficient alternative to the usual
nonparametric control chart relying on Wilcoxon signed rank statistic. RSS involves the selection of a
simple random sample of size n from a particular population, followed by the ranking of the findings
by experts. The RSS is mostly defined in terms of perfect and imperfect ranking. The perfect and
imperfect ranking structures are similar in general. A correlation of one between the two variables is
required to achieve perfect ranking in any bivariate normal model where the variable of interest (X )
and the ranking variable (Y ) are used; otherwise, the ranking will be imperfect. The RSS sampling
technique, stating that RSS with sample size n is obtained from a quality variable Xtj(h). The suffixes t
(t = 1, 2, 3, . . .) used for sample number, j (j = 1, 2, . . . , n) for observations, and h (h = 1, 2, . . . , m)
represents the cycle number in RSS approach, respectively. The unit with the lowest rank is selected
for measurement. The remaining n − 1 findings are handed back to a population, and a new sample
of n is drawn. The experts rank the findings once more, and the second lowest is chosen, evaluated,
and the n−1 remaining findings are brought back. We continue the process m times, yielding a ranked
set sample with size r = nm. In this study, we assume m = 1 for a valid assessment of the proposed
control chart to the competitors, so r = nm, which is r = n.

Then, using RSS data from the hth cycle, the unbiased estimator of the population mean, as

defined by Takahasi et al. [38], is described as: X rss,h = 1
n

∑n

t=1Xtj(h), h = 1, 2, . . . , m. Then variance

of X rss,h is given by

var
(
X rss,h

) = 1
n

∑n

t=1
σ 2

tj , where σ 2
tj = E

[
Xtj − E

(
Xtj

)]2

Assume that the variable of interest X is difficult to measure and order, but that there is a linked
variable Y that is correlated with X (Dell et al. [34]). A variable Y can be utilised to obtain the rank
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of X in the following way: n2 bivariate units are chosen from the population and structured into n sets
of size n each. The X associated with the smallest Y is determined from the first set of size n. The
X associated with the second smallest Y is measured from the second set of size n. This process is
repeated until the X associated with the largest Y from the nth set is determined. The cycle is repeated
r times until nr Xs are evaluated. It should be noted that the variable X will be ranked with errors, i.e.,
Xtj, is the tth judgement order statistic from the tth set of size n in the hth cycle of size r. This is referred
to as imperfect ranked set sampling (IRSS). Suppose that (X , Y) has a bivariate normal distribution
and that the regression of X on Y is linear. Then, in the manner of Stokes [39], we can write

X = μX + γ
σX

σY

(Y − μY) + ε,

where Y and ε are independent, and ε has a mean of zero and a variance σ 2
X

(
1 − γ 2

)
, where γ is

the correlation between X and Y and μX , μY , σX , σY are the means and standard deviations of the
variables X and Y . Let Ytj(h) and Xtj(h) represent the tth smallest Y value and the corresponding X value
obtained from the tth set in the hth cycle, respectively. The above equation can be written as

Xtj(h) = μX + γ
σX

σY

(
Ytj(h) − μY

)+ εth

For the hth cycle, the unbiased estimator of the mean of the variable of interest X with ranking
based on the concomitant variable Y , i.e., using the IRSS method, can be written as

X irss,h = 1
n

n∑
t=1

Xtj(h), h = 1, 2, . . . , m

Then variance of X irss,h (see Stokes [39]) is given by

var
(
X irss,h

) = σ 2
X

n

[(
1 − γ 2

)+ γ 2

n

∑n

t=1
σ 2

Y(tj)

]
,

where σ 2
Y(tj) represents the variance of the tth order statistic from a sample of size n from the standard

normal distribution.

Different authors, like, Kim et al. [40], Abid et al. [8], and Abbas et al. [36] used the RSS-based
Wilcoxon signed-rank statistic to monitor shifts in the process location, defined as follows:

SRRSSt =
∑n

j=1

∑m

h=1
sign

(
Xtj(h) − θ0

)
R+

tj(h)
(7)

where θ0 is known as the IC median of the process. The mean and variance of SRRSSt statistic are

E(SRRSSt) = 0 and Var(SRRSSt) =
(

r (r + 1) (2r + 1)

6

)
� 2

0 , respectively. The quantity � 2
0 is used to

improve the efficiency of the control chart and can be defined as � 2
0 = 1 − 4

n

∑n

j=1

(
Fk (0) − 1

2

)2

. The

values of Fk(0) can be obtained by solving the following mathematical expression:

Fk (0) = r!
(j − 1) ! (r − j) !

∫ 0

−∞
F(t)j−1 (1 − F(t))r−j f (t)dt

One may consult [22] for further detail on the RSS approach.

The plotting statistic of the NPREWMA-SR control chart is defined as:

E(SRRSS)t = ηSR(RSS)t + (1 − η) E(SRRSS)t−1, (8)
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The initial value of the plotting statistic
(

E(SRRSS)0

)
is equal to zero. The mean and vari-

ance of this statistic are, respectively, defined as E
(

E(SRRSS)t

)
= 0 and Var

(
E(SRRSS)t

)
=

η

2 − η

(
1 − (1 − η)

2t
) (r (r + 1) (2r + 1)

6

)

� 2
0 . For a large value of t, the variance of E(SRRSS)t reduces to

η

2 − η

(
r (r + 1) (2r + 1)

6

)
� 2

0 . The

control limits for the NPREWMA-SR chart are given as follows:

LCLNPREWMA−SR = −L

√
η

2 − η

(
r (r + 1) (2r + 1)

6

)
� 2

0

CLNPREWMA−SR = 0

UCLNPREWMA−SR = +L

√
η

2 − η

(
r (r + 1) (2r + 1)

6

)
� 2

0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(9)

The process is considered to be IC when E(SRRSS)t < UCLNPREWMA−SR or E(SRRSS)t > LCLNPREWMA−SR;
otherwise, it goes OOC.

2.5 HWMA Control Chart
Abbas [29] designed the HWMA control chart to monitor the process location, which is defined

by the plotting statistic, given as follows:

Ht = ηX t + (1 − η) X t−1, (10)

where X t−1 is the mean of sample average of t−1 samples. The mean of the HWMA statistic is E (Ht) =
μ0, while its variance is defined by

var (Ht) =
η2σ 2

0

n
, if t = 1

η2σ 2
0

n
+ (1 − η)

2 σ 2
0

n (t − 1)
, if t > 1

⎫⎪⎪⎬
⎪⎪⎭ ,

The control limits of the HWMA control chart are defined as

LCL(HWMA)t =
μ0 − L

√
η2σ 2

0

n
, if t = 1

μ0 − L

√
σ 2

0

n

{
η2 + (1 − η)

2

(t − 1)

}
, if t > 1

LCL(HWMA)t =
μ0 + L

√
η2σ 2

0

n
, if t = 1

μ0 + L

√
σ 2

0

n

{
η2 + (1 − η)

2

(t − 1)

}
, if t > 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11)

The process is said to IC when LCL(HWMA)t < Ht < UCL(HWMA)t; elsewhere, it is considered OOC.
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2.6 Proposed NPHWMARSS Control Chart
This subsection explains the methodology and formulation procedure of the proposed RSS-based

