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ABSTRACT

Although some numerical methods of the fractional-order chaotic systems have been announced, high-precision
numerical methods have always been the direction that researchers strive to pursue. Based on this problem, this
paper introduces a high-precision numerical approach. Some complex dynamic behavior of fractional-order Lorenz
chaotic systems are shown by using the present method. We observe some novel dynamic behavior in numerical
experiments which are unlike any that have been previously discovered in numerical experiments or theoretical
studies. We investigate the influence of α1, α2, α3 on the numerical solution of fractional-order Lorenz chaotic
systems. The simulation results of integer order are in good agreement with those of other methods. The simulation
results of numerical experiments demonstrate the effectiveness of the present method.
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1 Introduction

In 1963, Edward Lorenz discovered a mathematical model for atmospheric convection. This model
is also known as Lorenz chaotic system. The Lorenz system is widely used in electric circuits, forward
osmosis and chemical reactions. In recent years, people have studied the chaotic behavior in the
fractional dynamic system and found that the fractional dynamic system has unique properties that
the integer dynamic system does not have. Therefore, the numerical simulation of fractional chaotic
system is very important. In this paper, we simulate the fractional-order Lorenz chaotic dynamical
systems [1–6] is as⎧⎪⎨
⎪⎩

Dα1
t x(t) = σ(y(t) − x(t)),

Dα2
t y(t) = ρx(t) − y(t) − x(t)z(t), t ∈ [0, T ],

Dα3
t z(t) = x(t)y(t) − βz(t),

(1)
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with the initial conditions

x(0) = c1, y(0) = c2, z(0) = c3. (2)

The solutions of the fractional-order Lorenz chaotic dynamical systems are very hard to obtain
analytically, and researchers, therefore, rely on numerical methods to provide an approximate solution
that could be used for prediction. In the last decades, several numerical methods have been proposed.
In [1], based on the qualitative theory, the authors investigated the existence and uniqueness of
solutions for a class of fractional-order Lorenz chaotic systems (1). In [2], compared the dynamical
regimes of fractional-order systems with dynamical regimes of the corresponding standard systems.
In [3], Complex dynamics with interesting characteristics were presented by means of phase portraits,
the largest Lyapunov exponent and bifurcation diagrams. In [4–6], the authors gave a dynamic
analysis of a fractional-order Lorenz chaotic system. Although some numerical and analytical
methods of the FDEs have been announced, such as spectral method [7–11], reproducing kernel
method [12–19], homotopy perturbation method [20–23], high-precision numerical approach [24–27],
and so on numerical and analytical methods [28–36]. These researchers all say their own approach can
accurately simulate chaotic systems. In fact, since chaotic systems have no exact solution, researchers
do not know which method is more accurate. For the numerical simulation of chaotic systems, it is
necessary to use numerical methods to study the long time properties of solutions of the fractional
order chaotic systems. This paper introduces a high-precision numerical method [24–27] for solving
system (1). Some complex dynamic behavior of the fractional-order Lorenz chaotic systems are
discovered by using the present numerical approach. We observe some novel dynamic behavior
in numerical simulations which are unlike any that have been previously discovered in numerical
simulations or theoretical studies. The simulation results of numerical experiments demonstrate the
effectiveness of the present method.

Fractal and fractional calculus [37–48] have been widely concerned. In the last three decades, there
have existed many inequivalent definitions [49–51] of fractional derivatives. The most famous of these
definitions that have been widely popularized in the world of fractional calculus is Riemann-Liouville
fractional definition, Grünwald-Letnikov fractional derivative (GLFD) and Caputo fractional deriva-
tive definition.

Definition 1.1. Riemann-Liouville fractional derivative of order α of a function y(t) about t on the
interval (t0, t) is defined as

RL
t0

Dα

t y (t) =
{

1
�(n−α)

dn

dtn

∫ t

t0

y(τ )

(t−τ)α−n+1 dτ , 0 ≤ n − 1 < α < n.
dny(t)

dtn
, α = n ∈ N.

