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ABSTRACT

We propose a novel computational framework that is capable of employing different time integration algorithms
and different space discretized methods such as the Finite Element Method, particle methods, and other spatial
methods on a single body sub-divided into multiple subdomains. This is in conjunction with implementing the well
known Generalized Single Step Single Solve (GS4) family of algorithms which encompass the entire scope of Linear
Multistep algorithms that have been developed over the past 50 years or so and are second order accurate into the
Differential Algebraic Equation framework. In the current state of technology, the coupling of altogether different
time integration algorithms has been limited to the same family of algorithms such as the Newmark methods and the
coupling of different algorithms usually has resulted in reduced accuracy in one or more variables including the
Lagrange multiplier. However, the robustness and versatility of the GS4 with its ability to accurately account for
the numerical shifts in various time schemes it encompasses, overcomes such barriers and allows a wide variety
of arbitrary implicit-implicit, implicit-explicit, and explicit-explicit pairing of the various time schemes while
maintaining the second order accuracy in time for not only all primary variables such as displacement, velocity
and acceleration but also the Lagrange multipliers used for coupling the subdomains. By selecting an appropriate
spatial method and time scheme on the area with localized phenomena contrary to utilizing a single process on the
entire body, the proposed work has the potential to better capture the physics of a given simulation. The method is
validated by solving 2D problems for the linear second order systems with various combination of spatial methods
and time schemes with great flexibility. The accuracy and efficacy of the present work have not yet been seen in the
current field, and it has shown significant promise in its capabilities and effectiveness for general linear dynamics
through numerical examples.

KEYWORDS
Time integration; structural dynamics; multiple scale and multiple methods; ordinary differential equations;
differential algebraic equations

1 Introduction

As numerical analysis is utilized in the various fields and applications, the desire for analyzing
complex problems more efficiently has grown. The Finite Element Method (FEM) is one of the most
widely used numerical analysis methods. While it features simplicity and versatility, it is susceptible to
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numerical errors such as shear locking and complexity in adopting it for large deformation problems
and the like.

Concurrently, the strong form based particle methods has been gaining interest in the field of
numerical simulations as the particle methods have the capability and flexibility for handling large
distortion, crack propagation and free surface detecting, etc. Some of the notable strong form particle
methods, Smoothed Particle Hydrodynamics (SPH) [1–4] and Moving Particle Semi-implicit Method
(MPS) [5,6], have been used to solve partial differential equations. Later, Silling et al. proposed a
nonlocal extension of classical continuum mechanics called peridynamics (PD) [7,8], which represents
spatial derivatives of field quantities in terms of internal interactions between points/particles via
integrals involving differences. The peridynamics model shows a comprehensive ability to solve
linear and nonlinear second order system problems and simulate structural dynamics and molecular
dynamics as well as multi-scale problems [9]. More recently, a mixed form representation of the strong
form particle method, where multiple primary variables are solved at once, is presented in [10]. Other
related works appear in references [11–14].

As problems become more complex, controlling the spatial discretization locally is a desirable
feature. While an area where fast dynamics are presented is discretized with high spatial resolutions,
a coarser mesh may be sufficient in the majority of the structure. In addition, the selection of spatial
methods in different parts of a body can also be an effective strategy such as by utilizing the FEM
for the majority of a body, and applying particle based methods only on an area where localized
phenomena such as crack or fracture may occur.

One of the ways to locally control spatial discretization is dividing a body into regions of
subdomains in which different methods can be applied in each subdomain. The challenge in using
subdomains is handling the interface condition between the subdomains, and over the years, numerous
coupling methods have been developed. Interface coupling is largely divided into two categories: over-
lapping and non-overlapping domain coupling. In the case of the overlapping domain decomposition,
a portion of the subdomains are overlapped and the shape function similar to the framework of the
FEM is used to constrain the common Degrees of Freedom (DOFs). However, the large difference
in each of the subdomain’s stiffness may lead to the global stiffness matrix to be ill-conditioned, as
noted by Orsini et al. in [15]. Moreover, Metsis et al. [16] implied that the weak form based domain
decomposition methods may be more prone to this issue due to the implementation of the Gaussian
integral.

On the other hand, the non-overlapping technique is more straight forward where the subdomains
are only connected by an edge or a surface in 2D or 3D, respectably, and are constrained by the
Lagrange multiplier at the interface. At the interface, usually the nodes/particles are overlapped;
however, Park et al. [17] and Brezzi et al. [18] introduced an approach where the subdomains are not
directly interacting but through an intermediate interface. This approach allows more flexibility in
meshing as one-to-one matching of the nodes is not required.

Implementing the different spatial discretization methods for localized phenomena has been a
study which has been explored for many years. The coupling of the FEM with molecular dynamics
via a bridging domain which enforces compatibility by utilizing the Lagrange multiplier is proposed
by Xiao et al. [19]. Alternately, the Discrete Element Method (DEM) [20] is a widely used mesh-
free method in the rock engineering simulation field and various FEM-DEM coupling methods have
been developed [21,22]. Utilizing the peridynamics method for localized phenomena such as crack
propagation is also a topic with extensive studies including coupling the FEM and the PD [23–25]. In
this work, one to one node/particle matching is used to simply demonstrate the concept of coupling
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different spatial methods and different time integration schemes unlike state of art which is limited to
just the spatial methods. We couple the FEM and particle methods with different time schemes for
each subdomain and such features are not feasible in the state of art.

There also has been high interest in coupling subdomains for transient analysis. Gravouil et al.
presented the GC method in [26], employing different time increments in subdomains using the limited
Newmark family of algorithms. However, it was later discovered that artificial numerical dissipation
arises at the interface resulting in the loss of energy and loss of second order accuracy in the GC
method.

Similarly, Pegon extended the GC method and proposed the PM method which employs an inter-
field parallel solution procedure to couple different subdomains [27,28]. Prakash et al. [29] developed
the PH method in order to alleviate the GC method’s energy issue by solving the interface at a large
time scale. The drawback of the PH method was described by Karimi et al. who stated in [30], that the
PH method can only apply to two subdomains. Karimi et al. [30] developed the subdomain DAE
framework for the Newmark family of algorithms. A noteworthy aspect of this work is that the
constrained continuous system in time is in fact a system of differential algebraic equations rather
than ordinary differential equations in time which most coupling methods have been based upon.
Nakshatrala et al. later applied the DAE approach to the Finite Element Tearing and Interconneting
(FETI) method based domain decomposition to solve time dependent first order systems with the
fourth order Nakshatrala et al. [31]. More recently, Shimada [32] integrated the Generalized Single
Step Single Solve (GS4) family of algorithms with the subdomain DAE framework using the FEM.
And, Maxam et al. [33] proposed an unified approach of the DAE-GS4 framework on thermoelastic
problems using the FEM. There exists interest in coupling different subdomains for transient analysis.
However, the current algorithm technology is very limited and does not permit features to interface
a wide variety of time algorithms and spatial methods. And, this is the focus of the advances and
contributions of this paper.

In this work, the subdomain DAE framework is particularly advanced to the Generalized Single
Step Single Solve (GSSSS or GS4) framework and family of algorithms developed by Tamma et al.
[34–37]. The versatility of the GSSSS family of algorithms in the treatment of numerical dissipation,
overshoot and ease of adapting to explicit methods, proves extremely useful to the subdomain
framework. In addition, the coupling of the FEM based on the weak form, and the generalized particle
method (GPS) based on the strong form is also presented in this work to demonstrate integrating
altogether different spatial methods as well. The coupling of different spatial and time discretization
methods may lead to more accurate computation as it allows the selection of the appropriate method
for a specific situation. The novel GS4 framework and its family of algorithms is a general purpose
structure. It encompasses the entire class of Linear Multistep (LMS) methods including those that
have been developed over the past 50 years or so and in addition, also includes new and advanced
optimal designs of algorithms, in 1st/2nd order systems that are second order time accurate and used
for commercial software to enable practical real word applications to be conducted. In addition,
under one umbrella, the frameworks inherit and have new and optimal algorithms and designs in
addition to existing methods such as Crank-Nicolson, Gear’s BDF, etc. for first order systems; and
new and optimal choices in second order systems as well in contrast to existing ones such as the
Newmark family, HHT, WBZ and the like. A particularly unique feature is that the framework
permits interfacing a wide variety of implicit-implicit, implicit-explicit, and explicit-explicit algorithm
designs in a single analysis unlike the existing methods which are limited and not capable of doing so;
in particular coupling of different implicit-implicit algorithms with/without controllable numerical
dissipation which is not feasible in the current state-of-the-art. This is a significant breakthrough
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and is capitalized herein. The generality, flexibility and robustness of the present computational
framework which embraces subdomain and time integration algorithms and differing spatial methods
fused into one is not possible with today’s traditional methods and technology that shows limitations
such as reduced order accuracy, consistency problems and the like in various field variables such as
displacement, velocity, acceleration and Lagrange multiplier. The present developments provide a wide
variety of choices to the analyst. In this work, we consistently preserve and maintain second order
time accuracy in all variables such as displacement, velocity and acceleration including the Lagrange
multipliers. In this paper, the FEM and GPS are first reviewed to explain the basics in integrating
different spatial methods as well as different time integration methods in a single analysis. Then in
the following section, the incorporation of the GS4 family of algorithms with the DAE framework is
investigated and validated through various numerical examples.