NP HWMA control chart for process location shifts. The proposed control chart is labeled as the
NPHWMARSS control chart. The plotting statistic of the proposed NPHWMARSS control chart is
denoted by NPHt and defined as follows:

NPHt = ηSR(RSS)t + (1 − η) SR(RSS)t−1, (12)

The starting value of the statistic NPHt is equal to the IC mean of the process, i.e., NPH0 = μ0. The
μ0 should be specified value. The mean of the statistic NPHt is E (NPHt) = μ0, whereas its variance
is given as

var (NPHt) =
η2

(
r (r + 1) (2r + 1)

6

)
� 2

0 , if t = 1(
η2 + (1 − η)

2

t − 1

)(
r (r + 1) (2r + 1)

6

)
� 2

0 , if t > 1

⎫⎪⎪⎬
⎪⎪⎭ ,

As a result, the control limits of the NPHWMARSS chart are given as follows:

LCL(NPHWMARSS)t =
μ0 − L

√
η2

(
r (r + 1) (2r + 1)

6

)
� 2

0 , if t = 1

μ0 − L

√(
η2 + (1 − η)

2

t − 1

)(
r (r + 1) (2r + 1)

6

)
� 2

0 , if t > 1

CL(NPHWMARSS)t = μ0

UCL(NPHWMARSS)t =
μ0 + L

√
η2

(
r (r + 1) (2r + 1)

6

)
� 2

0 , if t = 1

μ0 + L

√(
η2 + (1 − η)

2

t − 1

)(
r (r + 1) (2r + 1)

6

)
� 2

0 , if t > 1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (13)

To detect the shifts in the process location, the proposed NPHWMARSS control chart is con-
structed by plotting the statistic NPHt against the control limits defined by Eq. (13). If NPHt >

UCL(NPHWMARSS)t or NPHt < LCL(NPHWMARSS)t, the process is considered OOC; otherwise, it is
deemed IC.

3 Performance Evaluation

The IC and OOC performances of the proposed NPHWMARSS control chart for monitoring
shifts in process location are presented in this section. Generally, we study the RL distribution and
its associated features to assess the behavior of the control chart. The average run length (ARL) is the
basic metric to evaluate control chart performance. It can be defined as the average number of sample
points plotted on the control chart before the control chart shows an OOC signal [41]. Mathematically
it is defined as ARL = ∑N

i=1RLi/N, where N is the size of simulation runs (see Almanjahie et al. [42]).
For the IC process, the control chart should have large ARL0 to avoid the false alarm, while for the
OOC process the ARL1 should be small for early shifts detection. For better performance of the
control chart, it is necessary that the ARL1 should be smaller than the other charts at a fixed value
of ARL0. In this study, the ARL0 is set on 500, with sample sizes n of 5 and 10. To investigate the
performance behavior of the proposed NPHWMARSS chart, various values of η ∈ (0.05, 0.10, 0.25,
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0.50) and δ ∈ (0, 0.025, 0.05, 0.075, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 2.50, 3.00, 5.00) are used.
Sometimes, the researcher may want to examine the chart’s performance across the entire range of
shifts, i.e., δmin < δ < δmax. In this case, a variety of performance measures, such as extra quadratic loss
(EQL), performance comparison index (PCI), and relative average run length (RARL) can be used.
Mathematically, these terms are defined as follows:

(i) EQL = (δmax − δmin)
−1
∫ δmax

δmin
σ 2ARL (δ) dδ, where ARL(δ) is the ARL at a specific shift (δ) and

δmin and δmax represents the minimum and maximum shift values, respectively.

(ii) PCI = EQL/EQLbenchmark. The PCI value for the benchmark chart is 1, and the PCI value for
all other charts is greater than 1.

(iii) RARL = (δmax − δmin)
−1
∫ δmax

δmin

ARL (δ)

ARLbenchmark (δ)
dδ, where δmax and δmin are the maximum and

minimum shift values, respectively. Also, ARL (δ) and ARLbenchmark(δ) are the ARL values of a
given control chart and the benchmark control chart at shift (δ), respectively. A benchmark
chart has a lower ARL at a particular point. The RARL value for the benchmark chart is
always one. If RARL is greater than one, the benchmark chart is assumed to be superior to
the competing chart. It is important to note that the EQL and RARL measures are calculated
by numerical integration (trapezoidal) for our study.

Subsection 3.1 offers the IC performance of the proposed NPHWMARSS control chart, while the
OOC performance of the proposed control chart is provided in Subsection 3.2.

3.1 IC Performance
This subsection addresses the design and implementation of the proposed NPHWMARSS control

chart is given in Subsection 3.1.1. Similarly, Subsection 3.1.2 covers the IC robustness of the proposed
NPHWMARSS control chart.

3.1.1 Design and Implementation

The design of the proposed NPHWMARSS control chart is based on the sample size n, smoothing
parameter, η, and control chart width L. The combinations of n and η are used to determine the
L value so that the ARL0 is approximately equal to its desired value. Further, the extensive Monte
Carlo simulations are used to implement the proposed NPHWMARSS control chart. An algorithm is
developed in statistical software R to approximate the run length distribution. The RL characteristics
are computed with the replicate of size 50,000. The simulation algorithm consists of the steps given as
follows:

(i) Generate a random sample from the underlying distribution.

(ii) Specify the design parameters, i.e., η and L.

(iii) Draw a sample from any distribution used in this study.

(iv) Compute the plotting statistic NPHt in Eq. (12).

(v) Find LCL(NPHWMARSS)t and UCL(NPHWMARSS)t from Eq. (13).

(vi) Plot NPHt against LCL(NPHWMARSS)t and UCL(NPHWMARSS)t along t.

(vii) If NPHt > UCL(NPHWMARSS)t or NPHt < LCL(NPHWMARSS)t, then stop the simulation and
calculate the sequence order RL. For instance, at t = 235, if NPHt > UCL(NPHWMARSS)t or
NPHt < LCL(NPHWMARSS)t, record 235 as a first RL.
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(viii) Repeat Steps (ii) to (vii) 50,000 times and calculate the ARL. Check whether it is desired ARL0;
otherwise, adjust constants accordingly in step (ii) and repeat from (ii) to (viii) steps until the
desired ARL0 obtained.

(ix) To compute ARL1 values, draw a shifted sample from the underlying distribution, and repeat
Steps (ii) to (ix).

3.1.2 IC Robustness

This Subsection highlights the proposed NPHWMARSS chart’s IC robustness when shifts are
reflected in the process location. The various distributions considered for this study, for instance, stan-

dard normal distribution, i.e., N(0, 1), double exponential or Laplace distribution, i.e., DE
(

0,
1√
2

)
,

heavy tail student’s t distribution, i.e., t(υ), logistic distribution i.e.,

(
0,

√
3

π

)
, contaminated normal

(CN) distribution, which is the mixture of N(0, σ 2
0 ) and N(0, σ 2

1 ) (see Table 1). USING NP CONTROL
CHARTS, the IC RL distribution and related properties are identical for all continuous and symmetric
distributions. Table 2 demonstrates the IC RL characteristics of the proposed NPHWMARSS control
chart for monitoring location shifts. These characteristics are computed under normal and non-
normal continuous symmetric distributions. The distributions mentioned above are reparametrized
to have zero mean/median and unit variance for performance comparison. The analysis indicates that
for a specified value of η, the IC RL remains the same for all considered distributions.