(3)

Definition 1.2. Caputo fractional derivative of order α of a function y(t) ∈ Cn[t0, t] about t on the
interval (t0, t) is defined as

C
t0

Dα

t y (t) =

⎧⎪⎨
⎪⎩

1
�(n − α)

∫ t

t0

y(n)(τ )

(t − τ)α−n+1
dτ , 0 ≤ n − 1 < α < n.

dny(t)
dtn

, α = n ∈ N.
(4)

Definition 1.3. The Grünwald-Letnikov fractional derivative of α-order on the interval (t0, t) is
defined as

GL
t0

Dα

t y(t) = lim
h→0

1
hα

[(t−t0)/h]∑
j=0

(−1)j(α

j )y(t − jh), (5)
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where

(−1)j(α

j ) = (−1)j�(α + 1)

�(j + 1)�(α − j + 1)
.

Let

ω(α)

j = (−1)j(α

j ) = (−1)j�(α + 1)

�(j + 1)�(α − j + 1)
, j = 0, 1, . . . , n. (6)

Therefore, the α-order Grünwald-Letnikov derivative in Eq. (4) is transformed into the following
form:

GL
t0

Dα

t y (t) = lim
h→0

1
hα

[(t−t0)/h]∑
j=0

ω(α)

j y (t − jh) . (7)

Using Newton’s binomial theorem, we know

(1 − z)n =
n∑

j=0

(−1)j(n
j )z

j =
n∑

j=0

ω(n)

j zj. (8)

We can proof the following form:
∞∑

j=0

ω(α)

j zj = (1 − z)α. (9)

(1 − z)α is called 1-order generating function of α-order Grünwald-Letnikov derivative on the
interval (t0, t).

GL
t0

Dα

t y (t) = 1
hα

[(t−t0)/h]∑
i=0

ωjy (t − ih) + o (h) . (10)

Theorem 1.4. If f (t) is continuous and differentiable of order n−1 on the interval (t0, t), and f (n)(t)
is integrable, then Grünwald-Letnikov derivative can be written in the following integral form:

GL
t0

Dα

t y (t) =
n−1∑
j=0

y(j)(t0)

�(1 + j − α)
(t − t0)

j−α + 1
�(n − α)

∫ t

0

y(n)(τ )

(t − τ)α−n+1
dτ , 0 ≤ n − 1 < α < n. (11)

and, the Grünwald-Letnikov derivative, Riemann-Liouville derivative and Caputo derivative have the
following relationship:
GL
t0

Dα

t y(t) = RL
t0

Dα

t y(t),

C
t0

Dα

t y (t) = RL
t0

Dα

t y (t) −
n−1∑
j=0

y(j)(t0)

�(1 + j − α)
(t − t0)

j−α . (12)

Proof 1. For the proof, please refer to [49].

From Theorem (1.4), it follows that, if y(j)(t0) = 0, j = 0, 1, . . . , n−1, then GL
t0

Dα

t y(t) =RL
t0

Dα

t y(t) =C
t0

Dα

t y(t). If exists j, such that y(j)(t0) �= 0, j = 0, 1, . . . , n − 1, we use Taylor form, let y (t) = y (t) −∑n−1

j=0
y(j)(t0)

�(1+j−α)
(t − t0)

j−α, then GL
t0

Dα

t y (t) =RL
t0

Dα

t y (t) =C
t0

Dα

t y (t) . For convenience of expression, we denote

GL
t0

Dα

t y(t)=RL
t0

Dα

t y(t)=C
t0

Dα

t y(t) = Dα

t y(t).



1374 CMES, 2023, vol.135, no.2

2 Numerical Approach

In [24–27], in order to obtain higher precision, author given the construction method of generating
function for arbitrary p, and then give a recursive method of fractional derivative and integral based
on the generating function.

Definition 2.1. A p-order polynomial function is defined as

gp (z) =
p∑

k=1

1
k

(1 − z)k . (13)

Theorem 2.2. The p order polynomial function gp(z) could be written as

gp (z) =
p∑

k=0

gkzk, (14)

where gk is the solutions of the following equation [24–27]:⎛
⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 2 3 · · · p + 1
1 22 32 · · · (p + 1)2

...
...

