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ABSTRACT

The objective of this article is to provide a novel extension of the conventional inverse Weibull distribution that
adds an extra shape parameter to increase its flexibility. This addition is beneficial in a variety of fields, including
reliability, economics, engineering, biomedical science, biological research, environmental studies, and finance.
For modeling real data, several expanded classes of distributions have been established. The modified alpha power
transformed approach is used to implement the new model. The data matches the new inverse Weibull distribution
better than the inverse Weibull distribution and several other competing models. It appears to be a distribution
designed to support decreasing or unimodal shaped distributions based on its parameters. Precise expressions for
quantiles, moments, incomplete moments, moment generating function, characteristic generating function, and
entropy expression are among the determined attributes of the new distribution. The point and interval estimates
are studied using the maximum likelihood method. Simulation research is conducted to illustrate the correctness
of the theoretical results. Three applications to medical and engineering data are utilized to illustrate the model’s
flexibility.
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1 Introduction

Recently, many statistical distributions have been proposed by statisticians. The necessity to
develop new distributions appear either due to practical investigations or theoretical concerns or both.
Many applications in domains including dependability analysis, finance and risk modelling, insurance,
and biological sciences, among others, have indicated in recent years that data sets that follow
standard distributions are more often the exception than the usual. Because modified distributions
are necessary, significant progress has been made in the modification of several classic distributions
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and their efficient utilization to challenges in these fields. Lately, specifically since 1980, the direction
of statisticians to develop new distributions is on adding parameter(s) to some existing distributions
or integrating classical distributions, see Lee et al. [1]. This addition of parameter(s) has been
demonstrated valuable in analysing tail properties and also for enhancing the goodness of fit of the
family under consideration. For more details about the methods of adding parameters, one can refer
to Mudholkar et al. [2], Marshall et al. [3] and Mahdavi et al. [4].

The inverse-Weibull (IW) distribution has many vital applications in life testing and reliability
studies. The IW distribution bears some other names like Fréchet distribution. The IW distribution is
viewed as reciprocal to the usual Weibull distribution, see Drapella [5] and Mudholkar et al. [6], it is
used to describe the degradation of mechanical components in diesel engines, such as the crankshaft
and pistons, see Keller et al. [7]. Several academics proposed several modified variations of the IW
distribution to increase its flexibility. Khan [8] looked at the beta IW distribution, for example. The
generalized IW distribution was proposed by de Gusmao et al. [9], the modified IW distribution
was proposed by Khan et al. [10], the Kumaraswamy generalized IW distribution was proposed by
Oluyede et al. [11], and the Kumaraswamy modified IW distribution was proposed by Aryal et al. [12].
In addition, Okasha et al. [13] suggested the Marshall-Olkin IW distribution, Basheer [14] proposed
the alpha power IW distribution, Dey et al. [15] discussed the logarithmic transformed IW distribution,
and Afify et al. [16] suggested the logarithmic transformed IW distribution.

Assume that X is a random variable follows IW distribution with δ as the scale parameter and
θ as the shape parameter, where δ, θ > 0. Then, the probability density function (PDF) of X can be
written as follows:

g(x; δ, θ) = δθx−θ−1e−δx−θ

, (1)

The cumulative distribution function (CDF) of Eq. (1) is

G(x; δ, θ) = e−δx−θ

, x > 0. (2)

See Johnson et al. [17] for further information on the IW distribution. In this study, we offer a new
three-parameter IW distribution utilizing the same idea proposed by Alotaibi et al. [18]. The modified
alpha power transformed IW (MAPTIW) distribution is the name given to the new distribution. Two
shape parameters and one scale parameter are included. It includes some lifetime distributions, such as
IW, inverted exponential and inverse Rayleigh distributions. Recently, The alpha power transformation
approach was used by Alotaibi et al. [18] to suggest a new method for adding a new shape parameter
to a baseline distribution. Modified alpha power transformation (MAPT) was the name given to the
approach they proposed. The CDF and PDF of MAPT method are expressed as

F (x) = αG(x) − 1
(α − 1) (1 + α − αG(x))

, α > 0, α �= 1 (3)

and

f (x) = α1+G(x) log(α)g(x)

(α − 1) (1 + α − αG(x))
2 , α > 0, α �= 1, (4)

where α is a new shape parameter. This article seeks to furnish a new lifetime model with the
lowest number of parameters, yet satisfactory to depict more complicated data patterns; one scale
and two shape parameters are involved to accommodate for decreasing and upside-down bathtub-
shaped failure rates. The MAPTIW distribution is motivated by the following causes: (1) It is a
comprehensive distribution that holds some well-known lifetime distributions. (2) It is established
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in Section 2 that the MAPTIW distribution can be considered as a mixture of the traditional IW
distribution. (3) The MAPTIW distribution can deliver decreasing and unimodal hazard rates which
makes it outstanding from some other distributions. (4) The MAPTIW can be viewed as a practical
model for modelling skewed data which can not be adequately modelled by other distributions. (5) The
MAPTIW distribution furnishes more significant flexibility when compared with many well-known
distributions in two real data applications. We seek that it will attract wider applications in medicine,
engineering and other fields of research.

The remainder of this article is structured as follows. The MAPTIW distribution is introduced and
its mixed representation is derived in Section 2. In Section 3, we will look at some of the MAPTIW’s
most important characteristics. Section 4 shows how to estimate unknown parameters using maximum
likelihood estimation. We present the simulation results in Section 5 to show how well the estimations
performed. Three real-life data sets are used to assess the importance of the MAPTIW distribution in
Section 6. Section 7 presents the conclusion.