Table 1: PDFs of the continuous distributions used for this study

Distributions PDF

(i) Standard Normal f (X) =
(

e(−X2/2)

√
2π

)
, where M0 = 0 and σ 2 = 1

(ii) Student’s tv f (X) = (
� ((v + 1)/2) /

(
�(v/2)

√
vπ
))(

1 + (
X 2/v

))((v+1)/2)

,where M0 = 0 and σ 2 = (v/ (v − 2))

and v = 4, 8 are taken

(iii) Logistic f (X) = e(−πX)/
√

3/
((√

3/π
) (

1 + e(−πX)/
√

3
)2
)

, where

M0 = 0 and σ 2 = 3
π 2

(iv) Laplace f (X) = (1/2) e−|X |, where M0 = 0 and σ 2 = 1
2

(v) Contaminated Normal (CN) f (X) =
(

0.95e(−X2/2)/
√

2π
)

+
(

0.05e−(X2/2σ2
0 )/σ0

√
2π
)

,

where M0 = 0 and σ 2 = 0.95 + 0.05σ 2
0

Note: where XεR.
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Table 2: RL characteristics of the proposed NPHWMARSS control chart under different distributions
with nominal ARL0 = 500 and n = 10

δ

(η, L) Distr. Metrics 0 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1 1.5 2 2.5 3 5

(0.05, 2.011) Normal ARL 502.18 126.47 47.44 24.83 15.55 3.86 1.56 1.04 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 450.00 108.00 41.00 22.00 14.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 369.20 93.57 32.86 16.66 10.06 1.91 0.87 0.24 0.03 0.00 0.00 0.00 0.00 0.00

CN ARL 498.95 131.67 49.92 26.01 16.50 4.06 1.65 1.06 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 447.00 114.00 44.00 23.00 15.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 354.98 96.62 35.19 17.65 10.85 2.00 0.93 0.31 0.04 0.00 0.00 0.00 0.00 0.00

Laplace ARL 503.02 89.97 31.42 16.34 10.24 2.93 1.31 1.03 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 447.00 78.00 28.00 14.00 9.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 357.84 66.10 21.28 10.81 6.45 1.46 0.69 0.20 0.07 0.01 0.00 0.00 0.00 0.00

Logistic ARL 502.13 115.25 42.13 22.17 13.63 3.57 1.45 1.03 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 447.00 99.00 36.00 19.00 12.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 357.84 83.49 29.56 14.54 8.81 1.75 0.81 0.23 0.03 0.00 0.00 0.00 0.00 0.00

t(4) ARL 503.11 153.20 59.65 31.34 19.66 4.77 1.97 1.22 1.03 1.00 1.00 1.00 1.00 1.00
MDRL 449.00 130.00 52.00 27.00 17.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 361.52 115.04 42.01 21.93 13.15 2.47 1.07 0.59 0.23 0.02 0.03 0.00 0.00 0.00

t(8) ARL 500.36 138.20 53.18 28.35 17.56 4.24 1.74 1.10 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 437.00 115.50 46.00 25.00 16.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 369.84 105.14 36.77 19.05 11.45 2.15 0.98 0.40 0.08 0.00 0.00 0.00 0.00 0.00

(0.10, 2.268) Normal ARL 501.08 141.18 53.78 28.36 17.91 4.33 1.69 1.06 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 416.00 116.00 47.00 25.00 16.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 409.43 104.61 35.48 17.45 10.47 2.03 0.92 0.30 0.04 0.00 0.00 0.00 0.00 0.00

CN ARL 498.89 188.39 84.69 47.51 31.26 7.05 2.63 1.35 1.10 1.02 1.00 1.00 1.00 1.00
MDRL 401.00 123.00 49.00 27.00 17.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 392.85 106.58 37.05 18.45 11.47 2.12 0.97 0.36 0.06 0.00 0.00 0.00 0.00 0.00

Laplace ARL 499.36 100.25 35.70 18.93 11.97 3.22 1.42 1.05 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 409.00 84.00 32.00 17.00 11.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 401.09 72.33 22.59 11.48 6.81 1.50 0.76 0.27 0.08 0.00 0.00 0.00 0.00 0.00

Logistic ARL 500.14 129.12 47.66 25.23 15.93 3.92 1.58 1.05 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 409.00 108.00 41.00 22.00 14.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 401.09 94.77 31.64 15.46 9.24 1.78 0.86 0.25 0.06 0.00 0.00 0.00 0.00 0.00

t(4) ARL 498.01 169.35 66.27 36.09 22.57 5.34 2.19 1.28 1.05 1.00 1.00 1.00 1.00 1.00
MDRL 398.50 141.00 56.00 32.00 20.00 5.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 395.19 124.85 45.22 22.77 13.46 2.65 1.12 0.63 0.27 0.03 0.01 0.00 0.00 0.00

t(8) ARL 499.21 153.55 60.16 32.02 20.27 4.77 1.92 1.15 1.01 1.00 1.00 1.00 1.00 1.00
MDRL 400.50 125.00 52.00 29.00 18.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 400.94 119.02 39.91 19.71 11.99 2.23 1.02 0.46 0.14 0.00 0.00 0.00 0.00 0.00

(0.25, 2.378) Normal ARL 499.24 199.51 70.75 34.06 20.14 4.25 1.69 1.08 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 352.00 147.00 55.00 28.00 17.00 4.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 482.13 185.61 58.78 25.64 13.68 2.04 0.77 0.28 0.06 0.00 0.00 0.00 0.00 0.00

CN ARL 498.56 208.84 75.15 36.41 21.90 4.54 1.79 1.11 1.01 1.00 1.00 1.00 1.00 1.00
MDRL 349.00 156.00 58.00 30.00 18.00 4.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 483.77 187.55 62.66 27.27 15.57 2.17 0.80 0.32 0.08 0.00 0.00 0.00 0.00 0.00

Laplace ARL 501.64 142.64 44.83 21.23 12.98 3.12 1.40 1.06 1.01 1.00 1.00 1.00 1.00 1.00
MDRL 361.00 105.00 36.00 18.00 11.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 486.33 130.14 34.08 14.51 8.05 1.41 0.62 0.24 0.08 0.00 0.00 0.00 0.00 0.00

(Continued)
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Table 2 (continued)
δ

(η, L) Distr. Metrics 0 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1 1.5 2 2.5 3 5

Logistic ARL 501.43 186.92 61.84 29.98 17.59 3.82 1.56 1.07 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 361.00 137.00 48.00 24.00 15.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 486.33 171.10 50.74 22.06 11.73 1.79 0.71 0.25 0.06 0.00 0.00 0.00 0.00 0.00

t(4) ARL 498.26 234.05 90.27 44.46 26.26 5.45 2.09 1.29 1.06 1.00 1.00 1.00 1.00 1.00
MDRL 348.00 169.00 68.00 35.00 22.00 5.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 474.73 218.25 77.94 34.85 18.99 2.83 0.94 0.53 0.24 0.05 0.02 0.00 0.00 0.00

t(8) ARL 501.34 218.60 80.07 39.05 23.30 4.76 1.87 1.17 1.02 1.00 1.00 1.00 1.00 1.00
MDRL 363.00 156.00 61.00 32.00 19.00 4.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 501.18 202.78 68.13 29.45 16.61 2.36 0.85 0.41 0.13 0.00 0.00 0.00 0.00 0.00