... · · · ...
1 2p 3p · · · (p + 1)p

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

g0

g1

g2

...
gp

⎞
⎟⎟⎟⎟⎠ = −

⎛
⎜⎜⎜⎜⎝

0
1
2
...
p

⎞
⎟⎟⎟⎟⎠ . (15)

Proof 2. It can be seen from Eqs. (13) and (14)
p∑

k=0

gkzk =
p∑

k=1

1
k

(1 − z)k . (16)

Substituting z = 1 into Eq. (16), there is
p∑

k=0

gk = 0. (17)

Multiply both ends of Eq. (16) by z and find the first derivative of z, then
p∑

k=0

(k + 1)gkzk =
p∑

k=1

1
k
(1 − z)k − z

p∑
k=1

(1 − z)k−1. (18)

Then substitute z = 1 into Eq. (18), then there is
p∑

k=0

(k + 1) gk = −1.

Multiply both ends of Eq. (16) by z, and then find the first derivative of z
p∑

k=0

(k + 1)2gkzk =
p∑

k=1

1
k
(1 − z)k

−3z
p∑

k=1

(1 − z)k−1 + z2
p∑

k=2

1
k − 1

(1 − z)k−2.
(19)

Substituting z = 1 into Eq. (19), we can derive
p∑

k=0

(k + 1)2gk = −2.
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Repeating the above process, the following equation can be established:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g0 + g1 + g2 + · · · + gp = 0,
g0 + 2g1 + 3g2 + · · · + (p + 1)gp = −1,
g0 + 22g1 + 32g2 + · · · + (p + 1)2gp = −2,
...
g0 + 2pg1 + 3pg2 + · · · + (p + 1)pgp = −p.

The matrix form of the equation is formula (15), which is proved by the theorem.

Definition 2.3. Ihe p-order generating function gα

p (z) of α-order Grünwald-Letnikov derivative is
defined as

gα

p (z) = (g0 + g1z + · · · + gpzp)α. (20)

Theorem 2.4. If the generating function gα

p (z) can be written as

gα

p (z) =
∞∑

k=0

ω
(α,p)

k zk. (21)

where the subsequent coefficient ω(α,p)k can be recursively calculated by the following formula [24–27]:⎧⎪⎪⎨
⎪⎪⎩

ω
(α,p)

k = gα

0 , k = 0,

ω
(α,p)

k = − 1
g0

p∑
i=1

gi

(
1 − i 1+α

k

)
ω

(α,p)

k−i , k = 1, 2, . . . ,

ω
(α,p)

k = 0, k < 0.

(22)

Proof 3. Let z = 0 in Eq. (20), then it can be proved ω
(α,p)

0 = gα

0 . Rewritten Eq. (20), it can be seen
that(

g0 + g1z + · · · + gpzp
)α =

∞∑
k=−∞

ω
(α,p)

k zk, (23)

where, if k < 0, then ω
(α,p)

k = 0. Find the first derivative of z on both sides of Eq. (23), it can be
concluded that

α
(
g1 + 2g2z + · · · + pgpzp−1

) (
g0 + g1z + · · · + gpzp

)α−1 =
∞∑

k=−∞
kω

(α,p)

k zk−1. (24)

Both sides of Eq. (24) are multiplied by (g0 + g2z + · · · + gpzp) at the same time, it can be seen

α
(
g1 + · · · + pgpzp−1

) (
g0 + · · · + gpzp

)α = (
g0 + · · · + gpzp

) ∞∑
k=−∞

kω
(α,p)

k zk−1. (25)

Substituting Eq. (23) into Eq. (25), we can get

α
(
g1 + · · · + pgpzp−1

) ∞∑
k=−∞

ω
(α,p)

k zk = (
g0 + · · · + gpzp

) ∞∑
k=−∞

kω
(α,p)

k zk−1. (26)

Using the zdω
(α,p)

k = ω
(α,p)

k−d property, the left end of Eq. (26) can be written as
∞∑

k=−∞
α

(
g1ω

(α,p)

k + 2g2ω
(α,p)

k−1 + · · · + pgpω
(α,p)

k−p+1

)
zk, (27)
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then its right end can be written
∞∑

k=−∞

[
(k + 1) g0ω

(α,p)

k+1 + kg1ω
(α,p)

k + · · · + (k − p + 1) gpω
(α,p)

k−p+1

]
zk. (28)