2 MAPTIW Distribution

We may define the CDF of the MAPTIW distribution in the following form by inserting the CDF
of the IW distribution obtained by Eq. (2) into the CDF of the MAPT generator given by Eq. (3)

F (x; α, δ, θ) = αe−δx−θ − 1

(α − 1)
(

1 + α − αe−δx−θ
) , x, α, δ > 0, θ > 0, α �= 1. (5)

The PDF that corresponds to the CDF in Eq. (5) can be expressed as follows:

f (x; α, δ, θ) = δθ log(α)x−θ−1e−δx−θ
α1+e−δx−θ

(α − 1)
(

1 + α − αe−δx−θ
)2 , x, α, δ > 0, θ > 0, θ > 0, α �= 1. (6)

MAPTIW distribution has the following special sub-models. If α → 1, it reduces to the IW
distribution. If θ = 1 and α → 1, it reduces to the inverted exponential distribution. If θ = 2
and α → 1, it reduces to the inverse Rayleigh distribution. Also, when θ = 1, it reduces to the
MAPT-inverted exponential distribution. Finally, when θ = 2, it simplifies to the MAPT-Rayleigh
distribution. The MAPTIW distribution’s reliability function (RF) and hazard rate function (HRF)
are

R (x; α, δ, θ) = 1 − αe−δx−θ − 1

(α − 1)
(

1 + α − αe−δx−θ
) , (7)

and

h (x; α, δ, θ) = θδ log(α)x−θ−1e−δx−θ
αe−δx−θ(

1 + α − αe−δx−θ
) (

α − αe−δx−θ
) , (8)

respectively. Henceforth, we will use X to refer to the random variable that possesses the PDF in
Eq. (6).

The various plots of the PDF of the MAPTIW distribution with δ = 1 in all settings and different
values for α and θ are shown in Fig. 1. The newly introduced parameter α offered more extra flexibility
to the PDF of the MAPTIW distribution, as seen in Fig. 1. The MAPTIW distribution is right-
skewed, and because of this, it is more suited to modelling right-skewed data than other competing
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distributions. The many forms of the HRF of the MAPTIW distribution are shown in Fig. 2. It shows
that the MAPTIW distribution’s HRF can be decreasing or unimodal in form.
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Figure 1: MAPTIW PDF plots
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Figure 2: HRF plots for the MAPTIW distribu-
tion

The PDF in Eq. (6) might be used to obtain various statistical characteristics of the MAPTIW
distribution. Finding the PDF’s mixture structure in Eq. (5) is a simple method. Observe the power
series below:

αy =
∑∞

m=0

(log α)m

m!
ym, (9)

where y is a variable and log(α) is a constant, as well as the generalized binomial expansion, which has
the form

(1 − y)
−a =

∑∞

k=0

�(j + a)

�(a)j!
yk, |y| < 1, k > 0, (10)

where y is a variable, a is a constant and �(a) is the gamma function defined as �(a) = ∫ ∞
0

za−1e−zdz.

When Eqs. (9) and (10) are applied to the PDF in Eq. (6), the following is a suitable linear
representation for the PDF

f (x; α, δ, θ) =
∑∞

m=0
�m g (x; (m + 1) δ, θ) , (11)

where g(x; (m + 1)δ, θ) is the PDF of the IW distribution with scale parameter (m + 1)δ and shape
parameter θ , and

�m =
∑∞

k=0

α(k + 1)m+1(log α)m+1

(α − 1)(α + 1)k+2(m + 1)!
.

On the other hand, the expansion of the CDF in Eq. (5) may be provided as by integrating Eq. (11)
as

F (x; α, δ, θ) =
∑∞

m=0
�mG (x; (m + 1) δ, θ) . (12)
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Hence G(x; (m + 1)δ, θ) is the CDF corresponding to g(x; (m + 1)δ, θ).

3 MAPTIW Distribution’s Properties

The quantile function, moments and stress-strength parameter are some of the properties of the
MAPTIW distribution that we derive in this part.

3.1 Quantile Function
The quantile function for the MAPTIW distribution may be calculated as follows using Eq. (5):

xu = QMAPIW (u) =
⎡⎣−1

δ
log

⎧⎨⎩
⎡⎣ log

(
1+u(α2−1)

1+u(α−1)

)
log α

⎤⎦⎫⎬⎭
⎤⎦− 1

θ

, 0 < u < 1. (13)

One can employ Eq. (13) to simulate the random variable X by taking u∼Uniform(0, 1).

3.2 Moments
Moments play an essential part in statistics. Numerous vital aspects of any statistical distribution

can be explored via moments. For the MAPTIW distribution, the nth moment can be obtained as

μ
′
n = E(X n) = ∫ ∞

−∞xnf (x)dx
= ∑∞

m=0�m

∫ ∞
0

xng (x; (m + 1) δ, θ) dx

= ∑∞
m=0�m [(m + 1) δ]

n
θ �

(
1 − n

θ

)
,

n
θ

≤ 1, n = 1, 2, 3, . . . , n,

where �(.) is the gamma function. In particular, the first two moments can be obtained as

μ
′
1 = E (X) =

∑∞

m=0
�m [(m + 1) δ]

1
θ �

(
1 − 1

θ

)
, θ ≥ 1,

and

μ
′
2 = E

(
X 2

) =
∑∞

m=0
�m [(m + 1) δ]

2
θ �

(
1 − 2

θ

)
, θ ≥ 2,

The following formulae can also be used to obtain the variance (var), skewness (Sk), and kurtosis
(Ku):

var(X) = μ
′
2 − (μ

′
1)

2,

Sk = [μ
′
3 − 3μ

′
2μ + 2μ3]/[μ

′
2 − μ2]3/2,

and

Ku = [μ
′
4 − 4μ

′
3μ + 6μ

′
2μ

2 − 3μ4]/[μ
′
2 − μ2]2.

where μ = μ
′
1. The propositions that follow are an explanation of three different types of moments,

namely, incomplete moments (IMs), moment generating function (MGF), characteristic generating
function (CGF) and conditional moments (CMs).

Prop 3.1. If X∼MAPTIW, then the IMs of X is given as follows:

ψr (t) =
∑∞

m=0
�m [(m + 1) δ]

r
θ γ

(
1 − r

θ
, (m + 1) δtθ

)
, r < θ , (14)
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where γ (., .) is the incomplete gamma function.