(0.50, 2.374) Normal ARL 499.38 296.64 141.90 68.53 36.74 4.65 1.57 1.08 1.00 1.00 1.00 1.00 1.00 1.00
MDRL 325.00 211.00 99.00 48.00 27.00 4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 509.63 287.35 139.94 66.88 32.77 2.95 0.64 0.27 0.05 0.00 0.00 0.00 0.00 0.00

CN ARL 498.40 303.84 152.45 73.77 40.33 4.96 1.65 1.11 1.01 1.00 1.00 1.00 1.00 1.00
MDRL 325.50 220.00 105.50 52.00 30.00 4.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 517.20 287.35 152.63 71.42 36.83 3.31 0.68 0.31 0.11 0.00 0.00 0.00 0.00 0.00

Laplace ARL 498.13 247.80 88.85 38.50 19.86 3.13 1.35 1.06 1.01 1.00 1.00 1.00 1.00 1.00
MDRL 342.00 168.00 63.00 29.00 15.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 513.24 251.42 85.06 34.86 16.72 1.75 0.53 0.23 0.08 0.00 0.00 0.00 0.00 0.00

Logistic ARL 500.77 289.61 126.37 59.33 30.43 4.07 1.49 1.06 1.01 1.00 1.00 1.00 1.00 1.00
MDRL 337.00 198.00 92.00 42.00 23.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 529.29 288.03 119.37 55.71 26.59 2.52 0.60 0.23 0.07 0.02 0.00 0.00 0.00 0.00

t(4) ARL 499.39 320.80 173.31 89.89 49.88 6.34 1.96 1.27 1.06 1.00 1.00 1.00 1.00 1.00
MDRL 332.50 228.00 120.00 65.00 36.00 5.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 511.33 310.38 177.69 84.51 46.13 4.46 0.87 0.47 0.23 0.05 0.00 0.00 0.00 0.00

t(8) ARL 501.75 308.78 164.26 78.51 43.25 5.42 1.75 1.16 1.02 1.00 1.00 1.00 1.00 1.00
MDRL 339.50 221.00 112.00 57.00 31.00 5.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 534.91 302.47 166.64 73.80 39.90 3.55 0.75 0.37 0.14 0.00 0.00 0.00 0.00 0.00

3.2 OOC Performance
The design parameters of the proposed control chart used to determine OOC efficiency are

displayed in Table 2. In order to investigate the OOC performance of the proposed NPHWMA_RSS
control chart, numerous values of δ ∈ (0.025, 0.05, 0.075, 0.10, 0.25, 0.50, 0.75, 1.00, 1.50, 2.00, 2.50,
3.00, 5.00) are practiced. The ARL1 measures are used to compare the OOC performance of the
proposed and competing control charts.

Table 2, and Figs. 1–3 provide the following outcomes:

(i) The proposed chart’s IC RL distribution looks similar to all distributions examined in this
study (see Table 2).

(ii) As the smoothing parameter values increase, the performance of the proposed NPHWMARSS

control chart deteriorates. (see Fig. 1).

(iii) As the sample size increases, the shift detection ability of the proposed NPHWMARSS conrol
chart enhances. (see Fig. 2).

(iv) The proposed NPHWMARSS control chart gains better performance under the Laplace
distribution than the other distributions (see Fig. 3).



CMES, 2023, vol.135, no.3 2103

(v) The proposed chart’s ARL1 values increase as η increases at a certain size of the shift. For
instance, under normal distribution at η = 0.25, n = 10, and δ = 0.025, the ARL1 = 199.51,
whereas when η = 0.50, n = 10, and δ = 0.025, the ARL1 = 296.64 (see Table 2).

(vi) The RL distribution of the proposed NPHWMARSS control chart is positively skewed, as
ARL > MRDL (see Table 2).

(vii) The efficiency of the proposed control chart with perfect RSS outperforms the efficiency
of the proposed control chart with imperfect RSS. For example, with perfect RSS under
normal distribution at η = 0.10, n = 10, and δ = 0.025, 0.05, 0.075, 0.1, 0.25
the ARL measures are 141.18, 53.78, 28.36, 17.91, 4.33 whereas for imperfect RSS at
η = 0.05, n = 10, γ = 0.30, δ = 0.025, 0.05, 0.075, 0.1, 0.25 the ARL measures
are 286.98, 130.60, 75.72, 52.80, 12.71 (see Table 3). Similarly, with perfect RSS under
t-distribution at η = 0.10, n = 10, and δ = 0.025, 0.05, 0.075 the ARL measures are
153.55, 60.16, 32.02 whereas for imperfect RSS at η = 0.10, n = 10, δ = 0.025, 0.05, 0.075
and γ = 0.30 the ARL measures are 311.25, 155.76, 88.89 (see Table 4).

(viii) The ARL1 values of the proposed NPHWMARSS chart are smaller than competing charts with
different shift sizes in process location (see Fig. 4).

Figure 1: ARL characteristics of the proposed NPHWMARSS control chart for different values of η

when n = 10 and ARL0 = 500
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Figure 2: ARL characteristics of the proposed NPHWMARSS control chart when n = 5, 10 and
ARL0 = 500

Figure 3: (Continued)
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Figure 3: ARL characteristics of the proposed NPHWMARSS control chart under various distributions
when n = 10 and ARL0 = 500

Table 3: RL characteristics of the proposed control chart with imperfect ranked set sampling under
normal distribution at n = 10 and ARL0 = 500

δ

η, L γ Metrics 0 0.025 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.5 0.75 1 1.5 2

ARL 503.22 286.98 240.57 130.60 75.72 52.80 28.50 18.16 12.71 4.68 3.01 2.25 1.42 1.06
0.30 MDRL 392.00 223.00 180.00 103.00 64.00 44.00 25.00 16.00 11.00 4.00 3.00 2.00 1.00 1.00

SDRL 468.43 250.51 209.98 105.67 55.86 37.14 18.60 11.16 7.52 2.04 1.11 0.93 0.67 0.26
ARL 499.82 269.98 227.40 130.60 73.83 47.87 26.11 17.12 12.19 4.47 2.86 2.11 1.28 1.03

0.50 MDRL 395.50 216.00 187.50 106.00 62.50 40.00 23.00 15.00 11.00 4.00 3.00 2.00 1.00 1.00
0.10, 0.146 SDRL 414.40 220.74 184.91 99.76 51.47 34.81 16.79 10.76 7.07 1.85 1.06 0.94 0.57 0.19

ARL 498.53 242.88 218.82 114.88 65.66 42.44 22.21 14.35 10.09 3.85 2.41 1.71 1.09 1.01
0.70 MDRL 396.50 196.00 171.00 97.50 56.00 37.00 20.00 12.00 9.00 4.00 3.00 1.00 1.00 1.00