2 Finite Element Method

A brief overview of the finite element method is reviewed in this section for better understanding of
the various numerical examples and its methodology that are presented in a later section. In addition,
the objective is to get clarity of the computations involved in the calculations of the FEM integrals
and particle method integrals.

2.1 Finite Element Approximations
In the finite element method, a body of domain � is divided into numerous regions called

elements formed by connecting points known as nodes. The finite dimensional field variable such
as the displacement uh is approximated within each element by the basis functions. The most common
basis functions have the Kronecker delta δij property so that the nodal values û can be accurately
represented. The integration of the finite dimension is performed by summing up the integrals over
each element domain.∫

�

g(u)d� =
Nh∑
j=1

∫
�j

g(uh)d�j =
Nelem∑

j=1

∫
�j

g
(
Niûi

)
d�j (1)

where Ni are the elemental basis functions which varies for different types of element. The basis
functions for a commonly used 2D bilinear quadrilateral are given as follows:

u = Niûi = [
N1(ξ , η) N2(ξ , η) N3(ξ , η) N4(ξ , η)

] [
u1 u2 u3 u4

]T
(2)

where

N1 (ξ , η) = 1
4

(1 − ξ) (1 − η)

N2 (ξ , η) = 1
4

(1 + ξ) (1 − η)

N3 (ξ , η) = 1
4

(1 + ξ) (1 + η)

N4 (ξ , η) = 1
4

(1 − ξ) (1 + η) (3)

Quadrilateral elements with two Gauss points in each x and y direction will be used throughout
in the numerical example section.
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2.2 Weak Form Formulation for FEM
The equilibrium equation expressed in terms of the displacement can be written as (shown for 1D

as a simple illustration)

∂σ

∂x
+ bx = ρ

∂2u
∂t2

(4)

Next we introduce an arbitrary function w(x) that is defined in the domain � and multiply the
equilibrium equation.

g (w, u, σx) = w (x)

(
ρ

∂2u
∂t2

− ∂σ

∂x
− bx

)
= 0 (5)

Then we integrate over the domain to obtain an integral form that is set to zero.

G (w, u, σx) =
∫

�

w (x)

(
ρ

∂2u
∂t2

− ∂σ

∂x
− bx

)
dx = 0 (6)

The stress term is then integrated by parts as

−
∫

�

w (x)
∂σx

∂x
dx =

∫
�

∂w
∂x

σxdx − w (x) nxσx|	 (7)

where 	 is the boundary of � and nx is the outward pointing normal to the boundary. By substitution
of Eq. (7) into Eq. (6), we get the weak form of the equilibrium as

G (w, u, σx) =
∫

�

w (x)

(
ρ

∂2u
∂t2

− bx

)
dx +

∫
�

∂w
∂x

σxdx − wtx |	u − wtx |	t = 0 (8)

Introduce the constitutive equation to obtain governing equation based on displacement,
and we get

G (w, u) =
∫

�

w (x)

(
ρ

∂2u
∂t2

− bx

)
dx +

∫
�

∂w
∂x

E
∂u
∂x

dx − wtx |	t = 0 (9)

It is worth noting that we removed tx by setting w = 0 where the displacements are specified.

The resulting weak formulation in space is given as

ρ

∫
�

w
∂2u
∂t2

d� +
∫

�

∇wE∇u d� =
∫

�

wbd� +
∫

∂�\	u

wtd	 (10)

and limiting the trial and test spaces to high fidelity finite element spaces, we get

ρ

∫
�

wh

∂2uh

∂t2
d� +

∫
�

∇whE∇uh d� =
∫

�

whbd� +
∫

∂�\	u

whtd	 (11)

Setting uh = Niûhi and wh = Niŵhi, for the Ritz-Galerkin approximation, we have

ρŵT
hi

∫
�

NTN ¨̂uhi d� + ŵT
hi

∫
�

∇NTE∇N ûhi d� = ŵT
hi

∫
�

NTb d� + ŵT
hi

∫
	

NTtd	 (12)

The above equation is valid for any ŵh. Therefore we may write

ρ

∫
�

NTN ¨̂uhi d� + E
∫

�

∇NT∇N ûhi d� =
∫

�

NTb d� +
∫

	

NTtd	 (13)

leading to

M ¨̂uhi + Kûhi = F̂ (14)
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M = ρ

∫
�

NTN d� (15)

K = E
∫

�

∇NT∇N d� (16)

F̂ =
∫

�

NTb d� +
∫

	

NTtd	 (17)

3 Generalized Particle Method
3.1 Gradient and Divergence of Classical Physical Field

A physical field can be thought of as the assignment of a physical quantity at each point in space
and time. Consider a domain in Euclidean space, E. Let X ∈ �0 ⊂ E denotes the geometric position
vector of a certain position in the domain and X ∈ �0 ⊂ E denotes another point which is close to
the position X as shown in Fig. 1a. Therefore, any physical quantity at each point in space and time
can be defined as ϕ(X, t) : �0 × I → E. Define �X ⊂ �0 as a domain where the center point position
vector X is in, then we have

ϕ (X, t) = lim
V�X

→0

∫
V�X

ϕ
(
X, t

)
dV

V�X

(18)

Figure 1: (a) Continuous domain with position vector X and X, (b) Discretized domain with position
vectors Xi and Xj

The weighted residual method has been widely used in solving different kinds of ordinary/partial
differential equations, in particular, using the Galerkin method, which is the fundamental theory
of the finite element method. In this work, we exploit the weighted residual method directly to the
Taylor series expansion, such that a generalized approach of developing particle based methods can
be explored.

In mathematics, the Taylor series expansion is a representation of a function as an infinite sum of
terms that are calculated from the values of the function’s derivatives at a single point. The generalized
Taylor series of a general physical quantity ϕt

(
X

)
about X at a fixed time t yields

ϕ
(
X, t

) = ϕ (X, t) + 
1∇ϕ (X, t)
(
X − X

) + 
2H (X, t)
(
X − X

) (
X − X

) + . . . + O
(‖X − X‖n

)
(19)

where ∇ϕ(X, t) is a vector when ϕ(X, t) is a scalar value and is a second order tensor when ϕ(X, t) is a
vector value; and 
i ∈ R(i = 1, 2, 3 . . . .) is the algorithmic parameters.
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Omitting the higher order terms from Eq. (19), we have the first order Taylor series approximation

ϕ
(
X, t

) − ϕ (X, t) ∼= 
1∇ϕ (X, t)
(
X − X

)
(20)

where 
1 = 1. Define a residual with regards to Eq. (20), R, as

R = ϕ
(
X, t

) − ϕ (X, t) − ∇ϕ (X, t)
(
X − X

)
(21)

According to the standard weighted residual method, we introduce a weight function, C 1, and
minimize the residual. Eq. (21) is multiplied by the weight function C and integrated over the domain
�X, which then yields∫

�X

RCdV = 0 (22)

It is worth noting that the domain is the cut-off influence domain of the position X, and
the residual is a local value. The weight function C provides a wide scope of approximations for
constructing the derivative definitions used in various particle-based methods and new approach of
particle methods as well.

