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ABSTRACT

The purpose of this study is to reduce the uncertainty in the calculation process on hesitant fuzzy sets (HFSs).
The innovation of this study is to unify the cardinal numbers of hesitant fuzzy elements (HFEs) in a special way.
Firstly, a probability density function is assigned for any given HFE. Thereafter, equal-probability transformation is
introduced to transform HFEs with different cardinal numbers on the condition into the same probability density
function. The characteristic of this transformation is that the higher the consistency of the membership degrees in
HFEs, the higher the credibility of the mentioned membership degrees is, then, the bigger the probability density
values for them are. According to this transformation technique, a set of novel distance measures on HFSs is
provided. Finally, an illustrative example of intersection traffic control is introduced to show the usefulness of
the given distance measures. The example also shows that this study is a good complement to operation theories
on HFSs.

KEYWORDS
Hesitant fuzzy sets; equal-probability mapping; distance measure; intersection traffic control; cardinality theory

1 Introduction

As an important tool of group decision making, hesitant fuzzy set (HFS) assigns the membership
degree of an element to a set with a set of possible values [0, 1] ([1–5]). Distance is a fundamental
feature in describing the relationship between HFSs. It is well known that when the distance of different
hesitant fuzzy elements (HFEs) are calculated, their cardinalities should be unified firstly ([6–9]). How
to realize it? The classical models usually extend the shorter HFE until they have the same cardinal
number. Usually, the shorter HFE is extended by putting more minimum value, maximum value, or
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any value in it with the existing ones. Actually, many values empirically exist in the shorter HFE.
Thus, it is very necessary to improve the classical distance measures on HFSs by using some novel
techniques to unify the cardinal numbers of the calculated HFEs. In this study, the cardinality problem
is considered in another way, where equal-probability mapping, cardinality, and impulse function are
combined to define a kind of novel distance measures for HFSs. Based on the new proposed distance
measures, any two HFSs with different cardinal numbers can be dealt with as the same in the case
that they have the same number of elements. Such a theory is feasible from the point of probability
([10–12]), and some classical studies on the combination of probability theory and hesitation fuzzy
sets please refer to Liu et al. [13], Liu et al. [14], etc. Meanwhile, since this kind of technique is of
multi-source heterogeneous data, it can also be used in intuitionistic fuzzy sets (IFSs). For example,
Mahmood et al. [15] divided the information on IFSs and HFSs into different grades, and proposed
a novel algorithm to integrate this information. Similarly, the research results of this study can be
extended to the field of IFSs too.

The characteristic of the newly proposed method is to make full use of the existing decision
making information, and not to add artificial one, so as to keep the objectivity of decision making
process. The technique adopted in the proposed method is equal probability transformation, which
guarantees the constant probability of the theoretical truth value appearing at each point before and
after the transformation. Besides, this technique is also suitable to be used in aggregation operators
on HFSs. For more details on this issue, please refer to Xia et al. [16]. To describe the idea clearly, the
remainder of this study is arranged as follows. Section 2 introduces some basic concepts on HFSs,
and introduces a series of classical distance measures. Section 3 introduces the concept of equal-
probability transformation on HFSs, gives three properties of the transformation, and proposes a
series of improved distance measures. Section 4 introduces a traffic control mode decision making
problem, and solves it by the proposed improved distance measures on HFSs. Finally, the main
innovation points are concluded in Section 5.

2 Preliminaries

In this section, some basic definitions and some classical distance measures on HFSs are reviewed.
For convenience’s sake X = {x1, x2, . . . , xn}, is denoted as the discourse set throughout this study.

Definition 1 (Torra [2]) Let X be a given set, an HFS E on X is demonstrated as a function that
when applied to X returns a subset of [0, 1], which can be described as E = {〈x, hE (x)〉 |x ∈ X }, where
hE (x) is a set of values in [0, 1], representing the possible membership degrees of the element x to the
HFS E. For convenience, hE (x) is called an HFE. The classical definition of distance measure on HFSs
was addressed by Xu et al. [4] as follows.

Definition 2 (Xu et al. [4]) Let M and N be two HFSs on X, then the distance measure on M and
N is described as d (M, N), which satisfies the following three properties, i.e., (i) 0 ≤ d (M, N) ≤ 1, if
and only if M = N; (ii) d (M, N) = d (N, M). By referring to Hamming distance and the Euclidean
distance, Xu et al. (2011) defined.