SDRL 405.83 196.22 181.43 84.26 45.16 26.44 13.61 8.83 5.57 1.50 1.01 0.83 0.33 0.08
ARL 501.68 204.92 165.07 81.86 45.38 28.37 15.48 10.11 6.96 2.73 1.61 1.13 1.00 1.00

0.90 MDRL 404.00 164.00 133.50 69.00 39.00 25.00 14.00 9.00 6.00 3.00 1.00 1.00 1.00 1.00
SDRL 385.02 157.71 128.65 58.18 29.52 17.93 8.70 5.47 3.50 1.18 0.83 0.42 0.04 0.00
ARL 498.74 331.22 294.20 162.40 98.42 65.62 30.66 19.25 13.07 4.53 2.76 2.11 1.52 1.21

0.30 MDRL 329.50 226.00 197.00 118.00 74.00 51.50 25.00 16.00 11.00 4.00 3.00 2.00 2.00 1.00
SDRL 502.90 336.37 309.30 159.22 87.72 55.53 23.43 13.28 8.08 2.18 1.02 0.73 0.53 0.41
ARL 500.42 327.91 297.51 163.35 97.75 62.07 29.80 18.34 12.17 4.23 2.69 1.97 1.32 1.06

0.50 MDRL 357.50 242.00 209.00 121.00 73.00 49.00 24.00 15.00 10.00 4.00 3.00 2.00 1.00 1.00
0.25, 0.153 SDRL 489.09 296.59 282.42 144.38 86.65 49.57 22.84 12.51 7.51 1.94 0.98 0.74 0.49 0.23

ARL 501.32 331.07 287.17 166.33 83.97 54.15 25.91 15.60 10.69 3.71 2.29 1.69 1.14 1.01
0.70 MDRL 347.00 226.00 215.00 124.00 65.00 42.00 21.00 13.00 9.00 3.00 2.00 2.00 1.00 1.00

SDRL 520.56 333.88 269.23 151.53 69.94 42.46 18.43 9.92 6.11 1.58 0.91 0.68 0.35 0.10
ARL 502.33 280.96 231.97 121.18 62.80 35.46 17.70 10.17 7.12 2.65 1.62 1.15 1.01 1.00

0.90 MDRL 359.50 212.00 164.00 93.50 49.00 29.00 15.00 9.00 6.00 3.00 2.00 1.00 1.00 1.00
SDRL 501.46 256.05 223.18 105.46 49.46 27.38 11.55 6.29 3.84 1.07 0.68 0.36 0.08 0.00

Note: γ is used to symbolise the correlation.
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Table 4: RL characteristics of the proposed control chart with imperfect ranked set sampling under t
distribution at n = 10 and ARL0 = 500

δ

η, L γ Metrics 0 0.025 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.5 0.75 1 1.5 2

ARL 501.62 311.25 249.58 155.76 88.89 60.13 33.29 20.60 14.63 5.29 3.25 2.48 1.66 1.20
0.30 MDRL 405.00 231.00 188.00 121.00 71.00 51.00 28.00 18.00 13.00 5.00 3.00 3.00 1.00 1.00

SDRL 464.47 285.31 220.21 132.93 69.64 42.24 22.97 12.13 8.87 2.45 1.22 1.00 0.82 0.51
ARL 503.04 290.08 255.91 146.17 81.45 56.94 29.88 19.57 13.61 4.94 3.09 2.31 1.48 1.14

0.50 MDRL 375.00 222.50 201.50 117.00 65.50 48.00 27.00 17.00 12.00 4.50 3.00 3.00 1.00 1.00
0.10, 0.145 SDRL 453.48 249.66 215.80 114.61 62.75 38.17 18.64 12.20 8.02 2.24 1.21 0.94 0.74 0.42

ARL 499.23 273.43 238.61 130.92 74.66 49.04 25.39 16.39 11.74 4.22 2.71 1.97 1.25 1.05
0.70 MDRL 406.00 219.50 189.00 107.00 62.00 42.00 23.00 15.00 11.00 4.00 3.00 2.00 1.00 1.00

SDRL 417.80 221.03 197.59 97.67 54.35 32.58 15.90 9.83 6.56 1.76 1.13 0.94 0.58 0.26
ARL 502.42 233.03 177.10 97.43 51.95 33.06 17.59 11.17 7.87 3.03 1.94 1.28 1.01 1.00

0.90 MDRL 396.00 186.50 146.00 85.00 45.00 29.00 15.00 10.00 7.00 3.00 2.00 1.00 1.00 1.00
SDRL 414.70 180.12 136.98 67.50 34.19 20.71 10.46 6.25 4.15 1.35 0.98 0.59 0.12 0.05
ARL 508.06 362.98 312.46 194.71 113.83 71.56 38.21 21.27 14.64 4.97 3.08 2.30 1.65 1.36

0.30 MDRL 353.00 239.50 220.00 140.00 86.00 56.00 30.00 18.00 13.00 4.00 3.00 2.00 2.00 1.00
SDRL 507.05 383.37 305.19 186.42 103.06 59.99 30.62 14.95 9.34 2.34 1.16 0.83 0.60 0.49
ARL 498.66 373.70 326.01 201.62 107.64 70.25 33.08 20.59 13.94 4.74 2.93 2.17 1.47 1.19

0.50 MDRL 350.00 271.50 243.00 145.00 80.00 56.00 25.00 17.00 12.00 4.00 3.00 2.00 1.00 1.00
0.25, 0.1575 SDRL 490.07 364.82 308.20 197.58 95.47 57.40 26.85 14.77 9.07 2.28 1.11 0.84 0.58 0.41

ARL 502.46 361.77 320.90 180.75 102.58 65.83 30.23 18.75 12.55 4.18 2.53 1.87 1.24 1.06
0.70 MDRL 347.50 270.50 227.50 135.00 77.00 50.00 24.00 16.00 11.00 4.00 3.00 2.00 1.00 1.00

SDRL 467.10 334.58 306.67 169.06 88.28 52.84 22.00 13.36 7.52 1.88 0.96 0.78 0.46 0.25
ARL 499.95 302.75 249.43 133.41 68.85 42.11 20.06 11.83 8.24 2.98 1.78 1.31 1.02 1.01

0.90 MDRL 356.50 210.00 184.00 98.00 54.00 33.00 17.00 10.00 7.00 3.00 2.00 1.00 1.00 1.00
SDRL 478.56 292.42 235.64 121.67 54.66 33.21 13.54 7.31 4.66 1.21 0.79 0.53 0.15 0.11

Note: γ is used to symbolise the correlation.

Figure 4: (Continued)
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Figure 4: ARL meaures of the proposed NPHWMARSS and competing control charts under various
distributions when n = 10 and ARL0 = 500

4 Comparative Study

This section compares the proposed chart against the competing charts, including EWMA,
NPEWMA-SR, NPEWMA-SN, NPREWMA-SR, and HWMA control charts. The comparisons are
given in the following subsection.

