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ABSTRACT

We propose a theoretical study investigating the spread of the novel coronavirus (COVID-19) reported in Wuhan
City of China in 2019. We develop a mathematical model based on the novel corona virus’s characteristics and
then use fractional calculus to fractionalize it. Various fractional order epidemic models have been formulated and
analyzed using a number of iterative and numerical approaches while the complications arise due to singular kernel.
We use the well-known Caputo-Fabrizio operator for the purposes of fictionalization because this operator is based
on the non-singular kernel. Moreover, to analyze the existence and uniqueness, we will use the well-known fixed
point theory. We also prove that the considered model has positive and bounded solutions. We also draw some
numerical simulations to verify the theoretical work via graphical representations. We believe that the proposed
epidemic model will be helpful for health officials to take some positive steps to control contagious diseases.

KEYWORDS
Fractional epidemiological model for corona virus disease; caputo-fabrizio operator; numerical simulation

1 Introduction

Corona-viruses family causes illnesses in humans, starting with the usual cold and leading to
SARS. In the previous twenty years, two corona-virus epidemics have been reported [1–3]. One of
them is SARS, which caused a large epidemic scale in various countries. This epidemic suffered
approximately 8000 individuals with 800 deaths. Another type of this virus was the Middle East
Respiratory Syndrome Coronavirus (MERS), initially reported in Saudi Arabia and then spreads to
many countries, from which 2,500 cases were reported with 800 deaths and still the cause of sporadic
cases [4]. A severe outbreak of respiratory illness was reported in Wuhan, China, in December 2019
[5]. The causative agent was identified and isolated from a single patient in early January 2020, the
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novel coronavirus (COVID-19). The scientific evidence indicated that the first source of transmission
of the virus was an animal, while most cases rose due to the contact of infected humans with susceptible
humans. The spread of this virus is a burning issue, which reached almost every nook of the World and
therefore been reported in more than 200 countries. According to the current statistics, there are more
than 494,504,712 confirmed cases, while 6,185,114 deaths occurred till 6th April 2022. It is a public
health emergency declared by the World Health Organization (WHO). According to the severeness
of this disease, the World Health Organization (WHO) announced it is a public health emergency for
international concern. This virus seems to be very contagious, spreading very quickly to almost all
over the world and therefore declaring it is a worldwide pandemic. It means that it is a severe public
health risk, whose symptoms after infection include cough, fever, fatigue, breathing difficulties, etc.

Fractional computing is a growing field of applied mathematics and has attracted the attention
of several researchers [6–12]. This analysis has widely been utilized to express the axioms of heritage
and re-call different physical situations that occur in various fields of applied science. Many classical
models are less accurate in predicting, while models with non-integer order are better for allocating and
preserving the information that is missing [13–15]. Moreover, the derivative with classical order does
not give the dynamics between two various points [16,17]. It could also be noted that the comparison
of classical and fractional order epidemic models reveals that epidemiological models having non-
integer order are the generalization of integer order. And so provide more accurate dynamics than
classical order, (see for further detail [17–19]). A non-integer order model representing the complex
dynamics of a biological system has been studied by Ali et al. [20]. Another study used a fractional-
order model to explore toxoplasmosis dynamics in human and feline populations [21]. The stability
analysis for the spread of pests in tea has been proposed using a fractional-order epidemic model
[22]. Similarly, numerous authors studied various dynamical systems with fractional derivatives, e.g.,
Hadamard and Caputo, Rieman and Liouville [23–27]. For the solution of Caputo fractional-order
epidemiological models, many iterative and numerical methods have been developed due to singular
kernel complications arising. So, Caputo et al. presented an idea based on the non-singular kernel to
overcome the limitation that arises in the above fractional-order derivatives [28].