Definition 3 (Xu et al. [4]) Let M and N be two HFSs on X. For any xi ∈ X (1 ≤ i ≤ n), let
l (hM (xi)) and l (hN (xi)) be the cardinal numbers of hM (xi) and hN (xi), respectively. Then, the hesitant
normalized Hamming distance, Euclidean distance and generalized hesitant normalized distance are
proposed as



CMES, 2023, vol.135, no.2 1591

dh (M, N) = 1
n

n∑
i=1

[
1
lxi

lxi∑
j=1

∣∣hσ(j)
M (xi) − hσ(j)

N (xi)
∣∣] , (1)

de (M, N) =
[

1
n

n∑
i=1

(
1
lxi

lxi∑
j=1

∣∣hσ(j)
M (xi) − hσ(j)

N (xi)
∣∣2)]1/2

, (2)

dg (M, N) =
[

1
n

n∑
i=1

(
1
lxi

lxi∑
j=1

∣∣hσ(j)
M (xi) − hσ(j)

N (xi)
∣∣λ)]1/λ

, (3)

where lxi = max {l (hM (xi)) , l (hN (xi))}, λ > 0, hσ(j)
M (xi) and hσ(j)

N (xi) are the jth largest values in hM (xi)

and hN (xi), respectively. It is noteworthy that l (hM (xi)) �= l (hN (xi)) holds in most cases, to operate
them correctly, one should extend the shorter one until the cardinal numbers of hM (xi) and hN (xi) are
the same.

Definition 4 (Xu et al. [4]) Let M and N be two HFSs on X , if one takes the weight
wi (i = 1, 2, . . . , n) of each element xi ∈ X into account, the generalized hesitant weighted distance is
proposed as

dwg (M, N) =
[

n∑
i=1

wi

(
1
lxi

lxi∑
j=1

∣∣hσ(j)
M (xi) − hσ(j)

N (xi)
∣∣λ)]1/λ

. (4)

where λ > 0.

3 Main Results

In classical calculation process on HFSs, to satisfy Eqs. (1)–(4), part of the information on HFSs
has to be artificially added when the cardinality of HFEs is different. In an environment characterized
by uncertainty, this process further increases the uncertainty of computing problems and weakens
support for decision-makers. To reduce the uncertainty in the calculation for HFSs, for any given
HFE h1 with any given cardinal number i (i ∈ N), the task of this study is to transfer h1 to a new HFE
h2 with cardinal number j for any given j (j ∈ N), where h1 and h2 are the same in statistics. Generally
speaking, this transformation consists of two parts. Firstly, a probability density function for HFE is
proposed. Secondly, an equal-probability transformation function is given.

3.1 Probability Density Function for HFE
From the viewpoint of probability, the truth value of membership function of any given HFE

can appear at any point between the smallest and the largest occurred membership degree, but the
probability of occurrence is different for different values. Logically, the probability that a certain point
is the true value of membership degree of HFE is related to the occurred value of membership degree
near this point. When the occurred value of membership degree function is far away from the point, it
is thought that the probability of the true value in this point is low; otherwise, the probability is high.
Guided by this idea, a probability density function for HFE is introduced as follows.

Definition 5 Suppose that there is an HFE h = {h1, h2, . . . , hm}, and suppose that h1 ≤ h2 ≤ · · · ≤ hm.
Then, a probability density function for h is given as
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p
(

h, ε
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, h < h1 or h ≥ hm;
1

(m − 1) (hi+1 − hi)
, hi ≤ h < hi+1, hi−1 < hi < hi+1 < hi+2;

1
(m − 1) (hi+1 − h − εi)

, hi + ε ≤ h < hi+1, hi−1 = hi < hi+1 < hi+2;

1
(m − 1) (hi+1 − h + εi)

, hi ≤ h < hi+1 − ε, hi−1 < hi < hi+1 = hi+2;

1
(m − 1) (hi+1 − h − 2εi)

, hi + ε ≤ h < hi+1 − ε, hi−1 = hi < hi+1 = hi+2;

1
2 (m − 1) ε

, hi − ε ≤ h < hi+1 + ε, hi = hi+1,

(5)

where 0 < ε < 1
2

minhi �=hi−1
{|hi − hi−1|}, whereas P

(
hi ≤ h ≤ hi+1

)
= limε→0+

∫ hi+1+ε

hi−ε
p
(

h, ε
)

dh = 1
m−1

.

On the probability density function for HFSs, some properties are summarized as follows.

Property 1 By Eq. (5), for any given HFE h, there is only one probability density function p
(

h
)

which corresponds to it.

Property 2 If any given HFE h and its probability density function p
(

h
)

, for any interval

[hi, hi+1] in the definition domain of p
(

h
)

, the smaller is the value hi+1 − hi, the bigger the value of

P
(

hi ≤ h ≤ hi+1

)
is.

Property 3 If any given HFE h and its probability density function p
(

h
)

, for any duplicate elements

hi in h, there is an impulse function P (hi) in p
(

h
)

. The more able is hi, the stronger the impulse

function is.

3.2 Equal-Probability Function and Their Properties
For any given HFE, the occurrence interval of the true value of its membership degree can be

calculated by Eq. (5). On the premise of keeping the probability density function of true value at
any point in the interval unchanged, the expression form of HFE can be changed by specific skills.
Specifically, the equal-probability function for HFSs is proposed in this subsection.