4.1 Proposed vs. EWMA Control Chart
The ARL1 comparison for the proposed NPHWMARSS control chart against the EWMA control

chart indicates that the proposed control chart outperforms the EWMA control chart. For example,
under normal distribution, when η = 0.05, n = 10 and δ = 0.025, 0.05, 0.075, 0.10, 0.25, 0.50, 0.75, the
ARL1 values of the proposed NPHWMARSS control chart, i.e., 126.47, 47.44, 24.83, 15.55, 3.86, 1.56,
1.04, are smaller than the ARL1 values of the EWMA control chart, i.e., 325.27, 157.51, 84.87, 52.28,
10.93, 3.49, 1.91 (see Tables 2 and 5). Similarly, when we consider Laplace distribution for comparison,
we observed the same behavior as the proposed NPHWMARSS control chart.

Table 5: ARL characteristic of the EWMA control chart under different distributions with nominal
ARL0 = 500 and n = 10

δ

Distr. (η, L) 0 0.025 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.5 0.75 1 1.5 2

Normal 0.05. 2.641 499.91 325.27 278.92 157.51 84.87 52.28 25.79 15.86 10.93 3.49 1.91 1.34 1.02 1.00
t(4) 0.05, 2.662 502.82 334.16 288.38 164.12 88.65 54.36 26.78 16.37 11.11 3.53 1.92 1.33 1.02 1.00
CN 0.05, 4.162 499.14 423.12 395.08 285.25 180.06 118.71 60.67 36.16 24.37 7.43 3.80 2.42 1.35 1.07
Laplace 0.05, 2.646 498.03 327.27 283.82 158.87 85.97 53.20 26.23 15.94 11.00 3.50 1.91 1.33 1.02 1.00
Logistic 0.05, 2.645 499.62 330.21 281.76 157.97 85.42 52.68 25.97 15.92 10.87 3.47 1.90 1.33 1.02 1.00

For instance, with the same control chart properties, the proposed NPHWMARSS control chart
provides the ARL1 values of 89.97, 31.42, 16.34, 10.24, 2.93, 1.31, 1.03, while the EWMA control
chart delivers the ARL1 values of 327.27, 158.87, 85.97, 53.20, 11.00, 3.50, 1.91, respectively (see
Tables 2 and 5). Fig. 4 depicts the efficiency of the proposed control chart over the EWMA control
chart. Likewise, the proposed NPHWMARSS control chart outperforms the EWMA control chart
in terms of overall performance. As an illustration, in the case of normal distribution at η = 0.05
the EQL and RARL values of the proposed control chart are 1.41 and 1.00, while the EQL and
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RARL values of EWMA control chart are 1.67, 1.19 (see Table 6). These findings show that the
proposed NPHWMARSS control chart performs better than the EWMA control chart in detecting
process location shifts.

Table 6: Overall performance measures of the proposed and competing control charts

Control Charts
Distributions Proposed EWMA NPEWMA-SR NPEWMA-SN NPREWMA-SR HWMA

Normal EQL 1.41 1.67 5.86 5.42 1.55 1.76
RARL 1.00 1.19 4.16 3.85 1.20 1.25
PCI 1.00 1.69 4.35 4.59 1.10 1.84

CN EQL 1.41 2.48 5.91 5.55 1.51 −
RARL 1.00 1.75 4.19 3.93 1.20 −
PCI 1.00 3.06 4.37 4.61 1.19 −

Laplace EQL 1.39 1.67 5.74 5.09 1.41 −
RARL 1.00 1.20 4.13 3.66 1.11 −
PCI 1.00 1.98 4.30 4.04 1.21 −

Logistic EQL 1.40 1.67 5.80 5.26 1.52 −
RARL 1.00 1.19 4.15 3.75 1.31 −
PCI 1.00 1.77 4.32 4.38 1.27 −

t(4) EQL 1.45 1.68 6.21 6.03 1.61 −
RARL 1.00 1.16 4.30 4.17 1.13 −
PCI 1.00 1.50 4.41 4.54 1.16 −

4.2 Proposed vs. NPEWMA-SR Control Chart
In comparison with the NPEWMA-SR control chart, the proposed NPHWMARSS control chart

indicates superior performance for all combinations of δ and η. For instance, in case of logistic
distribution, when n = 10, η = 0.05, and δ = 0.025, 0.05, 0.075, 0.10, 0.25, 0.50, 0.75, the proposed
NPHWMARSS control chart yields ARL1 values of 115.25, 42.13, 22.17, 13.63, 3.57, 1.45, 1.03, while
the NPEWMA-SR control charts has the ARL1 values of 322.05, 158.72, 89.31, 55.32, 15.24, 7.19,
5.20, respectively (see Tables 2 and 7).

Table 7: ARL characteristic of the NPEWMA-SR control chart under different distributions with
nominal ARL0 = 500 and n = 10

δ

Distr. (η, L) 0 0.025 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.5 0.75 1 1.5 2
Normal 0.05, 2.610 500.56 338.91 299.55 175.39 99.14 63.12 33.83 22.34 16.86 7.67 5.38 4.45 4.01 4.00
t(4) 0.05, 2.610 500.01 369.44 329.69 209.40 125.02 79.43 41.95 27.49 20.37 9.01 6.20 5.06 4.19 4.02
CN 0.05, 2.610 501.81 358.41 307.45 186.11 105.25 67.67 35.78 23.63 17.56 7.95 5.55 4.58 4.02 4.00
Laplace 0.05, 2.610 502.08 274.75 232.61 121.05 65.47 42.01 23.70 16.45 12.56 6.54 4.98 4.34 4.02 4.00
Logistic 0.05, 2.610 497.80 322.05 283.01 158.72 89.31 55.32 30.47 20.32 15.23 7.19 5.20 4.39 4.01 4.00

Similarly, when we examine t(4) distribution, with n = 10, η = 0.05 , and δ = 0.025, 0.10 0.25,
the ARL1 values of the proposed NPHWMARSS and the NPEWMA-SR control chart are 153.20,
19.66, 4.77, and 369.44, 79.43, and 16.86, respectively (see Tables 2 and 7). Table 6 shows that the PCI
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performance outperforms the NPEWMA-SR control chart. For example, the proposed control chart
has a PCI value of 1.00, whereas the NPEWMA-SR control chart has a PCI value of 4.37 under
the CN distribution (see Table 6). The efficiency of the proposed NPHWMARSS control chart to the
NPEWMA-SR control chart can also be observed in Fig. 4.

4.3 Proposed vs. NPEWMA-SN Control Chart
The ARL1 comparison reveals that the proposed NPHWMARSS control chart outperforms the

NPEWMA-SN control chart for all choices of η and δ (see Tables 2 and 8). In detail, for CN
distribution, with η = 0.05, δ = 0.075, 0.10, 0.25, the ARL1 values for the proposed NPHWMARSS

control chart are 26.01, 16.50, 4.06, while for the NPEWMA-SN control chart these values are
132.56, 85.70, 21.61, respectively (see Tables 2 and 8). Similarly, under normal distribution, at η =
5%, a 2.5% increase in process location parameter reduces the ARL by 24.76% for the NPEWMA-
SN control chart, while the NPHWMARSS reduces ARL by 74.81% (see Tables 2 and 8). Also, Fig. 4
also shows the superiority of the NPHWMARSS control chart over the NPEWMA-SN control chart.
Table 6 shows that the proposed control chart outperforms the NPEWMA-SN control chart in EQL
and PCI values under different distributions.