Gradient Recall the residual R in Eq. (21) and the weighted residual, RC , with respect to a vector
property ϕ is

(RC)XX = (
ϕ

(
X, t

) − ϕ (X, t)
) ⊗ C − ∇ϕ (X, t)XX

(
X − X

) ⊗ C (23)

where C is a vector with the size of geometric dimension of a problem; for example, C is a two by one
vector in 2D problems. We postulate that Eq. (23) is the exact relationship between the point X and
one of its neighboring point X located in the domain �X in terms of the weighted residual, (RC)XX.
Therefore, by integrating Eq. (23) over the domain �X, the following formulations can be obtained as∫

V�X

RCdV =
∫

V�X

[(
ϕ

(
X, t

) − ϕ (X, t)
) ⊗ C

] − ∇ϕ (X, t)XX

[(
X − X

) ⊗ C
]

dV = 0 (24)

By treating
(
ϕ

(
X, t

) − ϕ (X, t)
) ⊗ C and ∇ϕ (X, t)

(
X − X

) ⊗ C in the integral presented above as
field properties in the domain �X, the following formulations can be obtained as

1
V�X

∫
V�X

[(
ϕ

(
X, t

) − ϕ (X, t)
) ⊗ C

]
dV = 1

V�X

∫
V�X

∇ϕ (X, t)XX

[(
X − X

) ⊗ C
]

dV (25)

Hence, the gradient of a vector can be obtained as

∇ϕ (X, t) = lim
V�X→0

(∫
V�X

(
ϕ

(
X, t

) − ϕ (X, t)
) ⊗ CdV

)
lim

V�X→0

(∫
V�X

(
X − X

) ⊗ CdV

)−1

(26)

The proposed gradient operator has the ability to recover the ′∇′ in the Moving Particle Semi-
implicit (MPS) method, the deformation gradient in the state-based peridynamics as well as in the
corrected Smoothed Particle Hydrodynamics (SPH) method, by selecting the appropriate correspond-
ing C .

1In this work, the weight function used in the weighted residual method is defined as C , and the weight function for describing the influence generated from neighboring
particle is defined as W .
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Remark 3.1. By selecting the arbitrary C = nij, the Gradient in terms of the original MPS method
can be derived from the proposed approach as well. Substituting C = nij in the discretized system
yields,

∇ϕi =
⎡⎣∑

j∈�Xi

(
Xj − Xi

) ⊗ nijVj

⎤⎦−1 ⎡⎣∑
j∈�Xi

(
ϕj − ϕi

)
nijVj

⎤⎦ (27)

Let A = (
X − X

) ⊗ nij and it can be replaced by its normalized weighted average value within an
infinitesimal domain via exploiting Eq. (18),

AXXavg = 1
V�X

lim
V� →0

∫
�X

[(
X − X

) ⊗ C
]

dV (28)

Discretizing into particles, and applying nij = (X j − X i)/
∣∣∣∣X j − X i

∣∣∣∣, it becomes

Aij = 1
V�Xi

∑
j∈�Xi

(
nij ⊗ nij

)
Vj

(∣∣∣∣Xj − Xi

∣∣∣∣)

=
∑

j∈�Xi

(
nij ⊗ nij

)
WijVj

V�Xi

∑
j∈�Xi

Wij︸ ︷︷ ︸
Normalized Weighted Average A

(∣∣∣∣Xj − Xi

∣∣∣∣) (29)

Thus, Eq. (27) can be written as

∇ϕij =
⎡⎣∑

k∈�Xj

(
njk ⊗ njk

)
WjkVk

V�Xj

∑
k∈�Xj

Wjk

⎤⎦−1 (
ϕj − ϕi

)
nij∣∣∣∣Xj − Xi

∣∣∣∣ (30)

Gradient Operator:

Introducing the weighting function Wij and supposing Vi = Vj, V�Xi
= V�Xj

yields

∇ϕi = 1
V�Xi

∑
j∈�Xi

Wij

∑
j∈�Xi

⎡⎣∑
k∈�Xj

(
njk ⊗ njk

)
WjkVk

V�Xj

∑
k∈�Xj

Wjk

⎤⎦
︸ ︷︷ ︸

Ajk

−1 (
ϕj − ϕi

)
nij∣∣∣∣Xj − Xi

∣∣∣∣ WijVj

= 1∑
j∈�Xi

Wij

∑
j∈�Xi

⎡⎣∑
k∈�Xj

(
njk ⊗ njk

)
Wjk∑

k∈�Xj
Wjk

⎤⎦−1 (
ϕj − ϕi

)
nij∣∣∣∣Xj − Xi

∣∣∣∣ Wij (31)

It is worth noting that for a general particle within a uniformly distributed system, the weighted
average matrix Ajk is a diagonal matrix. Consequently, Ajk = dI, where I is identity matrix and d equals
to the dimensional number. Therefore, Eq. (31) recovers the gradient calculation in the MPS method,
and can be rewritten as

∇ϕi = d
n0

∑
j∈�Xi

(ϕj − ϕi)∣∣∣∣Xj − Xi

∣∣∣∣2

(
Xj − Xi

)
Wij (32)

where n0 = ∑
j Wij.
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Divergence By representing the divergence model as gradient operator, ∇, dot product with a
physical quantity, ϕ, the divergence model can be written as following

∇ · ϕ (X, t) = ∇Tϕ = lim
V�X→0

(∫
V�X

(
ϕ

(
X, t

) − ϕ (X, t)
) · CdV

)
lim

V�X→0

(∫
V�X

(
X − X

) ⊗ CdV

)−1

(33)

The discretized formulations is listed as following

∇ · ϕ i =
⎡⎣∑

j∈�Xi

(
ϕ j − ϕ i

) · C jWijVj

⎤⎦ ⎡⎣∑
j∈�Xi

(
Xj − Xi

) ⊗ C jWijVj

⎤⎦−1

(34)

Laplacian The definition of the Laplacian can be written as

∇2ϕ(X, t) = ∇ · ∇ϕ(X, t) (35)

In order to obtain the Laplacian relationship between the center point X and its neighboring point
X, we reconstruct the gradient between two points via taking advantage of Eq. (26). One may notice
that it is convenient to find the gradient from Eq. (23) by setting the (RC)XX as 0, which yields

∇ϕ (X, t)XX = [(
ϕ

(
X, t

) − ϕ (X, t)
) ⊗ C

] [(
X − X

) ⊗ C
]−1

(36)

However, the rank of matrix
[(

X − X
) ⊗ C

]
is 1, which is not available for the calculation of the

inverse when the gradient is carried over from the vector gradient calculation. To circumvent the issue,
we introduce A = (

X − X
) ⊗ C . Then it can be replaced by its average value within an infinitesimal

domain via exploiting Eq. (18),

AXXavg = 1
V�X

lim
V�X

→0

∫
�X

[(
X − X

) ⊗ C
]

dV (37)

Therefore, an alternative gradient of a vector is given by taking advantage of the average property,
Eq. (37).

∇ϕ (X, t)XX = [(
ϕ

(
X, t

) − ϕ (X, t)
) ⊗ C

] (
AXXavg

)−1
(38)

Consequently, the Laplacian can be obtained via combining Gauss’s Theorem and the gradient
formulations.

(∇ · ϕ (X, t))XX VX = ϕ
(
X, t

) · nXXSX (39)

where S = V

||X−X|| . As will be explained in the later section, we can also replace nXX with C. Substitution

of S into Eq. (39) yields

(∇ · ϕ (X, t))XX

∣∣∣∣X − X
∣∣∣∣ = ϕ

(
X, t

) · C (40)

Therefore, the Laplacian of ϕ(X, t) becomes

(∇ · ∇ϕ (X, t))XX

∣∣∣∣X − X
∣∣∣∣ = [(

ϕ
(
X, t

) − ϕ (X, t)
) ⊗ C

] (
AXXavg

)−1 · C (41)

Hence the following Laplacian formulations can be obtained as

∇2ϕ (X, t) = ∇ · ∇ϕ (X, t) = lim
V�X

→0

1
V�X

∫
�X

[(
ϕ

(
X, t

) − ϕ (X, t)
) ⊗ C

]
AXX

−1

avg · C∣∣∣∣X − X
∣∣∣∣ dV (42)
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The discretized formulations is listed as following:

∇2ϕ i = 1
V�Xi

∑
j∈�Xi

[
(ϕ j − ϕ i) ⊗ C j

]
Aij

−1
avg · C j∣∣∣∣Xj − Xi

∣∣∣∣ WijVj (43)

3.2 Stiffness Matrix for Particle Method
We will explore how the stiffness matrix is formed in 2D using the GPS method. We start with the

same governing equation and constitutive law,

∇ · σ = F

σ = D∇u
(44)

where D is elastic matrix as following

D = E
1 − ν2

⎡⎢⎣1 ν 0
ν 1 0

0 0
1 − ν

2

⎤⎥⎦ for plane stress (45)

D = E
(1 + ν)(1 − 2ν)

⎡⎢⎣1 − ν ν 0
ν 1 − ν 0

0 0
1
2
ν

⎤⎥⎦ for plane strain (46)

The first step to get the stiffness matrix is to describe ∇u with the gradient operator from the GPS
method as described in Eq. (32).