Definition 6 Suppose that there is an HFE h = {h1, h2, . . . , hm}, where h1 ≤ h2 ≤ · · · ≤ hm. Suppose

the probability density function for h is given as p
(

h; ε
)

. Then, the set h′ = {
h′

1, h′
2, . . . , h′

n

}
is defined

as the equal-probability mapping of h to h′, where h′
1 = h1, h′

n = hm, and for any j ∈ {1, 2, . . . , n − 1}, it
holds that

P
(

h′
j ≤ h ≤ h′

j+1

)
= lim

ε→0+

∫ h′
j+1+ε

h′
j−ε

p
(

h; ε
)

dh = 1
n − 1

. (6)

By using Definition 6, an HFE is transferred to another new HFE under the condition that the two
variables share the same probability distribution function. An important property on equal-probability
function for HFSs is introduced as follows.
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Property 4 Suppose that there are two HFEs h = {h1, h2, . . . , hm} and h′ = {
h′

1, h′
2, . . . , h′

n

}
, where

h1 ≤ h2 ≤ · · · ≤ hm, h′
1 ≤ h′

2 ≤ · · · ≤ h′
n. Suppose that p

(
h, ε
)

= p
(

h′, ε
)

. Denote E ′
(

h
)

= 1
m−1

m∑
i=1

hi,

E ′
(

h′
)

= 1
n−1

n∑
j=1

h′
j. Then, it holds that E ′

(
h
)

= E ′
(

h′
)

.

Proof By Eq. (5), it gets that
∫ hm

h1
p
(

h, ε
)

dh =
m−1∑
i=1

hi · P
(

hi ≤ h ≤ hi+1

)
.
∫ h′

n
h′

1
p
(

h, ε
)

dh =
n−1∑
j=1

h′
j ·

P
(

h′
j ≤ h ≤ hj+1

)
. Since p

(
h, ε
)

= p (h′, ε), it gets
m−1∑
i=1

hi ·P
(

hi ≤ h ≤ hi+1

)
=

n−1∑
j=1

h′
j ·P
(

h′
j ≤ h ≤ h′

j+1

)
.

For any i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , n}, by Eq. (6), it gets that P
(

hi ≤ h ≤ hi+1

)
= 1

m−1
,

P
(

h′
j ≤ h ≤ h′

j+1

)
= 1

n−1
. Therefore, it gets that 1

m−1

m−1∑
i=1

hi = 1
n

n∑
j=1

h′
j, i.e., E

(
h
)

= E
(

h
′)

.

To illustrate Definition 6 clearly, a case is given as follows.

Case 1 Suppose that there is an HFE h∗ = {0.25, 0.35, 0.35, 0.45}. Please calculate the probability

density function P
(

h
∗)

, and transfer h∗ to a new HFE h∗∗ with cardinal number 6, where P
(

h
∗) =

P
(

h
∗∗)

.

Firstly, the probability density function for h∗ is obtained by Eq. (5), which is denoted as

p
(

h
∗
, ε
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, h < 0.25 or h ≥ 0.45;
10
3

, 0.25 ≤ h < 0.35;

1
6ε

, 0.35 − ε ≤ h < 0.35 + ε;

10
3

, 0.35 + ε ≤ h < 0.45.

Secondly, by Eq. (6), p
(

h
∗
, ε
)

is transferred to

p
(

h
∗∗

, ε
)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, h < 0.25 or h ≥ 0.45;
10
3

, 0.25 ≤ h < 0.35;

1
6ε

, 0.35 − ε ≤ h < 0.35 + ε;

10
3

, 0.35 + ε ≤ h ≤ 0.39;

10
3

, 0.39 ≤ h ≤ 0.45.

Therefore, it gets h∗∗ = {0.25, 0.31, 0.35, 0.35, 0.39, 0.45}. Obviously, it holds p
(

h
∗
, ε
)

= p
(

h
∗∗

, ε
)

.

By further study, Def. 7 is obtained in the following.
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Definition 7 Suppose that there are K HFSs h1, h2, . . . , hK on X = {x1, x2, . . . , xN}, and for any
xi ∈ X (1 ≤ i ≤ N), the set of membership values of xi to hk (1 ≤ k ≤ K) is defined as hk (xi) ={

h1
k(xi), h2

k (xi) , . . . , h
l(hk(xi))
k (xi)

}
, where l (hk (xi)) is the cardinal number of hk (xi) for any k ∈

{1, 2, . . . , K}. Rank the elements of hk (xi) by monotone increasing order, and denote the ranking

result as h′′
k (xi) =

(
h′′1

k (xi) , h′′2
k (xi) , . . . , h

l(hk(xi))
k (xi)

)
. Denote N ′ (xi) = max {l (hk (xi))} (1 < k ≤ K).