Table 8: ARL characteristic of the NPEWMA-SN control chart under different distributions with
nominal ARL0 = 500 and n = 10

δ

Distr. (η, L) 0 0.025 0.03 0.05 0.075 0.1 0.15 0.2 0.25 0.5 0.75 1 1.5 2

Normal 0.05, 2.612 498.65 375.18 337.56 215.79 127.74 82.71 44.10 28.69 20.91 9.00 6.03 4.78 3.65 3.15
t(4) 0.05, 2.612 499.56 384.51 353.97 230.05 139.92 91.23 48.60 31.31 22.83 9.81 6.57 5.23 4.08 3.56
CN 0.05, 2.612 498.13 382.16 340.34 222.10 132.56 85.70 45.88 29.61 21.61 9.26 6.19 4.89 3.74 3.23
Laplace 0.05, 2.612 499.22 249.33 207.01 104.53 57.02 37.48 21.85 15.56 12.19 6.57 5.01 4.29 3.58 3.22
Logistic 0.05, 2.612 497.04 352.00 309.11 186.43 105.09 68.34 36.09 23.92 17.70 8.01 5.55 4.53 3.59 3.18

4.4 Proposed vs. NPREWMA-SR Control Chart
The proposed NPHWMARSS control chart performs better than the NPREWMA-SR control

chart. For instance, at n = 10, η = 0.05, δ = 0.025, the NPREWMA-SR control chart with Laplace
distribution triggers the OOC signal after 94.56 observations, whereas the proposed NPHWMARSS

control chart produces the OOC signal after 89.97 observations (see Tables 2 and 9). Similarly, in the
case of CN distribution, when n = 10, η = 0.50 and δ = 0.025, 0.05, 0.25, 0.50, then the ARL1 values
for the proposed NPHWMARSS control charts are 131.67, 49.92, 4.06, 1.65, whereas the ARL1 values
for the NPREWMA-SR control charts are 149.06, 51.18, 4.67, and 1.89, respectively (see Tables 2
and 9 and Fig. 4). Furthermore, under t(8) distribution, at n = 10, η = 0.05, and δ = 0.025, 0.05,
the OOC ARL for the proposed NPHWMARSS and the NPREWMA-SR control chart are 138.20,
53.18, and 152.17, 54.38, respectively. It is also observed that the proposed control chart outperforms
the NPREWMA-SR control chart in terms of overall performance. For example, under Logistic
distribution, the RARL value of the proposed control chart is 1.00, while the RARL value of the
NPREWMA-SR control chart is 1.31 (see Table 6).
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Table 9: RL characteristics of the NPREWMA-SR control chart under different distributions at
η = 0.05, L = 2.01, n = 10 and ARL0 = 500

δ

Distr. Metrics 0 0.025 0.05 0.075 0.1 0.25 0.5 0.75 1 1.5 2 2.5 3 5

Normal ARL 498.93 140.45 49.45 26.08 17.38 4.19 1.84 1.09 1.01 1.00 1.00 1.00 1.00 1.00
MDRL 340.00 99.00 37.00 19.00 12.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 506.56 134.53 38.65 17.05 10.00 1.76 0.52 0.16 0.00 0.00 0.00 0.00 0.00 0.00

t(4) ARL 498.21 172.26 61.22 32.50 20.02 5.97 2.02 1.32 1.06 1.01 1.00 1.00 1.00 1.00
MDRL 336.00 120.00 47.00 24.00 15.00 4.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 512.96 168.00 51.86 23.07 12.97 2.29 0.71 0.33 0.14 0.00 0.01 0.00 0.00 0.00

t(8) ARL 499.17 152.17 54.38 30.46 18.88 5.21 1.87 1.19 1.02 1.00 1.00 1.00 1.00 1.00
MDRL 343.00 107.00 41.00 22.00 14.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 509.61 150.91 44.02 19.86 11.16 2.04 0.61 0.24 0.07 0.00 0.00 0.00 0.00 0.00

CN ARL 499.32 149.06 51.18 27.41 17.04 4.67 1.89 1.13 1.04 1.02 1.00 1.00 1.00 1.00
MDRL 336.50 107.00 38.00 20.00 13.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 504.65 141.93 41.37 18.19 10.84 1.91 0.55 0.19 0.04 0.00 0.00 0.00 0.00 0.00

Laplace ARL 501.56 94.56 33.72 17.80 11.09 3.01 1.40 1.10 1.04 1.01 1.00 1.00 1.00 1.00
MDRL 353.50 69.00 24.00 12.00 8.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 514.79 87.82 23.45 10.66 6.10 1.23 0.41 0.15 0.04 0.00 0.00 0.00 0.00 0.00

Logistic ARL 501.32 126.99 44.83 24.29 14.34 3.98 1.67 1.05 1.01 1.00 1.00 1.00 1.00 1.00
MDRL 353.50 91.00 33.00 17.00 10.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 514.79 124.04 32.53 14.82 8.67 1.59 0.47 0.16 0.02 0.00 0.00 0.00 0.00 0.00

4.5 Proposed vs. HWMA Control Chart
The proposed NPHWMARSS control chart outperformed the HWMA control chart in terms of

early shift detection in the process location. For example, investigating the normal distribution with
n = 10, η = 0.10, and δ = 0.025, 0.05, 0.075, the ARL1 values for the proposed NPHWMARSS

control chart are observed as; 141.18, 53.78, 28.36, whereas, the ARL1 values for the HWMA control
charts are reported as; 307.44, 152.37, 87.46, respectively (see Tables 2 and 10). Similarly, under normal
distribution, at n = 10, and η = 25% reduces the ARL by 124.65% in the HWMA control chart, with
a 7.5% increase in the process location parameter, whereas the NPHWMARSS control chart reduces
ARL by 34.06% (see Tables 2 and 10). The proposed control chart performs better than the HWMA
control chart in terms of overall performance. For example, under normal distribution, the PCI value
of the proposed control chart is 1.00, whereas the PCI value of the HWMA control chart is 1.84 (see
Table 6). In addition, Fig. 3 illustrates that the proposed NPHWMARSS control chart outperforms the
HWMA control chart.

Table 10: RL characteristics of the HWMA control chart under normal distribution at n = 10 and
ARL0 = 500

δ

η, L Metrics 0 0.025 0.05 0.075 0.10 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 5.00

0.05, 2.608 ARL 498.76 285.77 137.48 79.21 51.71 11.72 4.09 2.37 1.53 1.02 1.00 1.00 1.00 1.00
MDRL 435.00 240.00 116.00 68.00 45.00 10.00 4.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 370.24 222.41 103.36 58.08 37.20 7.51 2.12 1.27 0.89 0.20 0.01 0.00 0.00 0.00

0.10, 2.94 ARL 502.65 307.44 152.37 87.46 58.69 13.76 4.56 2.64 1.72 1.04 1.00 1.00 1.00 1.00
MDRL 410.00 243.00 126.00 74.00 51.00 12.00 4.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 413.84 252.31 113.91 62.28 39.55 7.95 2.22 1.27 0.94 0.25 0.02 0.00 0.00 0.00

(Continued)
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Table 10 (continued)

δ

η, L Metrics 0 0.025 0.05 0.075 0.10 0.25 0.50 0.75 1.00 1.50 2.00 2.50 3.00 5.00