Prop 3.2. If X∼MAPTIW, then the MGF, denoted by M(t), and the cumulant generating function,
denoted by K(t), of X are, respectively, given by

MX (t) =
∑∞

k=0

∑∞

m=0
�m

tk

k!
[(m + 1) δ]

k
θ �

(
1 − k

θ

)
,

and

KX (t) = log
[∑∞

k=0

∑∞

m=0
�m

tk

k!
((m + 1) δ)

k
θ �

(
1 − k

θ

)]
.

Prop 3.3. If X∼MAPTIW, then the CGF of X is

MX (t) =
∑∞

k=0

∑∞

m=0
�m

(it)k

k!
[(m + 1) δ]

k
θ �

(
1 − k

θ

)
, k < θ .

Prop 3.4. If X∼MAPTIW, then the CMs of X is

CX (t) = E (X n|X > x) = ψn(x)

1 − F(x)
,

where ψn(t) is the nth IM of X .

3.3 Entropies of MAPTIW Distribution
Entropy is used to measure uncertainty. It recreates a vital role in the area of engineering, prob-

ability, statistics, information theory and financial analysis. For example, Gençay et al. [19] delivered
a relative analysis of the stock market during the 1987 and 2008 financial crises. Rashidi et al. [20]
examined and simulated the heat transfer flow employing entropy generation in solar still. The Rényi
entropy (RE) for the MAPTIW distribution may be calculated using Eq. (6) as follows:

Iρ(x) = 1
1 − ρ

log

⎧⎪⎨⎪⎩
(

δθ log α

α − 1

)ρ ∫ ∞

0

x−ρ(θ+1)α(1+e−δx−θ
)ρe−δρx−θ(

1 + α − αe−δx−θ
)2ρ

dx

⎫⎪⎬⎪⎭
= 1

1 − ρ
log

{(
δθ log α

α − 1

)ρ ∞∑
s=0

∞∑
r=0

(
2ρ + s − 1

s

)
(ρ log α)

r

r! (1 + α)
2ρ+s

∫ ∞

0

x−ρ(θ+1)e−δρx−θ

}

×
[

1 + s + ρ

ρ
e−δx−θ

]r

dx

= 1
1 − ρ

log{
(

δθ log α

α − 1

)ρ ∞∑
s=0

∞∑
r=0

r∑
u=0

(
r
u

)(
2ρ + s − 1

s

)
(ρ log α)

r

r! (1 + α)
2ρ+s

(
s + ρ

ρ

)u

×
∫ ∞

0

x−ρ(θ+1)e−(u+1)δx−θ

dx}

= 1
1 − ρ

log
{(

δθ log α

α − 1

)ρ ∞∑
s=0

∞∑
r=0

r∑
u=0

∞∑
v=0

(−1)
v

v!

(
r
u

)(
2ρ + s − 1

s

)
(ρ log α)

r

r! (1 + α)
2ρ+s

(
s + ρ

ρ

)u

× �
(

ρ(θ+1)−1
θ

)
[(u + 1)δ]

ρ(θ+1)−1
θ

}
. (15)
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The Shannon entropy can also be calculated as

E [− log f (X)] = − log
[
δθ log α

α − 1

]
+ (θ + 1) E [log x] + δE

[
x−θ

] − (log α)
{

1 + E
[
e−δx−θ

]}
+ 2E

[
log

(
1 + α − αe−δx−θ

)]
= − log

[
δθ log α

α − 1

]
− (θ + 1)

θ

∑∞

m=0
�m (log (δ (m + 1)) + γ ) − δ

∑∞

m=0

�m

m + 1

− (log α)

{
1 −

∑∞

m=0

�m(m + 1)

m + 2

}
+ 2E

[
log

(
1 + α − αe−δx−θ

)]
.

3.4 Order Statistics
Let X1, . . . , Xn Â be a MAPTIW random sample of size n. Assume that X(1), . . . , X(n) Â are the

corresponding order statistics. The ith order statistic’s PDF is then presented as follows:

fX(i)
(x) = f (x)

B(i, n − i + 1)

n−i∑
a=0

(−1)
a

(
n − i

a

)
Fj+i−1(x), (16)

The beta function is represented as B(., .). Using Eqs. (5), (6) and after some simplifications, we
can obtain

fX(i)
(x) =

∑∞

l=0
ωl g(x; (l + 1) δ, θ), (17)

where g(x; (l + 1)δ, θ) is the PDF of the IW distribution with scale parameter (l + 1)δ and shape
parameter θ , and

ωl = α log α

(α2 − 1)i+jB(i, n − s + 1)

∑n−i

a=0

∑∞

k,m,n=0

(−1)i+j+m+n+a−2

(α + 1)k+1(n + 1)

((k + m + 1) log α)
l

(l + 1)!

× �(i + j + k + 1)

�(i + j + 1)

(
i + j − 1
m

)(
n − i
a

)(
l
n

)
. (18)

Using Eq. (17), we can derive the properties of X(i) directly from the properties of Z(l+1), where Z(l+1)

follows IW distribution with scale parameter (l + 1)δ and shape parameter θ . Also, the qth moments
of X(i) can be derive as follows:

E
(
X q

(i)

) =
∑∞

l=0
ωl E

(
Zq

(l+1)

)
. (19)

3.5 Moments of Residual Life and Reversed Failure Rate Function
The mean residual lifetime has been studied by engineers and survival analysts. Given a feature

or a system is of age t, the remaining lifetime after t is a random variable. The expected value of
this random residual lifetime is named the mean residual life. The mean residual lifetime is often
a significant measure for discovering an optimal burn-in time for a feature. The rth moment of the
residual life of X is given by

Rr (t) = E ((X − t)r |X > t) = 1
1 − F(t)

∫ ∞

t

(x − t)rf (x) dx, r ≥ 1.
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Using Eqs. (5) and (6), and the binomial expansion of (x − t)r, we get

Rr(t) = 1
1 − F(t)

r∑
k=0

(−t)r−k

(
r
k

)∫ ∞

t

xrf (x)dx

= 1
1 − F(t)

r∑
k=0

∞∑
m,j=0

�m,j(−t)r−k

(
r
k

)∫ ∞

t

xrg(x; (m + 1)δ, θ)dx

= (α − 1)

α

{
1 +

(
α − αe−δt−θ

)−1
} r∑

k=0

∞∑
m,j=0

�m,j(−t)r−k

(
r
k

)∫ ∞

t

xrg(x; (m + 1)δ, θ)dx.