For any h′′
k (xi), if l

(
h′′

k (xi)
) = N ′ (xi) then remain h′′

k (xi) as what it should be, otherwise, note h′′
k (xi)

as
→
hk (xi), where

→
hk (xi) =

(
→
hk

1

(xi) ,
→
hk

2

(xi) , . . . ,
→
hk

l(hk(xi))
(xi)

)
. For every

→
hk (xi), if any

→
hk

j1

(xi) and

→
hk

j2

(xi) are equal, it is thought that there is an impulse. If more
→
hk

j∗
(xi) are equal, it is thought that

the impulse is stronger. In order to distinguish them from other
→
hk

j

(xi), denote
→
hk

j∗
(xi) as

→
�h

j∗

k (xi).

If any
→
�h

j∗

k (xi) =
→
�h

(j−1)∗

k (xi), for any given ε (h (xi)), it is obtained that when
→
�h

j∗

k (xi) →
→
�h

(j−1)∗

k (xi), it

holds ε

(
→
�h

j∗

k (xi) −
→
�h

(j−1)∗

k (xi)

)
→ 0, where

∫ →
�h

j∗
k (xi)→

�h
k(j−1)∗ (xi)

[ε (h (xi))]
−1 = 1. Moreover, by Eq. (5), it gets the

probability density function of
→
hk (xi) as

pij

(→
hk (xi)

)
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

(l (h′′
k (xi)) − 1)

(→
hj

k (xi) −
→

hj−1
k (xi)

) ,
→

hj−1
k (xi) ≤ x <

→
hj

k (xi) ,

1
(l (h′′

k (xi)) − 1) ε (x)
,

∣∣∣∣∣x −
→
�h

j∗

k (xi)

∣∣∣∣∣ < ε.

(7)

Definition 8 Suppose that there are K HFSs h1, h2, . . . , hK on X ∈ {x1, x2, . . . , xN}. For any
→
hk (xi),

divides the interval

[
→
hk

1

(xi) ,
→
hk

l(hk(xi))
(xi)

]
into N ′ (xi)−1 sub-intervals, and denote its corresponding

set of segmentation points as ĥk (xi) =
{

→
hk

1

(xi) ,
→
hk

2

(xi) , . . . ,
→
hk

N′(xi)
(xi)

}
, where ĥk

1
(xi) equals

→
hk

1

(xi),

and ĥk

j
(xi) satisfies

∫ ĥk
j(xi)

ĥk
j−1(xi)

pij

(→
hk (xi)

)
dx = (N∗ − 1)

−1. It is noteworthy that there is a possibility that

there are some ĥk

j
(xi) and ĥk

j−1
(xi) are equal. By

hk (xi) =
{

hk
′′
(xi) , l

(
hk

′′
(xi)
) = N ′ (xi) ,

ĥk (xi) , l
(
hk

′′
(xi)
) �= N ′ (xi) ,

(8)

K new sets hk (xi) (k = 1, 2, . . . , K) are constructed. For any k ∈ {1, 2, . . . , K}, rank all
the elements of hk (xi) in monotonically increasing order, and denote the result as h∗

k (xi) ={
h∗

k (x1) , h∗
k (x2) , . . . , h∗

k (xN)
}
, where h∗

k (xi) =
{

h1∗
k (xi) , h2∗

k (xi) , . . . , h
N′(xi)∗
k (xi)

}
.

3.3 Improved Distance Measures on HFSs
By using equal-probability equations, a series of improved distance measures on HFSs are

obtained as follows.
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Definition 9 Suppose that there are K HFSs h1, h2, . . . , hK on X = {x1, x2, . . . , xN}. For any
k1, k2 ∈ {1, 2, . . . , K}, the improved hesitant normalized Hamming distance, Euclidean distance and
generalized hesitant normalized distance between hk1

and hk2
on X are proposed as

dsth

(
hk1

, hk2

) = 1
n

n∑
i=1

⎡⎣ 1
N ′ (xi)

·
N′(xi)∑

j=1

∣∣hj∗
k1

(xi) − hj∗
k2

(xi)
∣∣⎤⎦ , (9)

dste

(
hk1

, hk2

) = 1
n

n∑
i=1

⎡⎣ 1
N ′ (xi)

·
N′(xi)∑

j=1

∣∣hj∗
k1

(xi) − hj∗
k2

(xi)
∣∣2⎤⎦

1
2

, (10)

and

dstg

(
hk1

, hk2

) = 1
n

n∑
i=1

⎡⎣ 1
N ′ (xi)

·
N′(xi)∑

j=1

∣∣hj∗
k1

(xi) − hj∗
k2

(xi)
∣∣λ⎤⎦

1
λ

, (11)

where λ > 0, hj∗
k1

(xi) and hj∗
k2

(xi) are the jth ordinal values in hj∗
k1

(xi) and hj∗
k2

(xi), respectively.