∇ui =
⎡⎣∑

j∈�Xi

(
uj − ui

) ⊗ C ijWijVj

⎤⎦ ⎡⎣∑
j∈�Xi

(
Xj − Xi

) ⊗ C ijWijVj

⎤⎦−1

︸ ︷︷ ︸
[A]

(47)

where [A] is a two by two matrix that is computed first. The summation is applied for every particle
within particle i’s influence circle. But for simplicity, we will consider there are two particles for the
system, particles 1 and 2. The Eq. (47) will be written as following for particle 1,

∇u1 =
[
(ux

2 − ux
1)

(uy
2 − uy

1)

] [
(Cx

12) (Cy
12)

] [
A11 A12

A21 A22

]
W12V2 (48)

=
[

Cx
12(u

x
2 − ux

1) Cy
12(ux

2 − ux
1)

Cx
12(u

y
2 − uy

1) Cy
12(u

y
2 − uy

1)

][
A11 A12

A21 A22

]
W12V2 (49)

Thus,⎡⎢⎢⎣
∂ux

12

∂x
∂ux

12

∂y
∂uy

12

∂x
∂uy

12

∂y

⎤⎥⎥⎦ =
[(

A11Cx
12 + A21C

y
12

)
(ux

2 − ux
1)

(
A12Cx

12 + A22C
y
12

)
(ux

2 − ux
1)(

A11Cx
12 + A21C

y
12

)
(uy

2 − uy
1)

(
A12Cx

12 + A22C
y
12

)
(uy

2 − uy
1)

]
W12V2 (50)
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Next, we need to convert the 2 by 2 matrix on the left hand side of Eq. (50) to a 4 by 1 vector form.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ux
12

∂x
∂ux

12

∂y
∂uy

12

∂x
∂uy

12

∂y

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= W12V2

⎡⎢⎢⎢⎢⎣
(
A11Cx

12 + A21C
y
12

)
(ux

2 − ux
1)(

A12Cx
12 + A22C

y
12

)
(ux

2 − ux
1)(

A11Cx
12 + A21C

y
12

)
(uy

2 − uy
1)(

A12Cx
12 + A22C

y
12

)
(uy

2 − uy
1)

⎤⎥⎥⎥⎥⎦

= W12V2

⎡⎢⎢⎢⎢⎣
− (

A11Cx
12 + A21C

y
12

)
0

(
A11Cx

12 + A21C
y
12

)
0

− (
A12Cx

12 + A22C
y
12

)
0

(
A12Cx

12 + A22C
y
12

)
0

0 − (
A11Cx

12 + A21C
y
12

)
0

(
A11Cx

12 + A21C
y
12

)
0 − (

A12Cx
12 + A22C

y
12

)
0

(
A12Cx

12 + A22C
y
12

)

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎣
ux

1

uy
1

ux
2

uy
2

⎤⎥⎥⎥⎥⎦ (51)

We can also get the engineering strain as follows:⎡⎢⎢⎢⎢⎢⎢⎣

∂ux
12

∂x
∂ux

12
∂y

1
2

(
∂ux

12
∂y

+ ∂uy
12

∂x

)

⎤⎥⎥⎥⎥⎥⎥⎦

= W12V2

⎡⎢⎢⎢⎢⎢⎣
−

(
A11Cx

12 + A21Cy
12

)
0

(
A11Cx

12 + A21Cy
12

)
0

0 −
(

A12Cx
12 + A22Cy

12

)
0

(
A12Cx

12 + A22Cy
12

)
−

(
A12Cx

12 + A22Cy
12

)
2

−
(

A11Cx
12 + A21Cy

12

)
2

(
A12Cx

12 + A22Cy
12

)
2

−
(

A11Cx
12 + A12Cy

12

)
2

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

[∇1]:gradient operator for particle 1

⎡⎢⎢⎢⎢⎢⎣
ux

1

uy
1

ux
2

uy
2

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

[u]

(52)
Eq. (52) can be simply written as

[ε1] = [∇1][u] (53)

Stress σ can be computed by multiplying elastic matrix, [D], from Eqs. (45) and (46).

[σ1] = [D][∇1][u] (54)
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It is worth noting that [D][∇][u] includes all the components in the particle i’s influence domain.

[σ ] = [D][∇][u] =

⎡⎢⎢⎣
[D][∇1]
[D][∇2]

...
[D][∇n]

⎤⎥⎥⎦ [u] (55)

where [∇1] and [∇2] represent the gradient operator obtained from the first and the second particle as
the i th particle, respectively. This suggests that, in general, the gradient operator for every particle in
the system needs to be computed before applying divergence operator.

Next, we will show how to construct the divergence operator into a matrix form similar to how
the gradient operator matrix was formed as shown above.

∇ · σ1 =
[

Cx
12

Cy
12

]
·
[

A11 A12

A21 A22

][
σ 2

11 − σ 1
11 σ 2

12 − σ 1
12

σ 2
21 − σ 1

21 σ 2
22 − σ 1

22

]
W12V2 (56)

= [
A11Cx

12 + A21C
y
12 A12Cx

12 + A22C
y
12

] [
σ 2

11 − σ 1
11 σ 2

12 − σ 1
12

σ 2
21 − σ 1

21 σ 2
22 − σ 1

22

]
W12V2 (57)

=
[

B1(σ
2
11 − σ 1

11) B2(σ
2
12 − σ 1

12)

B1(σ
2
21 − σ 1

21) B2(σ
2
22 − σ 1

22)

]
(58)

where B1 = (A11Cx
12 + A21C

y
12) and B2 = (A12Cx

12 + A22C
y
12) for simplicity. Here we further isolate σ

together.

[∇ · σ x
1∇ · σ
y
1

]
= W12V2

[−B1 −B2 0 0 B1 B2 0 0
0 0 −B1 −B2 0 0 B1 B2

]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 1
11

σ 1
12

σ 1
21

σ 1
22

σ 2
11

σ 2
12

σ 2
21

σ 2
22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(59)

or for the engineering stress,

[∇ · σ x
1∇ · σ
y
1

]
= W12V2

[−B1 0 −B2 B1 0 B2

0 −B2 −B1 0 B2 B1

]
︸ ︷︷ ︸

[∇·]:divergence operator for particle 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 1
xx

σ 1
yy

τ 1
xy

σ 2
xx

σ 2
yy

τ 2
xy

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(60)
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Thus, we can get the stiffness matrix for the particle 1, by combining Eqs. (55) and (60),

[∇·] [D][∇][u] = F

W12V2

[−B1 0 −B2 B1 0 B2

0 −B2 −B1 0 B2 B1

] [
[D] [∇1]
[D] [∇2]

]
︸ ︷︷ ︸

[K1]

[
[u]

] =
[

Fx
1

Fy
1

]
(61)

This process is repeated for each particle in the system. After generating [Ki] matrices, they are
assembled together to form the system stiffness matrix [K].

4 Equations of Motion for a System of Multiple Subdomains

Differential Algebraic Equations (DAE) are differential equations with algebraic constraints.
Consider the equation of motion of a body that is subject to constraints g(u) = 0. The action integral
is given as

S (u, λ∗) =
∫ tf

t0

L ∂t + λ∗Tg(u) (62)

and we can take the variation of the action integral,

δS (u, λ∗) = 0 → ∂

∂t

(
∂L

(
u,

.
u
)

∂
.
u

)
− ∂L

(
u,

.
u
)

∂u
+ GT (u) λ∗ = 0 (63)

g(u) = 0 (64)

where G(u) = ∂g(u)/∂u. For the standard DAE equations of second order transient systems, the above
equation can be written as

Qiner
(
u,

.
u,

..
u
) + Qint (u) = Qappl

(
u,

.
u, t

) + GT
(u) λ∗ (65)

g(u) = 0 (66)

where, Qiner, Qint and Qappl are the inertial, internal and applied forces, respectively. The Lagrange
multiplier variable, λ∗(t), is introduced in order to accomplish the constraint equation.