The mean residual lifetime can be obtained from the last equation by setting r = 1. The rth moment
of the reversed residual lifetime can be obtained as follows:

mr (t) = E ((t − X)
r |X ≤ t) = 1

F(t)

∫ t

0

(t − x)rf (x) dx, r ≥ 1.

Based on Eqs. (5), (6) and using the binomial expansion of (t − x)r, we can write

mr (t) =
(α − 1)

(
1 + α − αe−δx−θ

)
αe−δx−θ − 1

∑r

k=0

∑∞

m,j=0
�m,j (−t)r−k

(
r
k

)∫ t

0

xrg (x; (m + 1) δ, θ) dx.

3.6 Stress-Strength Model
Let Y1∼MAPTIW(α1, θ1, δ1) and Y2∼MAPTIW(α2, θ2, δ2). If Y1 describes the stress and Y2

describes the strength, then the MAPTIW distribution’s stress-strength parameter, indicated by R.
It has a wide range of applications in engineering and research. We will concentrate on two different
cases.

Case one: α1 �= α2, δ1 = δ2 = δ and θ1 = θ2 = θ

R = (Y2 > Y1) =
∫ ∞

0

F1(y)dF2(y)dy

= δθ log(α2)

(α1 − 1)(α1 + 1)(α2 − 1)(α2 + 1)2

∫ ∞

0

y−θ−1e−δy−θ

α1+e−δy−θ

2

(
αe−δy−θ

1 − 1
)

×
(

1 − αe−δy−θ

1

α1 + 1

)−1 (
1 − αe−δy−θ

2

α2 + 1

)−2

dy.

Using the series expansion in Eq. (10), it follows:

R = δθ log(α2)

(α1 − 1)(α2 − 1)

∑∞

a=0

∑∞

b=0
�1 (a, b)

∫ ∞

0

y−θ−1e−δy−θ
(
αe−δy−θ

1 − 1
)

αae−δy−θ

1 α(b+1)e−δy−θ

2 dy.

Using the series expansion in Eq. (9), we can obtain

R = δθ log(α2)

(α1 − 1)(α2 − 1)

∑∞

a=0

∑∞

b=0
�1 (a, b)

∫ ∞

0

y−θ−1e−δy−θ
(
αe−δy−θ

1 − 1
)

αae−δy−θ

1 α(b+1)e−δy−θ

2 dy

= δθ log(α2)

(α1 − 1)(α2 − 1)

∑∞

a,b=0

∑∞

c,d=0
�1 (a, b) T2 (c, d)

∫ ∞

0

y−θ−1e−(c+d+1))δy−θ

dy
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= δθ log(α2)

(α1 − 1)(α2 − 1)

∑∞

a,b=0

∑∞

c,d=0

�1(a, b)�2(c, d)

(c + d + 1)) δ
,

where

�1 (a, b) = (b + 1)α2

(α1 + 1)a+1(α2 + 1)b+2

and

�2(c, d) = (b + 1)
d
(log(α1))

c
(log(α2))

d

c! d!

(
(a + 1)

c − ac
)

.

Case two: α1 �= α2, δ1 �= δ2 and θ1 �= θ2

R = P(Y2 > Y1) =
∫ ∞

0

F1(y)dF2(y)dy

= δ2θ2 log(α2)

(α1 − 1)(α1 + 1)(α2 − 1)(α2 + 1)2

∫ ∞

0

y−θ2−1e−δ2y−θ2
α1+e−δ2y−θ2

2

(
αe−δ1y−θ1

1 − 1
)

×
(

1 − αe−δ1y−θ1

1

α1 + 1

)−1 (
1 − αe−δ2y−θ2

2

α2 + 1

)−2

dy.

Using the series expansion in Eq. (10), we have

R = δ2θ2 log(α2)

(α1 − 1)(α2 − 1)

∑∞

j=0

∑∞

k=0
�1 (a, b)

∫ ∞

0

y−θ2−1e−δ2y−θ2

(
αe−δ1y−θ1

1 − 1
)

αae−δ1y−θ1

1 α(b+1)e−δ2y−θ2

2 dy.

Using the series expansion in Eq. (9), we can obtain

R = δ2θ2 log(α2)

(α1 − 1)(α2 − 1)

∑∞

a=0

∑∞

b=0
�1 (a, b)

∫ ∞

0

y−θ2−1e−δ2y−θ2

(
αe−δ1y−θ1

1 − 1
)

αae−δ1y−θ1

1 α(b+1)e−δ2y−θ2

2 dy

= δ2θ2 log(α2)

(α1 − 1)(α2 − 1)

∑∞

a,b=0

∑∞

c,d=0
�1 (a, b) �2 (c, d)

∫ ∞

0

y−θ2−1e−(cδ1y−θ1 +(d+1)δ2y−θ2)dy.

4 Parameter Estimation

In this section, we consider the maximum likelihood approach to estimate the unknown param-
eters of the MAPTIW distribution. Furthermore, the approximate confidence intervals (ACIs) of the
unknown parameters are acquired.