Definition 10 When one takes the weight wi of each element xi ∈ X into account, a generalized
hesitant weighted distance is obtained as

dstwg

(
hk1

, hk2

) =

⎧⎪⎨⎪⎩
n∑

i=1

wi

⎡⎣ 1
N ′ (xi)

·
N′(xi)∑

j=1

∣∣hj∗
k1

(xi) − hj∗
k1

(xi)
∣∣λ⎤⎦

1
λ

⎫⎪⎬⎪⎭ . (12)

Analogously, for any x ∈ X , the distance between two HFEs hk1
(x) and hk2

(x) is defined as

dst1

(
hk1

(x) , hk2
(x)
) = 1

N ′ (xi)
·

N′(xi)∑
j=1

∣∣hj∗
k1

(xi) − hj∗
k2

(xi)
∣∣ , (13)

dst2

(
hk1

(x) , hk2
(x)
) =

⎛⎝ 1
N ′ (xi)

·
N′(xi)∑

j=1

∣∣hj∗
k1

(xi) − hj∗
k2

(xi)
∣∣2⎞⎠

1
2

, (14)

dst3

(
hk1

(x) , hk2
(x)
) =

⎛⎝ 1
N ′ (xi)

·
N′(xi)∑

j=1

∣∣hj∗
k1

(xi) − hj∗
k2

(xi)
∣∣λ⎞⎠

1
λ

, (15)

where λ > 0, hj∗
k1

(x) and hj∗
k2

(x) are the jth ordinal values in hj∗
k1

(x) and hj∗
k2

(x), respectively.

In terms of cardinality, Eqs. (9)–(15) are consistent with Eqs. (1)–(4). To illustrate the performance
of the proposed distance measures, an example is given in the following section.

4 Illustrative Examples
4.1 Problem Introduction

At present, the at-grade intersection is an important kind of complex node in urban road. In traffic
engineering fields, there are three basic methods of traffic control which could be implemented at an
intersection, i.e., “method 1-uncontrolled intersection”; “method 2-intersection with right assignment
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using Yield or Stop signs”; and “method 3-signalized intersection” [17]. For the sake of understanding,
these three kinds of traffic control modes are illustrated by the picture (Figs. 1–3), respectively.

Figure 1: Method 1 traffic
control

Figure 2: Method 2 traffic
control

Figure 3: Method 3 traffic
control

In China, the most frequently used traffic control modes at intersections are “roundabout
control”, “Yield or Stop signs control”, and “traffic signal control”, where they also belong to the
above three control methods, respectively [18]. For the sake of convenience, these three kinds of
control models are denoted by E1, E2, E3. To select a suitable type of control mode for an intersection,
traffic engineers usually consider many factors which include “the grades of the intersection”, “traffic
flow volumes”, “saturation degrees (the ratio of traffic demand to traffic capacity) of the entrance
lanes”, and “geographical position of the intersection in the city”. Here, the aforementioned four
kinds of factors are denoted by f1, f2, f3 and f4. Suppose in Pudong District, Shanghai City, China, an
intersection E0 needs to be designed and constructed. Suppose that the traffic control modes E1, E2, E3

all satisfy existing government standards (Ministry of Housing and Urban-Rural Development of the
People’s Republic of China [19]; Ministry of Construction of the People’s Republic of China [20];
Ministry of Housing and Urban-Rural Development of the People’s Republic of China [21]). Then,
the novel proposed decision making method is used to determine the intersection’s traffic control
mode [22]. To choose the suitable control method, nine INTs in Pudong district, Shanghai city are
investigated which are all in good traffic control effects and they contain all the three traffic control
modes E1, E2, E3. Denote F1 as the fuzzy set “the highway grade” where the better the functions of the
intersection, the larger is the membership degree F1; denote F2 as the fuzzy set “traffic flow volume”;
denote F3 as the fuzzy set “saturation degree of the traffic flow”; and denote F4 as the fuzzy set
“geographical position” where the nearer the distance between the related intersection and the city
center is, the larger is the membership degree of the intersection to F4. Then, the membership degree
of each intersection to each attribute is obtained in Table 1.

Table 1: The membership degree of each intersection to each fuzzy set

Intersection number Mode F 1 F 2 F 3 F 4

Intersection 1 E1 0.75 0.81 0.82, 0.88 0.76, 0.79
Intersection 2 E2 0.81 0.78 0.76, 0.78 0.85, 0.86
Intersection 3 E3 0.72 0.79 0.82, 0.88 0.80, 0.82
Intersection 4 E1 0.78, 0.82 0.77, 0.84 0.79, 0.84, 0.86 0.78, 0.81, 0.82
Intersection 5 E2 0.81, 0.86 0.76, 0.84 0.81, 0.88, 0.89 0.76, 0.78, 0.81
Intersection 6 E3 0.74, 0.78 0.78, 0.81 0.85, 0.87, 0.89 0.75, 0.84, 0.88
Intersection 7 E1 0.79, 0.81 0.79, 0.85 0.85, 0.87 0.84, 0.85