By comparing the same square coefficient of z in Eq. (27), we can get

α(g1ω
(α,p)

k + · · · + pgpω
(α,p)

k−p+1) = (k + 1)g0ω
(α,p)

k+1 + · · · + (k − p + 1)gpω
(α,p)

k−p+1. (29)

Move Eq. (29) back one step, let k = k − 1, then the equation can become

g0kω
(α,p)

k + g1(k − 1 − α)ω
(α,p)

k−1 + · · · + gp(k − p − pα)ω
(α,p)

k−p = 0. (30)

If k �= 0, it is thus clear that

ω
(α,p)

k = − 1
g0

[
g1

(
1 − 1 + α

k

)
ω

(α,p)

k−1 + g2

(
1 − 2

1 + α

k

)
ω

(α,p)

k−2 + · · · + gp

(
1 − p

1 + α

k

)
ω

(α,p)

k−p

]
(31)

where, when k < 0, ω
(α,p)

k = 0.The above formula is recursive, so the theorem is proved.

Corollary 2.5. The p-order generating function gα

p (z) of α-order Grünwald-Letnikov derivative
could be written as [24–27]

gα

p (z) =
∞∑

j=0

ω(α,p)

j zj. (32)

where⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ω
(α,p)

k = g0, k = 0,

ω
(α,p)

k = − 1
g0

k−1∑
i=0

(
1 − i 1+α

k

)
giω

(α,p)

k−i , k = 1, 2, . . . ., p − 1,

ω
(α,p)

k = − 1
g0

p∑
i=0

(
1 − i 1+α

k

)
giω

(α,p)

k−i , k = p, p + 1, p + 2, . . . .,

ω
(α,p)

k = 0, k < 0,

(33)

The α-order Grünwald-Letnikov fractional derivative with p-order generating function gα

p (z) is
given as

GL
t0

Dα

t y (t) = lim
h→0

1
hα

[(t−t0)/h]∑
i=0

ω(α,p)

i y (t − ih) . (34)

Applying (34), an approximate computation scheme of the α-order Caputo fractional derivative
with p-order generating function gα

p (z) is given as

Dα

t y (t) � ym = 1
hα

m∑
j=0

ω(α,p)

j y (t − jh) = 1
hα

y (tk) − 1
hα

m∑
i=1

ω(α,p)

j y
(
tk−j

)
. (35)

and limm→∞ ym = Dα

t y (t) .

So, a high-precision numerical approach of the fractional-order Lorenz chaotic systems (1) is given
by
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x (tk) = σhα1 (y (tk−1) − x (tk)) + x (0) −
m∑

j=1

ω
(α1,p)

j

(
x

(
tk−j

) − x (0)
)

,

y (tk) = hα2 (ρx (tk) − y (tk−1) − x (tk) z (tk−1)) + y (0) −
m∑

j=1

ω
(α2,p)

j

(
y

(
tk−j

) − y (0)
)

,

z (tk) = hα3 (x (tk) y (tk) − βz (tk−1)) + z (0) −
m∑

j=1

ω
(α3,p)

j

(
z
(
tk−j

) − z (0)
)

.

(36)

3 Numerical Experiment

In this section, some numerical examples are studied. Some novel chaotic behaviors are shown.
We consider the systems (1) with the initial conditions x(0) = −15, y(0) = −15, z(0) = 20. h =
0.01, p = 20. The complex dynamic behaviors of the systems (1) are shown in Figs. 1–21. Fig. 1 shows
time series plots of the systems (1) with parameters [σ , ρ, β] = [10, 28, 8/3] at different α. Figs. 2 and
3 show time series plots of the systems (1) with different parameters [σ , ρ, β] and different fractional
derivative α. Figs. 4–19 projected on the (x, y), (x, z), (y, z)-plane and show phase diagram of x, y, z of
the systems (1) with different parameters [σ , ρ, β] and different fractional derivative α. Figs. 20 and 21
show chaotic attractor of fractional-order Lorenz systems (1) with different parameters [σ , ρ, β] and
different fractional derivative α. The rich chaotic attractor of fractional-order Lorenz systems (1) is
shown in Figs. 20 and 21. The simulation results of integer order are in good agreement with those of
other methods. In this paper, many novel chaotic attractors for fractional systems are obtained.