4.1 Maximum Likelihood Estimation
Given a random sample of size n taken from the MAPTIW distribution with PDF given by Eq. (6),

we can express the log-likelihood function as

� (α, δ) = n log
(

δθ log α

α − 1

)
− (θ + 1)

∑n

i=1
log (xi) − δ

∑n

i=1
x−θ

i + (log α)
∑n

i=1

(
1 + e−δx−θ

i

)
− 2

∑n

i=1
log

(
1 + α − αe

−δx−θ
i

)
. (20)

The maximum likelihood estimates (MLEs) denoted by α̂, δ̂ and θ̂ can be got by solving the
following normal equations simultaneously
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∂�

∂α
= − n

α − 1
+ n

α log(α)
+

∑n

i=1

(
e−δx−θ

i + 1
)

α
− 2

∑n

i=1
�α = 0, (21)

∂�

∂δ
= n

δ
−

∑n

i=1
x−θ

i − log (α)
∑n

i=1
x−θ

i e−δx−θ
i − 2

∑n

i=1
�δ = 0, (22)

and
∂�

∂θ
= n

θ
−

∑n

i=1
log (xi) + δ

∑n

i=1
x−θ

i log (xi) + δ log (α)
∑n

i=1
x−θ

i log (xi) e−δx−θ
i − 2

∑n

i=1
�θ = 0, (23)

where

�α = 1 − e−δx−θ
i αe

−δx−θ
i −1

α − αe
−δx−θ

i + 1
,

�δ = log(α)x−θ

i e−δx−θ
i αe

−δx−θ
i

α − αe
−δx−θ

i + 1
,

and

�θ = −δ log(α)x−θ

i log (xi) e−δx−θ
i αe

−δx−θ
i

α − αe
−δx−θ

i + 1
.

To get the MLEs of α, δ and θ , any numerical technique can be used to solve Eqs. (21)–(23).
Using the asymptotic properties of the MLEs, we can construct the ACIs of α, δ and θ . It is known

that (α, δ, θ)∼N
((

α̂, δ̂, θ̂
)

, I−1
0 (α, δ, θ)

)
, where I−1

0 (α, δ, θ) is the asymptotic variance-covariance of

the MLEs. Here, we employ the approximate asymptotic variance-covariance matrix of the MLEs

denoted by I−1
0

(
α̂, δ̂, θ̂

)
which obtained based on the observed Fisher information matrix to compute

the ACIs as follows:

I−1
0

(
α̂, δ̂, θ̂

)
=

⎡⎣−Iαα −Iαδ −Iαθ

−Iαδ −Iδδ −Iδθ

−Iαθ −Iδθ −Iθθ

⎤⎦−1

(α,δ,θ)=(α̂,δ̂,θ̂)

=

⎡⎢⎢⎢⎣
v̂ar

(
α̂
)

ĉov
(
α̂, δ̂

)
ĉov

(
α̂, θ̂

)
ĉov

(
δ̂, α̂

)
v̂ar

(
δ̂
)

ĉov
(
δ̂, θ̂

)
ĉov

(
θ̂ , α̂

)
ĉov

(
θ̂ , δ̂

)
v̂ar

(
θ̂
)

⎤⎥⎥⎥⎦ . (24)

where Iαα, Iδα = Iαδ, Iαθ = Iθα, Iδθ = Iθδ, Iδδ and Iθθ are derived from Eq. (20) as

Iαα = n
(

1
(α − 1)2

− log(α) + 1

α2 log2
(α)

)
−

∑n

i=1

(
e−δx−θ

i + 1
)

α2
− 2

∑n

i=1
�αα,

Iδδ = − n
δ2

+ log (α)
∑n

i=1
x−2θ

i e−δx−θ
i − 2

∑n

i=1
�δδ,

Iθθ = − n
θ 2

− δ
∑n

i=1
x−θ

i log2
(xi) + δ log (α)

∑n

i=1

(
δ − xθ

i

)
x−2θ

i log2
(xi) e−δx−θ

i − 2
∑n

i=1
�θθ ,

Iαδ = − 1
α

∑n

i=1
x−θ

i e−δx−θ
i − 2

∑n

i=1
�αδ,

Iαθ = δ
∑n

i=1x
−θ

i log (xi) e−δx−θ
i

α
− 2

∑n

i=1
�αθ ,
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and

Iδθ =
∑n

i=1
x−θ

i log (xi) + log (α)
∑n

i=1

(
xθ

i − δ
)

x−2θ

i log (xi) e−δx−θ
i − 2

∑n

i=1
�δθ ,

where

� ≡ �(α, δ, θ) = log
(

α − αe
−δx−θ

i + 1
)

,

�αα ≡ −
e−δx−θ

i

(
e−δx−θ

i − 1
)

αe
−δx−θ

i −2

α − αe
−δx−θ

i + 1
−

(
1 − e−δx−θ

i αe
−δx−θ

i −1

)2

(
α − αe

−δx−θ
i + 1

)2 ,

�θθ =
δ log(α)x−2θ

i log2
(xi) e−2δx−θ

i αe
−δx−θ

i
(
δ
(

log(α) + eδx−θ
i

)
− xθ

i e
δx−θ

i

)
−α + αe

−δx−θ
i − 1

−δ2 log2
(α)x−2θ

i log2
(xi) e−2δx−θ

i α2e
−δx−θ

i(
α − αe

−δx−θ
i + 1

)2 ,

�δδ =
log(α)x−2θ

i e−2δx−θ
i αe

−δx−θ
i

(
log(α) + eδx−θ

i

)
−α + αe

−δx−θ
i − 1

− log2
(α)x−2θ

i e−2δx−θ
i α2e

−δx−θ
i(

α − αe
−δx−θ

i + 1
)2 ,

�αθ =
δ log(α)x−θ

i log (xi) e−δx−θ
i αe

−δx−θ
i

(
1 − e−δx−θ

i αe
−δx−θ

i −1

)
(
α − αe

−δx−θ
i + 1

)2

+
⎛⎜⎝−

δx−θ

i log (xi) e−2δx−θ
i αe

−δx−θ
i −1

(
log(α) + eδx−θ

i

)
α − αe

−δx−θ
i + 1

⎞⎟⎠ ,

�αδ = x−θ

i e−δx−θ
i αe

−δx−θ
i −1 + log(α)x−θ

i e−2δx−θ
i αe

−δx−θ
i −1

α − αe
−δx−θ

i + 1

−
log(α)x−θ

i e−δx−θ
i αe

−δx−θ
i

(
1 − e−δx−θ

i αe
−δx−θ

i −1

)
(
α − αe

−δx−θ
i + 1

)2

and

�θδ = −
log(α)x−2θ

i log (xi) e−2δx−θ
i αe

−δx−θ
i

(
δ
(

log(α) + eδx−θ
i

)
− xθ

i e
δx−θ

i

)
−α + αe

−δx−θ
i − 1

+ δ log2
(α)x−2θ

i log (xi) e−2δx−θ
i α2e

−δx−θ
i(

α − αe
−δx−θ

i + 1
)2 .