(Continued)



CMES, 2023, vol.135, no.2 1597

Table 1 (continued)

Intersection number Mode F 1 F 2 F 3 F 4

Intersection 8 E2 0.76, 0.78 0.78, 0.81 0.78, 0.79 0.79, 0.83
Intersection 9 E3 0.75, 0.78 0.75, 0.85 0.86, 0.87 0.77, 0.83
Studied one E0 0.70, 0.89 0.75, 0.80 0.72, 0.74 0.75, 0.81

By information aggregation, E1, E2, E3 are expressed as E1 = {hE1
(F1) , hE1

(F2) , hE1
(F3) , hE1

(F4)
}
,

E2 = {hE2
(F1) , hE2

(F2) , hE2
(F3) , hE2

(F4)
}
, E3 = {hE3

(F1) , hE3
(F2) , hE3

(F3) , hE3
(F4)

}
, where hE1

(F1) =
{0.75, 0.78, 0.82, 0.79, 0.81} , hE2

(F1) = {0.81, 0.86, 0.81, 0.78, 0.76} ,

hE3
(F1) = {0.72, 0.74, 0.78, 0.78, 0.75} , hE1

(F2) = {0.81, 0.84, 0.77, 0.79, 0.85} ,

hE2
(F2) = {0.78, 0.76, 0.84, 0.78, 0.81} , hE3

(F2) = {0.79, 0.78, 0.81, 0.85, 0.75} ,

hE1
(F3) = {0.82, 0.88, 0.84, 0.79, 0.86, 0.85, 0.87} , hE2

(F3) = {0.78, 0.76, 0.81, 0.88, 0.89, 0.79, 0.78} ,

hE3
(F3) = {0.88, 0.82, 0.89, 0.85, 0.87, 0.87, 0.86} , hE1

(F4) = {0.76, 0.79, 0.78, 0.81, 0.82, 0.84, 0.85} ,

hE2
(F4) = {0.85, 0.86, 0.81, 0.78, 0.76, 0.79, 0.83} , hE3

(F4) = {0.80, 0.82, 0.84, 0.88, 0.75, 0.77, 0.83} .

Similarly, the studied intersection could be expressed as a hesitant fuzzy set E0 = {〈F1, {0.70,
0.89}〉}, {〈F2, {0.75, 0.80}〉} , {〈F3, {0.72, 0.74}〉} , {〈F4, {0.75, 0.81}〉}. Moreover, the weight vector for
f1, f2, f3, f4 is known as W T = (0.30, 0.25, 0.25, 0.20).

4.2 Decision Making Process
In this subsection, the decision making problem is solved by using the novel distance measures.

Firstly, sort the elements of each h′′
E1

(
Fj

)
(i = 1, 2, 3; j = 1, 2, 3, 4) by using ascending counts, and

denote the calculation results as h′′
E1

(F1) = (0.75, 0.78, 0.79, 0.81, 0.82), h′′
E2

(F1) = (0.76, 0.78, 0.81,
0.81, 0.86), h′′

E1
(F2) = (0.77, 0.79, 0.81, 0.84, 0.85), h′′

E2
(F2) = (0.76, 0.78, 0.78, 0.81, 0.84), h′′

E3
(F2) =

(0.75, 0.78, 0.79, 0.81, 0.85) , h′′
E1

(F3) = (0.79, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88) ,

h′′
E2

(F3) = (0.76, 0.78, 0.78, 0.79, 0.81, 0.88, 0.89) , h′′
E3

(F3) = (0.82, 0.85, 0.86, 0.87, 0.87, 0.88, 0.89) ,

h′′
E1

(F4) = (0.76, 0.78, 0.79, 0.81, 0.82, 0.84, 0.85) , h′′
E2

(F4) = (0.76, 0.78, 0.79, 0.81, 0.83, 0.85, 0.86) ,

h′′
E3

(F4) = (0.75, 0.77, 0.80, 0.82, 0.83, 0.84, 0.88). Next, by the definition of N∗, N∗ = 7. Since N1 �= 7,
N2 �= 7, N3 = 7, N4 = 7, for any i = 1, 2, 3, remain all the h′′

Ei
(F3) and h′′

Ei
(F4) as what it should be, and

denote h′′
Ei

(F1) as
→

hEi (F1), and h′′
Ei

(F2) as
→

hEi (F2).