0.25, 3.08 ARL 501.05 377.29 216.60 124.65 77.13 14.77 4.54 2.50 1.66 1.05 1.00 1.00 1.00 1.00
MDRL 356.00 268.00 156.00 94.00 60.00 13.00 4.00 3.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 495.12 364.10 203.26 108.69 64.43 9.58 2.29 1.15 0.80 0.23 0.03 0.00 0.00 0.00

0.50, 3.09 ARL 500.51 451.12 334.17 229.57 156.70 24.59 5.05 2.39 1.56 1.05 1.00 1.00 1.00 1.00
MDRL 350.00 316.00 232.00 162.00 110.00 19.00 4.00 2.00 1.00 1.00 1.00 1.00 1.00 1.00
SDRL 498.82 445.85 328.76 225.15 153.35 21.26 3.34 1.22 0.67 0.23 0.03 0.00 0.00 0.00

5 Illustrative Example Using Real Data

To demonstrate the applicability of the proposed NPHWMARSS control chart practically, a real-
life example is provided in this section. The example used the real-life data of the non-isothermal
continuous stirred tank reactor (CSTR) process. This real-life data are considered by numerous
authors in their studies, for instance, Lucas et al. [43], Yoon et al. [44], Shi et al. [45], Ridwan et al. [46],
and Adegoke et al. [47], etc. The CSTR process has nine variables, one of which we select as the variable
of interest (X), representing the output temperature, and this variable is used in real-life application
with parameters μX = 369.88 and σ 2

X = 0.32. The data initially consists of 1000 observations, with the
first 500 occurring when the process was in an IC condition. The estimation is carried out with the
help of the mentioned parameters, and the control limits are obtained. In order to use the proposed
control chart and the existing (NPREWMA-SR) control chart in practise, the variable of interest (X ),
is used. We used the RSS approach to generate 40 paired observations of size n = 5 and m = 1
from a normal distribution. After the 24th observation, a shift in the process mean is introduced.
The parameters of the proposed and NPREWMA-SR control charts used for real-life analysis are
L = 2.011, η = 0.05, ARL0 = 500 and L = 2.01, η = 0.05, ARL0 = 500, respectively.
Fig. 5 indicates that the proposed NPHWMARSS control chart triggers the first OOC signal at sample
number 27, while the NPREWMA-SR control chart detects the first OOC point at sample number
29. Similarly, the proposed NPHWMARSS control chart detects overall 14 OOC points, whereas the
NPREWMA-SR control chart detects 12 OOC points (see Table 11 and Fig. 5).

Figure 5: Real-life application of the proposed NPHWMARSS control charts against the NPREWMA-
SR control charts
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Table 11: Application of the proposed vs. NPREWMA-SR control chart

Proposed NPREWMA-SR
Sample # Statistic LCL UCL Statistic LCL UCL

1 0.15 −0.62 0.62 −0.15 −0.61 0.61
2 3.3 −11.82 11.82 −0.39 −0.84 0.84
3 5.85 −8.37 8.37 −0.22 −1.01 1.01
4 4.8 −6.84 6.84 −0.16 −1.14 1.14
5 3.85 −5.93 5.93 −0.1 −1.24 1.24
6 3.28 −5.31 5.31 −0.05 −1.33 1.33
7 2.7 −4.86 4.86 −0.2 −1.4 1.4
8 2.09 −4.5 4.5 −0.14 −1.46 1.46
9 2.15 −4.22 4.22 0.12 −1.52 1.52
10 2.37 −3.98 3.98 0.26 −1.57 1.57
11 2.43 −3.78 3.78 0.4 −1.61 1.61
12 2.28 −3.61 3.61 0.33 −1.65 1.65
13 2.21 −3.46 3.46 0.46 −1.68 1.68
14 2.17 −3.33 3.33 0.49 −1.71 1.71
15 2.09 −3.21 3.21 0.52 −1.73 1.73
16 1.91 −3.11 3.11 0.44 −1.76 1.76
17 1.93 −3.02 3.02 0.57 −1.78 1.78
18 1.99 −2.93 2.93 0.69 −1.8 1.8
19 1.85 −2.85 2.85 0.61 −1.81 1.81
20 1.7 −2.78 2.78 0.53 −1.83 1.83
21 1.67 −2.71 2.71 0.55 −1.84 1.84
22 2.03 −2.65 2.65 0.97 −1.85 1.85
23 2.15 −2.59 2.59 1.17 −1.86 1.86
24 1.77 −2.54 2.54 0.86 −1.87 1.87
25 2.09 −2.49 2.49 1.17 −1.88 1.88
26 2.39 −2.44 2.44 1.56 −1.89 1.89
27 2.44 −2.4 2.4 1.73 −1.9 1.9
28 2.44 −2.35 2.35 1.8 −1.9 1.9
29 2.76 −2.32 2.32 2.16 −1.91 1.91
30 2.97 −2.28 2.28 2.5 −1.91 1.91
31 3.47 −2.24 2.24 3.13 −1.92 1.92
32 3.35 −2.21 2.21 3.22 −1.92 1.92
33 3.4 −2.18 2.18 3.31 −1.92 1.92
34 3.85 −2.15 2.15 3.79 −1.93 1.93
35 4.11 −2.12 2.12 4.25 −1.93 1.93
36 3.97 −2.09 2.09 4.29 −1.93 1.93
37 3.9 −2.06 2.06 4.23 −1.94 1.94
38 3.87 −2.04 2.04 4.16 −1.94 1.94
39 4.05 −2.01 2.01 4.31 −1.94 1.94
40 4.13 −1.99 1.99 4.44 −1.94 1.94
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6 Summary, Conclusions, and Future Recommendations

The normality assumption for the process is essential for parametric control charts to monitor
process parameters (location and/or dispersion) shifts. If the process under consideration does not
follow a normal distribution, the nonparametric (NP) control charts are used. In addition, the
homogeneously weighted moving average (HWMA) control chart is introduced for improved process
location monitoring. Moreover, the ranked set sampling (RSS) technique outperforms simple random
sampling (SRS). This study proposed the NP HWMA control chart with the RSS scheme, which
results in an NP HWMA Wilcoxon signed-rank chart under the RSS technique (NPHWMARSS),
which is used to improve the shifts detecting ability in the process location. The performance of
the proposed chart is examined in terms of ARL, MDRL, and SDRL. The results revealed that
the proposed control chart performs better than the competing charts like EWMA, NPEWMA-SR,
NPEWMA-SN, NPREWMA-SR, and HWMA. Moreover, a real-life application is also offered to
show the proposed control chart’s applicability in practice. The proposed study can be extended to the
multivariate scenario.
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Appendix A

According to Kim et al. [40], for an in control process E(SR(RSS)t) = 0 and V(SR(RSS)t) =(
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A.3.
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SR(RSS)1, SR(RSS)2, . . . , SR(RSS)t−1 denotes the first (t − 1) samples and all these samples are
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Appendix B

B.1.

The mean of NPHt, i.e., E (NPHt) for an in control process is derived as
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B.2.

The variance of NPHt i.e., V (NPHt) for an in control process is derived as
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If t > 1 then
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