Therefore, the (1 − γ )% ACIs of α δ, and θ are as follows:
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α̂ ± zγ /2

√
v̂ar

(
α̂
)
, δ̂ ± zγ /2

√
v̂ar

(
δ̂
)

and θ̂ ± zγ /2

√
v̂ar

(
θ̂
)

,

where zγ /2 is the upper (γ /2)th percentile point of a standard normal distribution.

5 Simulation Study

In this part, we use a simulation with variable sample sizes n and various values of the parameters
α, δ, and θ to show how well the MLEs of the MAPTIW distribution perform. The results are based
on sample sizes of 20, 50, and 100 with parameter values α = (1.5, 3, 5), δ = (0.5, 1.5, 3) and θ =
(1.5, 3, 5), respectively. We get MLEs, mean square errors (MSEs), and confidence lengths (CLs) in
each case. The simulation study is implemented using the steps below:

1. Establish the sample size and parameter initial values.

2. Create a random sample of size n from the MAPTIW distribution using Eq. (13).

3. Compute the MLEs of α, δ and θ .

4. Compute the MSEs of α, δ and θ .

5. Get the CLs of α, δ and θ .

6. Redo Steps 2–5, 1000 times.

7. Determine the average values of estimates (AEs), MSEs, and CLs as follows:

AE (ξ) =
∑1000

j=1 ξ̂j

1000
, MSE (ξ) =

∑1000

j=1

(
ξ̂j − ξ

)2

1000
and CL (ξ) =

∑1000

j=1

(
ξU

j − ξ L
j

)
1000

,

where ξ is the unknown parameter and ξU
j , ξ L

j are the lower and upper confidence bounds, respectively.
Tables 1–3 present the simulation results. We can see from these Tables that the AEs of the parameters
tend to be the true parameter values as the sample size increases. As a result, the MLEs perform
like asymptotically unbiased estimators. In all cases, the MSEs decrease as the sample size grows,
indicating that the MLEs are consistent. In all situations, the CLs decrease as the sample size increases,
as expected, because as n increases, some new information is acquired.

Table 1: AEs, MSEs (in parentheses) and CLs of the parameters at sample size, n = 20

Parameter δ θ α

δ θ α AE(MSE) CL AE(MSE) CL AE(MSE) CL

0.5 1.5 1.5 0.55408(0.65817) 1.59758 1.52803(0.29439) 0.51286 1.53482(0.21841) 0.46001
3 3 0.53070(0.48201) 1.25144 3.04586(0.21344) 0.31218 3.63060(0.19166) 0.27550
5 5 0.53997(0.52713) 1.29063 5.04692(0.22020) 0.41108 5.76559(0.17896) 0.29195

1.5 1.5 1.5 1.57570(0.58324) 1.36819 1.56092(0.23711) 0.38703 1.51871(0.21711) 0.28688
3 3 1.58239(0.32943) 0.95184 3.05714(0.12040) 0.23631 3.11317(0.09571) 0.24144
5 5 1.58197(0.43798) 1.16554 5.05323(0.16283) 0.24246 5.27621(0.14872) 0.24504

3 1.5 1.5 2.69997(0.69001) 1.63578 3.33097(0.24510) 0.40800 1.51947(0.21104) 0.28400
3 3 2.93792(0.49867) 1.20014 2.89746(0.13105) 0.32173 3.17920(0.28563) 0.24903
5 5 2.83930(0.42533) 1.19646 5.09245(0.18548) 0.38321 5.59062(0.32245) 0.25649
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Table 2: AEs, MSEs (in parentheses) and CLs of the parameters at sample size, n = 50

Parameter δ θ α

δ θ α AE(MSE) CL AE(MSE) CL AE(MSE) CL

0.5 1.5 1.5 0.52704(0.30408) 0.79879 1.51401(0.14719) 0.25643 1.51741(0.10920) 0.23001
3 3 0.51535(0.24101) 0.62857 3.02293(0.10672) 0.15609 3.31531(0.09830) 0.13775
5 5 0.51998(0.26356) 0.64531 5.02346(0.11010) 0.20554 5.38279(0.08948) 0.14597

1.5 1.5 1.5 1.53785(0.29162) 0.68409 1.53046(0.11855) 0.19351 1.509356(0.10855) 0.14344
3 3 1.54116(0.16471) 0.47592 3.02857(0.06020) 0.11815 3.05658(0.04785) 0.12072
5 5 1.54098(0.12899) 0.58277 5.02661(0.08141) 0.12123 5.13810(0.07436) 0.12252

3 1.5 1.5 2.84998(0.34500) 0.81789 1.51548(0.12255) 0.20400 1.50973(0.10567) 0.14200
3 3 2.96895(0.24933) 0.60007 2.94862(0.06552) 0.17108 3.08960(0.14281) 0.24903
5 5 2.91965(0.21266) 0.59823 5.04622(0.09274) 0.19105 5.29531(0.16122) 0.12824

Table 3: AEs, MSEs (in parentheses) and CLs of the parameters at sample size, n = 100

Parameter δ θ α

δ θ α AE(MSE) CL AE(MSE) CL AE(MSE) CL

0.5 1.5 1.5 0.51352(0.15204) 0.39939 1.50701(0.07359) 0.12821 1.50871(0.05476) 0.11503
3 3 0.50767(0.12050) 0.31428 3.01146(0.05336) 0.07804 3.15765(0.04915) 0.06887
5 5 0.50999(0.13178) 0.32265 5.01173(0.05505) 0.10277 5.01913(0.04474) 0.07298

1.5 1.5 1.5 1.51892(0.14581) 0.34204 1.51526(0.08981) 0.09675 1.50467(0.05427) 0.07172
3 3 1.52058(0.08235) 0.23796 3.01429(0.03010) 0.05907 3.02829(0.02392) 0.06036
5 5 1.52049(0.10949) 0.29138 5.01330(0.04070) 0.06061 5.06905(0.03718) 0.06126