Thereafter, for every
→

hEi (F1) and
→

hEi (F2), denote their corresponding probability density
function as
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p11 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

25
3

, 0.75 ≤ x < 0.78,

25, 0.78 ≤ x < 0.79,

25
2

, 0.79 ≤ x < 0.81,

25, 0.81 ≤ x ≤ 0.82,

, p21 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

25
2

, 0.76 ≤ x < 0.78,

25
3

, 0.78 ≤ x < 0.81,

1
8ε

, 0.81 − ε < x < 0.81 + ε,

5, 0.81 < x ≤ 0.86,

,

p31 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

25
2

, 0.72 ≤ x < 0.74,

25, 0.74 ≤ x < 0.75,

25
3

, 0.75 ≤ x < 0.78,

1
8ε

, 0.78 − ε < x ≤ 0.78 + ε,

, p12 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

25
2

, 0.77 ≤ x < 0.79,

25
2

, 0.79 ≤ x < 0.81,

25
3

, 0.81 ≤ x < 0.84,

25, 0.84 ≤ x ≤ 0.85,

,

p22 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

25
2

, 0.76 ≤ x < 0.78,

1
8ε

, 0.78 − ε < x < 0.78 + ε,

25
3

, 0.78 + ε < x ≤ 0.81,

25
3

, 0.81 < x ≤ 0.84,

, p32 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

25
3

, 0.75 ≤ x < 0.78,

25, 0.78 ≤ x < 0.79,

25
2

, 0.79 ≤ x < 0.81,

25
4

, 0.81 ≤ x ≤ 0.85,

.

Then, the intervals corresponding to
→

hE1
(F1),

→
hE2

(F1),
→

hE3
(F1),

→
hE1

(F2),
→

hE2
(F2),

→
hE3

(F2) are
[0.75, 0.82], [0.76, 0.86], [0.72, 0.78], [0.77, 0.85], [0.76, 0.84], [0.75, 0.85]. Divide them by Eq. (5) in
proper sequence, and the seven sets of segmentation points are obtained as

ĥE1
(F1) = {0.750, 0.770, 0.783, 0.790, 0.803, 0.813, 0.820} ,

ĥE2
(F1) = {0.760, 0.773, 0.790, 0.810, 0.810, 0.827, 0.860} ,

ĥE3
(F1) = {0.720, 0.733, 0.743, 0.750, 0.770, 0.780, 0.780} ,

ĥE1
(F2) = {0.770, 0.783, 0.797, 0.810, 0.830, 0.843, 0.850} ,

ĥE2
(F2) = {0.760, 0.773, 0.780, 0.780, 0.800, 0.820, 0.840} ,

ĥE3
(F2) = {0.750, 0.770, 0.783, 0.790, 0.803, 0.823, 0.850} .

The following, by ĥE1
(F1), ĥE2

(F1), ĥE3
(F1), ĥE1

(F2), ĥE3
(F2), and h′′

E1
(F3), h′′

E2
(F3), h′′

E3
(F3),

h′′
E1

(F4), h′′
E2

(F4), h′′
E3

(F4). It is obtained that E1 =
{

ĥE1
(F1) , ĥE1

(F2) , h′′
E1

(F3) , h′′
E1

(F4)
}

, E2 ={
ĥE2

(F1) , ĥE2
(F2) , h′′

E2
(F3) , h′′

E2
(F4)

}
, E3 =

{
ĥE3

(F1) , ĥE3
(F2) , h′′

E3
(F3) , h′′

E3
(F4)

}
. Subsequently, for any

k ∈ {1, 2, 3}, rank all the elements of Ek in monotonically increasing order, and denote the result as E∗
k .

Analogously, E0 is transferred to E∗
0 =

{
h∗

E0
(F1) , h∗

E0
(F2) , h∗

E0
(F3) , h∗

E0
(F4)

}
, where

h∗
E0

(F1) = {0.700, 0.732, 0.763, 0.795, 0.827, 0.858, 0.890} ,

h∗
E0

(F2) = {0.750, 0.758, 0.767, 0.775, 0.783, 0.792, 0.800} ,
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h∗
E0

(F3) = {0.720, 0.723, 0.727, 0.730, 0.733, 0.737, 0.740} ,

h∗
E0

(F4) = {0.750, 0.760, 0.770, 0.780, 0.790, 0.800, 0.810} .

For λ = 1, 2, . . . , 10, by using Eq. (12), and taking the weights of f1, f2, f3 and f4 into account,
three kinds of generalized hesitant weighted distances dstwg

(
E∗

1 , E∗
0

)
, dstwg

(
E∗

2 , E∗
0

)
, and dstwg

(
E∗

3 , E∗
0

)
are

obtained, respectively, which are shown in Fig. 4. Besides, for any given λ = 1, 2, . . . , 10, the differences
between dλ (E1, E0) and dλ (E2, E0) are very small. Thereafter, Fig. 5 contrasts E1 and E2.