Now, consider a domain of interest � that is divided into ndom number of subdomains, �i (for
i = 1, 2, . . . , ndom), with each subdomain joined by a non-overlapping interface in between. An example
with three subdomains is shown in Fig. 2. In the case of linear semidiscrete second order transient
systems, the equation of motion for subdomain �i is, (for i = 1, 2, . . . , ndom),

Mi

..
ui = Qint

i (ui) + Qappl
i

(
ui,

.
ui, t

) + GT
i λ∗ (t) (67a)

0 =
ndom∑
i=1

Gi

.
ui (67b)

where ui(t),
.
ui (t) := dui/dt, and

..
ui (t) := d2ui/dt2 are the displacement, velocity, and acceleration

vectors of the ith-subdomain, respectively; Mi is the mass matrix of the ith-subdomain; and Qint
i (ui) and

Qappl
i

(
ui,

.
ui, t

)
are the internal and applied force of the ith-subdomain, respectively.
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Figure 2: A domain Ω divided into three subdomains with non-overlapping interface

The matrix Gi is a boolean matrix with entries either −1, 0, or +1, that is defined by the subdomain
interface conditions. The nodes or particles on one side of the interface will have −1 while the
corresponding nodes or particles on the other side of the interface will have value of +1 and all
other nodes/particles will have 0. Eq. (67b) indicates that the velocity continuity along the interface is
enforced.

4.1 DAE Framework with GS4 Family of Algorithms for a System with Multiple Subdomains and
Multiple Time Step Sizes

Let �t and �ti be the system time step size and the subdomain time step size for �i, respectively,
and define the ratio as τi = �t/�ti ≥ 1 for i = 1, 2, . . . , ndom. The system and subdomain time step
sizes are defined as

�t = tn+1 − tn (68a)

�ti = tn+ m+1
τi

− tn+ m
τi

(68b)

where n denotes the system time step, and m represents subdomain time step. The visual representation
of time subcylcing is shown in Fig. 3.

Figure 3: Time step subcycling for different subdomains

Now applying the GS4 family of algorithms, the equation of motion of each subdomain can be
written as following:

Mĩa(n,m)

i = Qint
i

(̃
u(n,m)

i

) + Qappl
i

(̃
u(n,m)

i , ṽ(n,m)

i , t
n+ m+W1

τi

)
+ GT

i λ̃∗(n,m) (69a)

0 =
ndom∑
i=1

Givn+1
i (69b)
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where

t
n+ m+W1

τi
:= tn +

(
m + W1

τi

)
�t = t0 + n�t + (m + W1)�ti (69c)

λ̃∗(n,m) := λ∗n +
(

m + W1

τi

) (
λ∗n+1 − λ∗n

)
(69d)

ã(n,m)

i := a
n+ m

τi
i + W1
6�a(n,m)

i (69e)

ṽ(n,m)

i := v
n+ m

τi
i + �tW1
4a

n+ m
τi

i + �tW2
5�a(n,m)

i (69f)

ũ(n,m)

i := u
n+ m

τi
i + �tW1
1v

n+ m
τi

i + �t2W2
2a
n+ m

τi
i + �t2W3
3�a(n,m)

i (69g)

It is worth noting that the Lagrange multipliers are approximated in the system time level rather
than in the subdomain time level. This factor suggests that the solution must be in the system time level
even though the displacement, velocity, and acceleration are approximated in the subdomain time step.

The updates of each of the unknown variables with the GS4 framework of algorithms are

u
n+ m+1

τi
i = u

n+ m
τi

i + �tλ1v
n+ m

τi
i + �t2λ2a

n+ m
τi

i + �t2λ3�a(n,m)

i (70a)

v
n+ m+1

τi
i = v

n+ m
τi

i + �tλ4a
n+ m

τi
i + �tλ5�a(n,m)

i (70b)

a
n+ m+1

τi
i = a

n+ m
τi

i + �a(n,m)

i (70c)

W
 and λ are the GS4 algorithmic parameters and can be found in [37]. The advantage of the
GS4 algorithm is that it allows one to easily switch between various time integration algorithms as
well as explicit and implicit families based on the GS4 algorithmic parameters. A single analysis code
readily enables current and future researchers and analysts to investigate a multitude of algorithms
and combinations in the academic and commercial software world; thereby making it a much desired
computational simulation toolkit.

In linear dynamical systems, Eq. (67) may be written as

Mĩai + C ĩvi + Kĩui = Qappl
i (t) + GT

i λ̃∗ (t) (71a)

0 =
ndom∑
i=1

Gi

.
u

n+1

i (71b)

where C i and Ki are the damping and stiffness matrices for �i, respectively; and Qappl
i (t) is the external

force vector for �i. Since the stiffness matrix is different for each subdomain, various methods can
be coupled together with each subdomain having the stiffness matrix derived from the corresponding
methods. For example, subdomain 1 and 2 in Fig. 2 can use the stiffness matrix derived from the FEM
while subdomain 3 adopts the stiffness matrix formulated using the GPS method as outlined in the
previous section.
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A set of all kinematic unknowns for �i in its subdomain time step is defined as

X
n+ m

τi
i :=

⎡⎢⎣a
n+ m

τi
i

v
n+ m

τi
i

u
n+ m

τi
i

⎤⎥⎦ (72)

Eq. (71a) can then be discretized and written as follows:

LiX
n+ m+1

τi
i −

(
m + W1

τi

) (
Ĝ

(1)

i

)T (
λ∗n+1

) = Q
n+ m+W1

τi
i +

(
1 − m + W1

τi

) (
Ĝ

(1)

i

)T

λ∗n + RiX
n+ m

τi
i (73)

where

Li :=
⎡⎣L∗

i O O
−�tiλ5I I O
−�t2

i λ3I O I

⎤⎦ with L∗
i := W1
6Mi + �tiW2
5C i + �t2

i W3
3Ki (74)

Ri :=
⎡⎣R∗

i −(1 + �tiW1
1)I −I
�ti(λ4 − λ5)I I O
�t2

i (λ2 − λ3)I �tiλ1I I

⎤⎦ (75a)

with

R∗
i := (W1
6 − 1)Mi + �ti(W2
5 − W1
4)C i + �t2

i (W3
3 − W2
2)Ki (75b)

Q
n+ m+W1

τi
i :=

⎡⎢⎣Qi

(
t

n+ m+W1
τi

)
0
0

⎤⎥⎦ (76)

and

Ĝ
(1)

i := [
Gi Onc×ni Onc×ni

]
(77)

where O represent zero-matrix, nc and ni refer to the number of constraint degrees of freedom, and
total number of degrees of freedom in one domain, respectively. Now, we define a set of all kinematic
unknowns, i.e., the acceleration, velocity, and displacement vectors, for �i over its subdomain time
step and a set of all kinematic unknowns of all subdomains in the system over a system time step as

X(n+1)

i :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
n+ 1

τi
i

X
n+ 2

τi
i

...

X
n+ τi−1

τi
i

Xn+1
i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and X

(n+1) :=

⎡⎢⎢⎢⎢⎢⎣
X(n+1)

1

X(n+1)

2

...

X(n+1)

ndom

⎤⎥⎥⎥⎥⎥⎦ (78)

The constraint equation at the velocity level, i.e., Eq. (71b), can be written in the form

0 =
ndom∑
i=1

GiX
(n+1)

i = GX
(n+1) (79)
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where

G := [
G1 G2 · · · Gndom

]
(80)

and

Gi :=
[
− 1

τi

Onc×3ni − 2
τi

Onc×3ni · · · −τi − 1
τi

Onc×3ni Ĝi

]
(81)

with

Ĝi := [
Onc×ni Gi Onc×ni

]
(82)

Eq. (82) shows the velocity constraint. The size of Gi is nc by 3niτi since the system solves for
the displacement, velocity and acceleration at every subcycling step simultaneously. However, Eq. (81)
suggests that the constraint is enforced only at the n+1 time step.