3 1.5 1.5 2.92499(0.17250) 0.40894 1.50774(0.06127) 0.10200 1.50486(0.05283) 0.07100
3 3 2.98447(0.12466) 0.30003 2.97431(0.03276) 0.08554 3.04480(0.07140) 0.12451
5 5 2.95982(0.10633) 0.29911 5.02311(0.04637) 0.09552 5.14765(0.08061) 0.06412

6 Applications

In this part, we illustrate the MAPTIW distribution’s flexibility by using three real data sets.
The MAPTIW distribution is compared to other models such as, alpha power inverse Lomax
(APILo) distribution by ZeinEldin et al. [21], inverse Lomax (ILo) distribution, alpha power inverse
Weibull (APIW) distribution by Basheer [14], alpha power inverse Lindley (APILi) distribution by
Dey et al. [22] and Weibull (We) distribution. Table 4 displays the PDFs of these distributions.

The first data (Data 1) describes the mortality rates due to the COVID-19 pandemic in the United
Kingdom for 76 days, from 15 April to 30 June 2020. The data is originally investigated by Mubarak
et al. [23]. The entire data set is as follows: 0.0587, 0.0863, 0.1165, 0.1247, 0.1277, 0.1303, 0.1652,
0.2079, 0.2395, 0.2751, 0.2845, 0.2992, 0.3188, 0.3317, 0.3446, 0.3553, 0.3622, 0.3926, 0.3926, 0.4110,
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0.4633, 0.4690, 0.4954, 0.5139, 0.5696, 0.5837, 0.6197, 0.6365, 0.7096, 0.7193, 0.7444, 0.8590, 1.0438,
1.0602, 1.1305, 1.1468, 1.1533, 1.2260, 1.2707, 1.3423, 1.4149, 1.5709, 1.6017, 1.6083, 1.6324, 1.6998,
1.8164, 1.8392, 1.8721, 1.9844, 2.1360, 2.3987, 2.4153, 2.5225, 2.7087, 2.7946, 3.3609, 3.3715, 3.7840,
3.9042, 4.1969, 4.3451, 4.4627, 4.6477, 5.3664, 5.4500, 5.7522, 6.4241, 7.0657, 7.4456, 8.2307, 9.6315,
10.187, 11.1429, 11.2019, 11.4584.

Table 4: The PDFs of different models

Distribution PDF

ILo f (x, θ , δ) = δθ

x2 (1 + δ/x)
−θ−1 , x > 0, θ , δ > 0

APILo f (x, α, θ , δ) = log α

α−1
θδx−2 (1 + δ/x)

−θ−1
α(1+δ/x)−θ , x > 0, α, θ , δ > 0

APIW f (x, α, θ , δ) = log α

α−1
θδx−(θ+1)e−δx−θ

αe−δx−θ

, x > 0, α, θ , δ > 0

APILi f (x, α, δ) = log α

α−1

(
δ2

1+δ

) (
1+x
x3

)
e−δ/xα

e−δ/x
(

1+ δ
x(1+δ)

)
, x > 0, α, δ > 0

We f (x, θ , δ) = δθxθ−1e−δxθ , x > 0, θ , δ > 0

The second data set (Data 2) describes the remission times (in months) of a random sample of
128 bladder cancer patients studied by Lee et al. [24] and recently investigated by Al-Zahrani et al.
[25–27]. The complete data set of is: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52,
4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47,
14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77,
32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05,
2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,
5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,
18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53,
12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

The third data set (Data 3) consists of the times of breakdown of a sample of 25 devices at 180°C
and given by Pham [28]. The complete data set of is: 112, 260, 298, 327, 379, 487, 593, 658, 701, 720,
734, 736, 775, 915, 974, 1123, 1157, 1227, 1293, 1335, 1472, 1529, 1545, 2029, 4568.

Before studying these data sets, we foremost scheme the corresponding TTT plots. Fig. 3 displays
the TTT plots of these data. It indicates that Data 1 has a decreasing failure rate function, while
the TTT plots for Data 2 and 3 reveal an upside-down bathtub failure rate function. Therefore,
we can infer that the MAPTIW distribution is reasonable to model these data sets. The MLEs and
their standard errors (SEs) of the MAPTIW distribution and some other competitive distributions
are displayed in Tables 5, 6 and 7 for Data 1, 2 and 3, respectively. In addition, some goodness
of fit statistics, namely, Akaike information criterion (AIC), consistent Akaike information crite-
rion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC)
statistics, Anderson-Darling (A), Cramér-Von Mises (W �) and Kolmogorov-Smirnov (K.S) (with the
corresponding p-value) are also presented in Tables 5, 6 and 7 for Data 1, 2 and 3, respectively. It is
noted from these Tables that the MAPTIW distribution performed better than all other competitive
distributions. As a result, the MAPTIW distribution is determined to be the best model to fit the given
two data sets. Figs. 4–6 display the fitted PDFs, CDFs, RFs and probability-probability (PP) plots
of the MAPTIW distribution for Data 1, 2 and 3, respectively. These figures demonstrate that the
MAPTIW distribution can furnish a close fit to the given data sets. Generally, we can deduce that
the MAPTIW distribution is appropriate for modelling the delivered data sets more preferably than
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some conventional and some lately suggested models. The ACIs of the unknown parameters of the
MAPTIW distribution for Data 1, 2 and 3 are obtained and displayed in Table 8.
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Figure 3: TTT Plots for Data 1 (left) and Data 2 (middle) and Data 3 (right)

Table 5: MLEs, SEs (in parentheses) and different statistics for Data 1

Model Estimates AIC CAIC BIC HQIC W ∗ A∗ K.S p-value

MAPTIW δ̂ = 0.0191 (0.0607) 289.17 289.50 296.16 291.96 0.0739 0.4997 0.0608 0.9413
θ̂ = 1.2535 (0.1545)