Figure 4: Distances obtained by using d__{stwg}

Figure 5: Contrast map of three kinds of distances

Figs. 4 and 5 illustrate that the suitable intersection Traffic Control mode varies as the parameter
λ. Specifically, when λ ≤ 7, all the suitable intersection traffic control modes are E2; when λ ≥ 8, all
the suitable intersection traffic control modes are E1. The essence of the above conclusions is that the
smaller the λ is, the more appreciated the over-all evaluation information of the entire committee of
experts is; meanwhile, the larger the λ is, the more appreciated the unduly large or small evaluation
values of the evaluation information are. Therefore, to issue the intersection traffic control pattern
decision making problem, one can firstly select a suitable parameter λ according to specific traffic
control circumstances. More details on λ, please refer to Goldberg [23].

4.3 Comparison and Analysis
In this subsection, the given problem can is solved by using classical methods. For example, by

using Definition (3) proposed by Xu et al. [4], E0 can be transferred as E ′
0 =

{
h′

E0
(F1), h′

E0
(F2), h′

E0
(F3),
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h′
E0

(F4)
}

, where h′
E0

(F1) = {0.70, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89} ,

h′
E0

(F2) = {0.75, 0.80, 0.80, 0.80, 0.80, 0.80, 0.80} ,

h′
E0

(F3) = {0.72, 0.74, 0.74, 0.74, 0.74, 0.74, 0.74} ,

h′
E0

(F4) = {0.75, 0.81, 0.81, 0.81, 0.81, 0.81, 0.81}. Similarly, for any given i = 1, 2, 3, j = 1, 2, 3, 4,
hEi

(
Fj

)
can also be transferred as h′

Ei

(
Fj

)
. Specifically, it also gets that

ĥ′
E1

(F1) = {0.75, 0.78, 0.79, 0.81, 0.82, 0.82, 0.82} , ĥ′
E2

(F1) = {0.76, 0.78, 0.81, 0.81, 0.86, 0.86, 0.86} ,

ĥ′
E3

(F1) = {0.72, 0.74, 0.75, 0.78, 0.78, 0.78, 0.78} , ĥ′
E1

(F2) = {0.77, 0.79, 0.81, 0.84, 0.85, 0.85, 0.85} ,

ĥ′
E2

(F2) = {0.76, 0.78, 0.78, 0.81, 0.84, 0.84, 0.84} , ĥ′
E3

(F2) = {0.75, 0.78, 0.79, 0.81, 0.85, 0.85, 0.85} .

Then, for λ = 1, 2, . . . , 10, by using Eq. (12), and taking the weights of f1, f2, f3 and f4 into account,
three kinds of generalized hesitant weighted distances dstwg

(
E ′

1, E ′
0

)
, dstwg

(
E ′

2, E ′
0

)
, and dstwg

(
E ′

3, E ′
0

)
are

obtained, respectively, which are shown in Table 2.

Table 2: Distance between the studied one and each traffic control mode

Distance λ = 1 λ = 2 λ = 3 λ = 4 λ = 5 λ = 6 λ = 7 λ = 8 λ = 9 λ = 10

dstwg

(
E ′

1, E ′
0

)
0.063 0.074 0.082 0.088 0.093 0.097 0.100 0.103 0.105 0.107

dstwg

(
E ′

2, E ′
0

)
0.048 0.060 0.072 0.082 0.090 0.096 0.101 0.106 0.109 0.112

dstwg

(
E ′

3, E ′
0

)
0.076 0.092 0.101 0.107 0.112 0.115 0.118 0.120 0.122 0.124

Table 2 illustrates that the suitable intersection traffic control mode varies as the parameter.
Specifically, when λ ≤ 6, all the suitable intersection traffic control modes are E2; when λ ≥ 7, all
the suitable intersection traffic control modes are E1. Obviously, the results are generally consistent
with those obtained by the novel method. However, there are some slight differences which mainly
occur when λ = 7. In essence, this is due to the added subjective data when using classical method.
The differences show that the newly proposed method is more objective than classical ones in data
processing.

5 Conclusion

In calculating the distance between two HFEs with different cardinal numbers, the cardinalities
of them should be unified. To reduce the uncertainty in the unifying process, equal-probability
transformation is used. Specially, a series of improved distance measures on HFSs are proposed.
Since the essence of equal-probability transformation is a kind of dimensional transformation of the
same information in the way of expression, the proposed method retains the decision information
completely. By contrast, it is difficult to achieve this effect using classical methods. Moreover, the
main innovations of this study are concluded as follows:

(i) The theoretical basis of this study is to deal with the membership function value of HFSs
from the viewpoint of probability. Moreover, an equal-probability transformation technique
is proposed to transform any given HFE into a new one with specified cardinal number.
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(ii) To express the enhancement effect for the same membership function value of HFE occurring
more than once, impulse function is introduced into hesitant fuzzy fields. This is consistent
with people’s production experience.

(iii) This study is a multidisciplinary combination of the theories of the cardinality, equal-
probability mapping, and impulse function.

In general, the innovation of this study mainly lies in the unification of multi-source heterogeneous
data. This innovation can be applied not only to HFSs, but also to HFSs or NFSs, etc.
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