The equation of motion for the entire system for a system time step level can be represented in a
simple matrix form as following:[
A B

G O

] [
X

(n+1)

λ∗n+1

]
=

[
F(n)

0

]
(83)

where

A := diag
[
A1, A2, . . . , Andom

]
(84)

in which

Ai :=

⎡⎢⎢⎢⎢⎣
Li

−Ri Li

−Ri Li

. . . . . .
−Ri Li

⎤⎥⎥⎥⎥⎦ (85)

B :=

⎡⎢⎢⎣
B1

B2

...
Bndom

⎤⎥⎥⎦ (86)

in which

Bi :=
[
− 1

τi

Ĝ(1)

i − 2
τi

Ĝ(1)

i · · · −τi − 1
τi

Ĝ(1)

i −Ĝ(1)

i

]T

(87)

and

F
(n) :=

⎡⎢⎢⎢⎣
F(n)

1

F(n)

2

...
F(n)

ndom

⎤⎥⎥⎥⎦ (88)
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in which

F(n)

i :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q
n+ 1+W1

τi
i +

(
1 − Ĝ(1)

i

)T

λ∗n + RiXn
i

Q
n+ 2+W1

τi
i +

(
1 − Ĝ(1)

i

)T

λ∗n

...

Q
n+ τi+W1

τi
i +

(
1 − Ĝ(1)

i

)T

λ∗n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(89)

4.2 Computational Procedure
The computation flowchart for the GS4-II DAE framework for the subdomain method employing

different spatial methods, algorithms, and time steps is shown below in Fig. 4 which here which
provides a wide variety of algorithms and choices as options to the analyst.

for dom := 1 to Ndom do

Calculate M, C, K using corresponding method for the domain

Calculate Li, and Ri using Eqs. (74) and (75a)

Calculate Ĝi using Eq. (82)

for τ := 1 to n do

Assemble Ai using Eq. (85)

Assemble Bi using Eq. (87)

end for

end for

Assemble A using Eq. (84)

Assemble B using Eq. (86)

Transpose B to obtain G

for (t := 1 to Timesteps) do

for dom := 1 to Ndom do

Calculate Fi using Eq. (89)

end for

Assemble F using Eq. (88)

Assemble ∧Rglob and Ĵglob from Eq. (83)

Solve (ĴglobXn+1 = ∧Rglob)

end for
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Figure 4: Flowchart for constructing DAE second order system

4.3 Subdomain Coupling Condition and Time Level Consistency for Second Order Systems
The second order time accuracy of all the primary variables and the Lagrange multipliers can be

achieved for interfacing different subdomains (this is in general not plausible with traditional methods)
if W1, a parameter in GS4, is the same for all subdomains. In order to guarantee the second order

time accuracy in the acceleration, the algorithmic acceleration a
n+ m

τi
i must be an approximation at time

level tn:

a
n+ m

τi
i ≈ ..

u (tn + (m − φi) �ti) (90)

where φi := W1
6 − W1 in which W1 and W1
6 are the values used for subdomain �i.
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The GS4-II algorithms are written in the form of U0(ρmin, ρmax, ρs) for the U0 family and V0
(ρmin, ρmax, ρs) for the V0 family. The relation of the variables follows 0 ≤ ρs ≤ ρmin ≤ ρmax ≤ 1. And
depending on the value given to each variable, it recovers various existing time schemes including a
wide variety of new and optimal methods and also provides new avenues to integrate multiple methods
in a single analysis; for example, U0(1, 1, 0) recovers Newmark time scheme, and U0(0, 0, 0) is equal
to the WBZ scheme. The V0 family represents an altogether new family of algorithms and is not well
known to others and is relatively new and not well understood by the traditional research community
at large; mathematically, the V0 family of algorithms are the mirror counterparts of the U0 family but
with different overshoot behavior unlike several of the traditional methods. More recent efforts show
the advances in the GS4 V0∗ family of algorithms that enable consistent second order time accurate
features with and without physical damping [38]. Certain algorithms within the U0 family are also new
with certain exceptions which are existing methods. The GS4 encompasses the entire family of LMS
methods that are second order time accurate. Only three parameters are needed to identify a particular
algorithm; and no two algorithms can have the same DNA (Discrete Numerically Assigned markers).

With the W1 parameter condition, the GS4-II family of time integration scheme combinations
guarantee second order time accuracy of all variables and the Lagrange multipliers; this is unlike
existing technology which does not permit such implicit interfacing of arbitrary methods whilst
consistently preserving second order accuracy. Some of the possible GS4-II time scheme combinations
are listed in Table 1. For example, one cannot simply or haphazardly couple the Midpoint rule with
the Newmark method; or couple the Newmark, HHT, WBZ methods, etc., arbitrarily in different
subdomains in a single analysis without loss and reduced accuracy in the convergence rate of one or
more variables.

Table 1: Coupling different time scheme algorithms

Case Subdomain 1 Subdomain 2

1 U0(1, 1, 0) (Newmark) U0(0, 0, 0) (WBZ)
2 U0(1, 1, 0) (Newmark) U0(0, 1, 0) (U0V0 optimal)
3 U0(0.5, 1, 0.5) (U0V0 optimal) U0(0.5, 0.5, 0.5) (Three parameter optimal)
4 V0(1, 1, 0) (MPR-MPA) V0(1, 1, 1) (MPR-EPA)
5 V0(0.7, 0.7, 0.7) V0(0.7, 0.7, 0.21)

For the U0 family of GS4-II algorithms, the W1 value is determined by ρs parameter; whereas,
for the V0 family, ρmin and ρmax parameters control the W1 value as shown below. It is also possible to
couple U0 and V0 family if the W1 condition is satisfied. For example, U0(1, 1, 0) scheme and V0(1/3,
1/3, 1/3) scheme both produce W1 value of 1; thus, they can be coupled together. These criteria must
be followed to preserve second-order time accuracy in all the variables and the Lagrange multipliers.

For GS4-II U0 Family: W1 = 1
1 + ρs

(91)

For GS4-II V0 and V0∗ Family: W1 = 3 + ρmin + ρmax − ρminρmax

2(1 + ρmin)(1 + ρmax)
(92)



CMES, 2023, vol.135, no.2 863

5 Numerical Examples
5.1 2D Wave Propagation Problem

Fig. 5 shows the 2D geometry of a wave propagation problem. It is a rectangular bar of 10 m by
1 m with 1 m thickness, which is fixed on the left side wall as boundary condition. The semidiscrete
equation of motion for the system is given as

Mi

..
ui + Kiui = GT

i λ∗
i (93)

i=Ndom∑
i=1

Givi = 0 (94)

u(0, y, t) = 0 (95)

∂u
∂x

(L, y, t) = p (96)

u(x, y, 0) = 0 (97)

.
u (x, y, 0) = 0 (98)

Figure 5: Diagram of structure for wave propagation problem

The bar is compressed from the right side with p, the distributed load, of 10,000 N/m. This material
has 72 GPa for Young’s modulus, 0.3 for Poisson’s ratio, and 2712 kg/m3 for density. The bar is divided
into two subdomains, and each subdomain is implemented with 17 nodes/particles in length, and 5
nodes/particles in height making it total of 170 nodes/particles with 5 nodes/particles overlap on the
interface. Figs. 6 and 7 show the FEM mesh and particle distribution for the two subdomains. The
system �t for time integration is set to be 0.8 μs. The time history of the x-direction displacement,
velocity and acceleration of a node/particle at the interface on the subdomain 1 (SD1) side (point A in
Fig. 5) and the free end on the subdomain 2 (SD2) side (point B in Fig. 5) are evaluated. We compare
the result in four sets: spatial method variance where we combine the different spatial methods; explicit
and implicit variance where we pair explcit and implicit version of the same time scheme; time shceme
variance where the different combination of the GS4-2 time schemes are tested; and time subcycling
variance.