α̂ = 20.002 (51.697)

ILo δ̂ = 0.4195 (0.2233) 289.48 289.65 294.14 291.35 0.0935 0.6173 0.0741 0.7969
θ̂ = 2.1439 (0.8161)

APTILo δ̂ = 0.0044 (0.0017) 294.13 294.46 301.12 296.92 0.1260 0.8505 0.1128 0.2880
θ̂ = 80.992 (35.032)

α̂ = 4.8905 (2.7778)

IW δ̂ = 0.6701 (0.0917) 294.34 294.50 299.00 296.20 0.1516 1.0210 0.1021 0.4059
θ̂ = 0.7896 (0.0669)

APIW δ̂ = 0.2617 (0.1249) 292.04 292.37 299.03 294.83 0.1093 0.7248 0.0796 0.7208
θ̂ = 0.9450 (0.0821)

α̂ = 17.523 (27.317)

(Continued)
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Table 5 (continued)

Model Estimates AIC CAIC BIC HQIC W ∗ A∗ K.S p-value

APTILi δ̂ = 22.103 (19.446) 301.30 301.46 305.96 303.16 0.1780 1.1423 0.1498 0.0658
α̂ = 0.4869 (0.0827)

We δ̂ = 0.8465 (0.0743) 287.50 287.66 292.16 289.36 0.1133 0.7653 0.0805 0.7074
θ̂ = 0.5090 (0.0771)

Table 6: MLEs, SEs (in parentheses) and different statistics for Data 2

Model Estimates AIC CAIC BIC HQIC W ∗ A∗ K.S p-value

MAPTIW δ̂ = 0.0064 (0.0034) 829.74 829.93 838.29 833.21 0.0510 0.3675 0.0398 0.9872
θ̂ = 1.6896 (0.1203)

α̂ = 523.86 (286.93)

ILo δ̂ = 2.0022 (0.6311) 853.35 853.44 859.05 855.66 0.2232 1.4660 0.1184 0.0549
θ̂ = 2.4620 (0.5932)

APTILo δ̂ = 0.0033 (0.0007) 868.78 868.97 877.33 872.25 0.4545 2.8593 0.1017 0.1410
θ̂ = 350.77 (99.095)

α̂ = 30.871 (14.611)

IW δ̂ = 2.4310 (0.2192) 892.00 892.09 897.70 894.31 0.7443 4.5464 0.1407 0.0125
θ̂ = 0.7521 (0.0424)

APIW δ̂ = 0.6359 (0.1472) 860.26 860.45 868.81 863.73 0.4020 2.5320 0.0957 0.1910
θ̂ = 1.0023 (0.0579)

α̂ = 652.77 (877.41)

APTILi δ̂ = 1.1056 (0.1604) 866.94 867.04 872.64 869.26 0.5242 3.2391 0.0924 0.2242
α̂ = 659.49 (787.59)

We δ̂ = 0.0939 (0.0190) 832.17 832.26 837.87 834.49 0.1313 0.7864 0.0699 0.5575
θ̂ = 1.0477 (0.0675)

Table 7: MLEs, SEs (in parentheses) and different statistics for Data 3

Model Estimates AIC CAIC BIC HQIC W ∗ A∗ K.S p-value

MAPTIW δ̂ = 2026.59 (969.4) 395.64 396.78 399.30 396.65 0.0475 0.2955 0.0980 0.9506
θ̂ = 2.4388 (0.3803)

α̂ = 934.69 (2136.7)

ILo δ̂ = 3.6074 (48.050) 403.57 404.11 406.00 404.24 0.1414 0.8349 0.2359 0.1042
θ̂ = 162.84 (2155.8)

(Continued)
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Table 7 (continued)

Model Estimates AIC CAIC BIC HQIC W ∗ A∗ K.S p-value

APTILo δ̂ = 0.0146 (0.0252) 405.94 407.08 409.60 406.95 0.1136 0.6681 0.2532 0.0669
θ̂ = 4661.4 (8063.1)

α̂ = 11826.4 (13877)

IW δ̂ = 2189.0 (2214.2) 401.71 402.25 404.14 402.38 0.1677 0.9896 0.1755 0.3796
θ̂ = 1.2222 (0.1690)

APIW δ̂ = 5911 (38464.99) 399.49 400.63 403.15 400.50 0.1170 0.6805 0.1387 0.6709
θ̂ = 1.5763 (0.9521)

α̂ = 85.338 (256.11)

APTILi δ̂ = 36.5568 (7.5308) 403.66 404.20 406.10 404.33 0.1269 0.7475 0.2460 0.0808
α̂ = 33636090 (11863)

We δ̂ = 0.00006 (0.0268) 396.96 397.51 399.40 397.639 0.0477 0.4254 0.1414 0.6993
θ̂ = 1.3821 (0.00001)
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Figure 4: Plots of the fitted functions for the MAPTIW distribution and PP plot for Data 1
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Figure 5: Plots of the fitted functions for the MAPTIW distribution and PP plot for Data 2
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Figure 6: Plots of the fitted functions for the MAPTIW distribution and PP plot for Data 3
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Table 8: The ACIs of the unknown parameters for Data 1, 2 and 3

Data δ θ α

1 (0, 0.1381) (0.9506, 1.5563) (0, 121.3253)
2 (0, 0.0132) (1.4539, 1.9253) (0, 1086.253)
3 (126.53, 3926.65) (1.6933, 3.1842) (0, 5122.63)

7 Conclusion

As a new extension of the inverse Weibull model, we introduced a new three-parameter inverse
Weibull distribution. Additionally, numerous theoretical properties of the distribution were explored
in order to develop a more flexible model that includes the decreasing and unimodal shape for the
hazard rate function. We described the method of maximum likelihood for estimating the parameters
of the suggested distribution. A simulation study is also used to investigate the asymptotic behaviour
of the maximum likelihood estimators. The model’s efficiency is demonstrated using three real data
sets to show its applicability in real life. The proposed distribution is a better distributional model for
fitting such data sets than many of its related models, as well as several newly produced distributions,
using various information measures.
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