Figure 1: (Continued)
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Figure 1: Time series plots of the systems (1) at [σ , ρ, β] = [10, 28, 8/3] with parameters α

Figure 2: (Continued)
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Figure 2: Time series plots of the systems (1) with different parameters

Figure 3: Numerical results for the systems (1) at α = [1.16, 1.18, 1.15], [σ , ρ, β] = [35, 20, 15], T = 100
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Figure 4: Numerical results for the systems (1) at α = [0.9, 1.29, 1.28], [σ , ρ, β] = [8, 12, 10], T = 100

Figure 5: Numerical results for the systems (1) at α = [1.29, 1.2, 1.1], [σ , ρ, β] = [8, 12, 10], T = 100
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Figure 6: Numerical results for the systems (1) at α = [0.95, 1.02, 1.03], [σ , ρ, β] = [10, 28, 8/3], T =
100

Figure 7: Numerical results for the systems (1) at α = [1.1, 1.15, 1.18], [σ , ρ, β] = [10, 28, 8/3], T = 100
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Figure 8: Numerical results for the systems (1) at α = [0.9, 1.02, 1.27], [σ , ρ, β] = [5, 12, 10], T = 100

Figure 9: Numerical results for the systems (1) at α = [0.9, 1.18, 1.38], [σ , ρ, β] = [3, 10, 11], T = 100
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Figure 10: Numerical results for the systems (1) at α = [1, 1.18, 1.38], [σ , ρ, β] = [1, 8, 15], T = 100

Figure 11: Numerical results for the systems (1) at α = [1.22, 2.21, 1.19], [σ , ρ, β] = [20, 10, 9]
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Figure 12: Numerical results for the systems (1) at α = [1, 1.12, 1.18], [σ , ρ, β] = [4, 9, 9], T = 100

Figure 13: Numerical results for the systems (1) at α = [1, 1.12, 1.18], [σ , ρ, β] = [6, 8, 9], T = 100
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Figure 14: Numerical results for the systems (1) at α = [1, 0.98, 1.15], [σ , ρ, β] = [15, 20, 10], T = 100

Figure 15: Numerical results for the systems (1) at α = [1.12, 1.26, 1.28], [σ , ρ, β] = [30, 30, 10],
T = 100
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Figure 16: Numerical results for (1) at α = [1.35, 1.25, 1.2], [c1, c2, c3] = [−18, −25, 20], [σ , ρ, β] =
[35, 15, 9], T = 100

Figure 17: Numerical results for the systems (1) at α = [0.92, 0.99, 1.01], [σ , ρ, β] = [20, 30, 8/3],
T = 100



CMES, 2023, vol.135, no.2 1387

Figure 18: Numerical results for the systems (1) at α = [0.92, 1, 1], [σ , ρ, β] = [5, 30, 8/3], T = 100

Figure 19: Numerical results for the systems (1) at α = [1, 1, 1], [σ , ρ, β] = [10, 28, 8/3], T = 100

Figure 20: (Continued)
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Figure 20: Chaotic attractor of fractional-order Lorenz systems (1) with different parameters

Figure 21: (Continued)



CMES, 2023, vol.135, no.2 1389

Figure 21: Chaotic attractor of fractional-order Lorenz systems (1) with different parameters

4 Conclusions and Remarks

In this paper, some complex dynamic behavior of fractional-order Lorenz chaotic systems
are shown by using the present method. We observe many novel dynamic behaviors in numerical
experiments which are unlike any that have been previously discovered in numerical experiments or
theoretical studies. We investigate the influence of α1, α2, α3 on the numerical solution of fractional-
order Lorenz chaotic systems. The simulation results of integer order are in good agreement with those
of other methods. The results presented in this paper suggested that the present numerical method is
also readily applicable to a more chaotic system.

All computations are performed by the MatlabR2017b software.
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