Fig. 8 compares the three different cases of coupling different methods: FEM+FEM, GPS+GPS,
and FEM+GPS; and shows the time history of the displacement, velocity, and acceleration at A in
subdomain 1 and at point B in subdomain 2. It is clear that coupling the same methods or coupling
different methods, be it weak form or strong form methods together, produce a comparable result with
the result from commercial software such as ABAQUS.
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Figure 6: FEM+FEM and FEM+GPS interface
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Figure 7: FEM+GPS two domain mesh of the structure

Fig. 9 shows the result for coupling explicit version and implicit version of the schemes. The
evaluated coupling cases are explicit and explicit case, explicit and implicit case, and implicit and
explicit case where the first condition refers to the time scheme algorithm for subdomain 1 and the
latter for subdomain 2. This figure not only suggests that explicit and implicit time algorithms can be
coupled together, it also shows that coupling is not limited to just Newmark family of algorithms as
this example couples U0(1, 1, 0) (equivalent to Newmark, central difference for explicit, and average
acceleration for implicit) and U0(0, 0, 0) (equivalent to WBZ).

To further present evidence of coupling various time scheme algorithms, five different cases listed
in Table 1, are evaluated and illustrated in Fig. 10. The time scheme algorithms are selected such that
a combination has identical W1 to ensure the second order accuracy in time. It is evident that all the
results align closely.
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Figure 8: Comparison of transient response of displacement, velocity and acceleration (a) at point
A on SD1 and (b) at point B on SD2, between three cases of different pairing of methods (Case 1:
FEM+FEM, Case 2: FEM+GPS, Case 3: GPS+GPS) while using explicit version (with η3 = 0) of
GS4-II U0(1, 1, 0) algorithm for subomain 1 and explicit version (with η3 = 0) of U0(0, 0, 0) algorithm
for subdomain 2 with constant �t in each case
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Figure 9: Comparison of transient response of displacement, velocity and acceleration (a) at point A
on SD1 and (b) at point B between different pairing of explicit (with η3 = 0) and implicit version (with
η3 = 1) of GS4-II (Case 1: explicit+explicit, Case 2: explicit+implicit, Case 3: implicit+explicit) while
using FEM with GS4-II U0(1, 1, 0) algorithm for subomain 1 and GPS with U0(0, 0, 0) algorithm for
subdomain 2 at constant �t in each case
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Figure 10: Comparison of transient response of displacement, velocity and acceleration (a) at point
A on SD1 and (b) at point B between different pairing of explicit version (with η3 = 0) of GS4-II
algorithms listed in Table 1, while using FEM for subdomain 1 and GPS for subdomain 2 at constant
�t in each case

Lastly, the subcycling cases are also evaluated in Fig. 11. A case where subdomain 2 has double
the time steps than subdomain 1 (time increment interval in subdomain 2 is half of that of subdomain
1) is compared with the no subcycling case and the results are very close.
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Figure 11: Comparison of transient response of displacement, velocity and acceleration at both point
A and point B between simulation with system �t for both subdomains and with variable �t = 1/2
system �t for subdomain 2 while using FEM with explicit version (with η3 = 0) of GS4-II U0(1, 1,
0) algorithm for subdomain 1 and GPS with explicit version (with η3 = 0) U0(0, 0, 0) algorithm for
subdomain 2

Fig. 12 demonstrates second order time accuracy in displacement, velocity, acceleration and the
constraint variable λ∗ for different coupling conditions shown through Figs. 8–10.

Figure 12: (Continued)
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Figure 12: (Continued)
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Figure 12: Convergence order for the solution with respect to the system time step for domain 1 and
2 in different cases: (a) FEM with explicit version of GS4-II U0(1, 1, 0) and FEM with U0(0, 0, 0),
(b) GPS with explicit version of GS4-II U0(1, 1, 0) and GPS with U0(0, 0, 0), (c) FEM with explicit
version of GS4-II U0(1, 1, 0) and GPS with U0(0, 0, 0) algorithm, (d) FEM with explicit version of
GS4-II U0(1, 1, 0) and GPS with implicit version U0(0, 0, 0), (e) FEM with implicit version of GS4-II
U0(1, 1, 0) and GPS with explicit version U0(0, 0, 0), (f) FEM with explicit version of GS4-II U0(1,
1, 0) and FEM with implicit version U0(0, 1, 0), (g) FEM with explicit version of GS4-II U0(0.5, 1,
0.5) and GPS with U0(0.5, 0.5, 0.5), (h) FEM with explicit version of GS4-II V0(1, 1, 0) and GPS with
V0(1, 1, 1), (i) FEM with explicit version of GS4-II V0(0.7, 0.7, 0.7) and GPS with V0(0.7, 0.7, 0.21),
(j) variable �t = 1/2 system �t for subdomain 2 while using FEM with explicit version (with η3 = 0)
of GS4-II U0(1, 1, 0) algorithm for subdomain 1 and GPS with explicit version (with η3 = 0) U0(0, 0,
0) algorithm for subdomain 2

Figure 13: Diagram of structure for bending problem

5.2 2D Vibration Problem
A beam with the same geometry as the one in the wave propagation problem is used to illustrate

the application of the multi-domain method in a plane stress dynamic problem. A cantilever beam
of 10 m by 1 m with 1 m thickness is fixed on the left side and is experiencing downward traction,
p, of 100,000 N/m as shown in Fig. 13. The density, ρ, of the beam is set to be 271.2 kg/m3, Young’s
modulus, E, to be 72 GPa, and Poisson’s ratio to be 0.3 for the properties of the material. The beam is
divided into two subdomains, and each subdomain is implemented with 17 nodes/particles in length,
and 5 nodes/particles in height making it total of 170 nodes/particles with 5 nodes/particles overlap
on interface. The semidiscrete equation of motion for the system is given as

Mi

..
ui + Kiui = GT

i λ∗
i (99)
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i=Ndom∑
i=1

Givi = 0 (100)

u(0, y, t) = 0 (101)
∂u
∂y

(L, y, t) = p (102)

u(x, y, 0) = 0 (103)
.
u (x, y, 0) = 0 (104)

The system �t for time integration is set to be 0.8 μs. The time history of y-direction displacement,
velocity and acceleration of a node at the interface (point A) and the free end (point B) are evaluated.

Similar to the previous problem, a different combination of methods are compared in Fig. 14.
It is apparent that the different methods can be coupled regardless of whether one is weak form or
strong form.

Figure 14: (Continued)
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Figure 14: Comparison of transient response of displacement, velocity and acceleration (a) at point
A on SD1 and (b) at point B between different pairing of methods (Case 1: FEM+FEM, Case 2:
FEM+GPS, Case 3: GPS+GPS) while using implicit version (with η3 = 1) of GS4-II U0(1, 1, 0)
algorithm for subdomain 1 and implicit version of U0(0, 0, 0) algorithm for subdomain 2 with constant
�t in each case

Fig. 15 shows results for coupling the explicit version and implicit version of the time scheme
algorithms. The evaluated coupling cases this time are the implicit and implicit case, explicit and
implicit case, and implicit and explicit case. The response results for the different cases align closely.
The same five cases of time scheme algorithm combinations used in the previous example are evaluated
and illustrated in Fig. 16. And the results for all cases match. The subcycling case with one domain
having half the �t as the other, is shown in Fig. 17. It is apparent that subcycling still produces an
accurate result. Lastly, all of the different cases and conditions are second order accurate in time as
evident from Fig. 18, illustrating slope of two in the log-log error convergence plot.
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Figure 15: Comparison of transient response of displacement, velocity and acceleration (a) at point A
on SD1 and (b) at point B between different pairing of explicit (with η3 = 0) and implicit version (with
η3 = 1) of GS4-II (Case 1: implicit+implicit, Case 2: explicit+implicit, Case 3: implicit+implicit) while
using FEM with GS4-II U0(1, 1, 0) algorithm for subdomain 1 and GPS with U0(0, 0, 0) algorithm
for subdomain 2 at constant �t in each case
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Figure 16: Comparison of transient response of displacement, velocity and acceleration (a) at point
A on SD1 and (b) at point B between different pairing of implicit version (with η3 = 1) of GS4-II
algorithms listed in Table 1 while using FEM for subdomain 1 and GPS for subdomain 2 at constant
�t in each case
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Figure 17: Comparison of transient response of displacement, velocity and acceleration at both point
A and point B, between simulation with system �t for both subdomains and with variable �t = 1/2
system �t for subdomain 2 while using FEM with implicit version (with η3 = 1) of GS4-II U0(1, 1,
0) algorithm for subdomain 1 and GPS with implicit version (with η3 = 1) U0(0, 0, 0) algorithm for
subdomain 2

Figure 18: (Continued)
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Figure 18: (Continued)
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Figure 18: Convergence order for the solution with respect to the system time step for domain 1 and
2 in different cases: (a) FEM with implicit version of GS4-II U0(1, 1, 0) and FEM with U0(0, 0, 0),
(b) GPS with implicit version of GS4-II U0(1, 1, 0) and GPS with U0(0, 0, 0), (c) FEM with implicit
version of GS4- II U0(1, 1, 0) and GPS with U0(0, 0, 0), (d) FEM with explicit version of GS4-II U0(1,
1, 0) and GPS with implicit version U0(0, 0, 0), (e) FEM with implicit version of GS4-II U0(1, 1, 0)
and GPS with explicit version U0(0, 0, 0), (f) FEM with implicit version of GS4-II U0(1, 1, 0) and
FEM with U0(0, 1, 0), (g) FEM with implicit version of GS4-II U0(0.5, 1, 0.5) and GPS with U0(0.5,
0.5, 0.5) algorithm for subdomain 2, (h) FEM with implicit version of GS4-II V0(1, 1, 0) and GPS
with V0(1, 1, 1), (i) FEM with implicit version of GS4-II V0(0.7, 0.7, 0.7) and GPS with V0(0.7, 0.7,
0.21), (j) variable �t2 = 1/2 system �t for subdomain 2 while using FEM with implicit version (with
η3 = 1) of GS4-II U0(1, 1, 0) algorithm for subdomain 1 and GPS with implicit U0(0, 0, 0) algorithm
for subdomain 2

5.3 2D Vibration Problem-Three Subdomains
Next, a body divided into three domains is examined next for the extension of the subdomain

coupling concept. The same vibration problem above is evaluated again but this time, the beam is
divided into three subdomains where L2 = L/10. The FEM is used on subdomains 1 and 3 with 22
nodes in length, and 7 nodes in height. GPS is implemented on subdomain 2, with 7 particles in length
and 7 particles in height. The time scheme algorithm used in subdomain 1 and 3 is implicit U0(1, 1,
0); and in subdomain 2, U0(0, 0, 0) is used. The time history of y-direction displacement, velocity and
acceleration of a node at the free end is evaluated.

Figs. 20 and 21 clearly illustrate that the result at points A and B (shown in Fig. 19a) from the
three subdomain case matches closely with the result from the two subdomain case while achieving
second order time convergence rate. The high frequency in the acceleration plot for the three domain
free end node is caused by the use of non-dissipative U0(1, 1, 0) scheme.



878 CMES, 2023, vol.135, no.2

Figure 19: (a) Structure divided into three domains (b) An example of mesh of the structure: FEM
GPS FEM
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Figure 20: Comparison of transient response of displacement, velocity and acceleration at point A and
point B between three subdomain configuration and two subdomain configuration while using FEM
with implicit version (with η3 = 1) of GS4-II U0(1, 1, 0) algorithm for subdomain 1 and subdomain
3 and GPS with implicit version of U0(0, 0, 0) algorithm for subdomain 2 with constant �t in all
subdomains
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Figure 21: Convergence order for the solution with respect to the system time step for domain 1 and 2
and 3 in three domain configuration case: (a) subdomain 1 using FEM with implicit version of GS4-II
U0(1, 1, 0) algorithm, (b) subdomain 2 using GPS with U0(0, 0, 0) algorithm, (c) subdomain 3 using
FEM with GS4-II U0(1, 1, 0) algorithm

5.4 2D Notched Specimen Problem
Figs. 22 and 23 show the geometry of a 2D plane stress problem and an example of the mesh,

respectively. It consists of three subdomains where identical subdomain 1 and 3 are connected by a thin
subdomain 2. The subdomain 1 is 3 m by 2 m rectangle which are discretized into 176 FEM nodes. On
the other hand, subdomain 2 is 1 m by 2 m rectangle bar, with notches on top and bottom, discretized
into 99 particles. And subdomain 3 is identical to the subdomain 1 geometrically, but discretized with
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176 particles. The whole geometry has thickness of 1 m. The semidiscrete equation of motion for the
system is given as

ρi

..
ui + ∇ · D∇ui = GT

i λ∗
i

i=Ndom∑
i=1

Givi = 0

u(0, y, t) = 0

∂u
∂x

(L, y, t) = −210

u(x, y, 0) = 0
.
u (x, y, 0) = 0

(105)

Figure 22: Diagram of structure divided into three subdomain. The red circles represent the locations
where u, u̇, and ü are tracked in each subdomain

Figure 23: Mesh of all three subdomains

The bar is fixed at the left end and pulled down from the right end with a distributed load of
210 N/m. This material has 70 GPa for Young’s modulus, 0.3 for Poisson’s ratio, and 1,000 kg/m3

for density. The simulation ran for 0.2 s with the system �t for time integration set to 0.4 ms. To
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demonstrate the coupling of different spatial methods and different time schemes, four cases are
studied as shown in Table 2.

Table 2: Coupling different time scheme algorithms

Case Subdomain 1 Subdomain 2 Subdomain 3

1 FEM U0(1, 1, 0) Peridynamics U0(0, 0, 0) MPS U0(1, 1, 0)
2 FEM U0(0.8, 0.5, 0.1) Peridynamics U0(0.6, 0.3, 0.1) MPS U0(1, 0.7, 0.1)
3 FEM V0(0.8, 0.5, 0) Peridynamics V0(0.8, 0.5, 0.2) MPS V0(0.8, 0.5, 0.4)
4 FEM U0(1, 1, 0.7) Peridynamics U0(1, 1, 0.1) MPS U0(1, 1, 0.6)

The time history of the y-direction displacement, velocity and acceleration of nodes/particles in
each subdomain (points A, B, and C in Fig. 22) are evaluated.

Figs. 24–26 show the transient response of the displacement, velocity and acceleration for points
A, B and C for all cases listed in the Table 2 compared with the reference results. All responses from
the different spatial methods and different time schemes combinations match well.
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Figure 24: Comparison of transient response of displacement, velocity and acceleration at point A
between different cases with varying method and time integration schemes for each domain as listed
in Table 2



882 CMES, 2023, vol.135, no.2

0 0.05 0.1 0.15 0.2
-6

-5

-4

-3

-2

-1

0

1
10-7

SD2 : Case 1
SD2 : Case 2
SD2 : Case 3
SD2 : Case 4
Reference Result

0 0.05 0.1 0.15 0.2
-1.5

-1

-0.5

0

0.5

1

1.5
10-4

0 0.05 0.1 0.15 0.2
-1

-0.5

0

0.5

1

Figure 25: Comparison of transient response of displacement, velocity and acceleration at point B
among different cases with varying method and time integration schemes for each domain as listed in
Table 2
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Figure 26: Comparison of transient response of displacement, velocity and acceleration at point C
among different cases with varying method and time integration schemes for each domain as listed in
Table 2
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6 Conclusions

In this paper, we have proposed a novel implementation of the Generalized Single Step Single
Solve time integration framework for ODE’s into the DAE framework. This proposed method, unlike
traditional approaches in current technology with LMS methods, allows the coupling of different
numerical analysis methods such as FEM and particle methods to be used on a single body while
ensuring the accuracy of the result with the use of a wide variety of time integration algorithms within
the GS4 framework. For example, one cannot simply or haphazardly couple the Midpoint rule with the
Newmark method; or couple a multitude of schemes such as the Newmark, Midpoint rule, HHT, WBZ
methods, etc., arbitrarily in different subdomains in a single analysis without loss and reduced accuracy
in the convergence rate of one or more variables. However the GS4 framework circumvents various
deficiencies, preserves accuracy, and permits a much broader design space for coupling algorithms in
a single analysis and provides much desired robust features for applications to large scale industrial
real world problems as well. It has the potential to increase the accuracy of the physics by selecting
an appropriate method for only the area with a localized phenomena rather than utilizing only a
single method that may not be suitable for certain applications on the whole body. The method is
verified by applying it to 2D simple bar and beam problems. The results from various combination
of methods and time scheme algorithms match closely with the reference result. With the basis of
the proposed computational methodology established, the extension of the method for the future
studies includes computational efficiency studies, extension to nonlinearity, and implementation of
reduced order modeling. This work provides generality and versatility of the computational framework
incorporating a wide variety of subdomain based spatial and time integration algorithms in a single
analysis with great accuracy.
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