Corona-virus disease (COVID-2019) has been recognized as a global threat and therefore got the
attention of various researchers due to its novel nature. Modelling the dynamics of multiple infections
disease has a rich literature [29–32]. A variety of mathematical models have been formulated to study
the complicated dynamics of infectious disease and suggest optimal solutions for its future forecast
[33–35]. The novel corona also has rich literature in which the formulation of models and forecasting
its future dynamics are investigated [36–38]. For example, Wu et al. introduced a model to describe the
transmission of the disease, based on reported data from 31.12.2019 to 28.01.2020 [39]. Imai et al. [40]
studied the transmission of the disease with the help of computational modeling to estimate the disease
outbreak in Wuhan, whose primary focus was on human-to-human transmission. Another study has
been investigated by Zhu et al. [41] to analyze the infectivity of the novel coronavirus. The reported
studies indicate that bats and minks may be two animal hosts of the novel coronavirus. Similarly, many
more studies have been reported on the dynamics of a novel coronavirus, for instance, see [42,43].
Li et al. [44] organized a State-of-the-Art Survey using deep learning applications for COVID-19
analysis. Nevertheless, the work proposed by various researchers found in the literature is an excellent
contribution; however, it could be improved by incorporating multiple essential and exciting factors
related to the newly reported disease of coronavirus transmission.

It could be noted that the coronavirus disease spreading rises globally from human-to-human
transmission, while the initial source of the disease was an animal/reservoir. It has also been confirmed
from the characteristic of SARS-CoV-2 that various phases of the infections are very significant
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and influence the transmission of the disease. The latent individuals are notable because of having
no symptoms while transmitting the infection. So a small number of latent individuals leads to a
significant disaster. We formulate the model keeping in view the above aesthetic of the SARS-CoV-2
virus and study the temporal dynamics of the disease. Once to develop the model, we then fractionalize
because of increased development that the epidemiological models having fractional order are more
significant than integer-order. Therefore, the fractionalization of the model to its associated fractional-
order version will be accorded with the application of fractional calculus. We prove the existence with
uniqueness and discuss the feasibility of the developed epidemic problem with the help of the fixed
point theory. We will also investigate whether the proposed model is bounded and possesses positive
solutions. We perform the numerical visualization of the analytical results to verify the theocratical
parts. We also show the difference between integer and non-integer order epidemiological cases.

2 Model Formulation

We formulate the proposed problem by considering the characteristic of the novel coronavirus
disease. We classify the total human population Nh(t) in four various compartments of susceptible,
latent, infected, and recovered individuals while assuming the reservoir class symbolized with M(t).
We further assume the different transmission routes, i.e., from humans and reservoirs. We assume the
following assumption before presenting the model:

a. The proposed model represents the dynamical population problem, so all the variables,
parameters, and constants are positive.

b. Three different transmission routes transmit the disease, i.e., from a latent population, infected
population to susceptible, and from the reservoir.

c. We assume that individuals with a strong immune system will recover in the latent period.

d. It is also assumed that there are two types of recovery from infection, i.e., naturally and due to
treatment.

e. The death rate due to disease is assumed to be only in the infected compartment.

Moreover the prorogation of novel corona virus disease transmission is demonstrated by Fig. 1.
Hence the combination of all these above assumptions with the disease propagation depicted in the
flowchart lead to the system of non-linear differential equation represented by the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSh(t)
dt

= � − (β1Lh (t) + γβ2Ih (t) + ψβ3M (t) + d) Sh (t) ,

dLh(t)
dt

= (β1Lh (t) + γβ2Ih (t) + ψβ3M (t)) Sh (t) − (γ1 + γ2 + d) Lh (t) ,

dIh(t)
dt

= γ1Lh (t) − (γ3 + d + d1) Ih (t) ,
dRh(t)

dt
= γ2Lh (t) + γ3Ih (t) − dRh (t) ,

dM(t)
dt

= η1Lh (t) + η2Ih (t) − αM (t) ,

(1)

and the initial population sizes are assumed to be

Sh(0) > 0, Lh(0) ≥ 0, Ih(0) ≥ 0, Rh(0) ≥ 0, M(0) ≥ 0. (2)

In the proposed problem, � is the ratio of the newborn. We also denote the disease transmission
rates by β1, β2 and β2, which respectively represent the transmission from latent, infected, and reservoir,
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Figure 1: The graph describes the flowchart representing the transfer mechanism of the proposed
epidemic problem

while γ and ψ are the transmission co-efficient. γ1 is the rate at which latent comes to the infected, while
γ2 is the natural recovery rate. The recovery due to treatment is symbolized by γ3, and d is assumed
to be the natural mortality rate while d1 is the disease-induced death rate. The parameters η1 and η2

are assumed to be the ratio contributing the virus into the seafood market M from latent and infected
populations respectively, while the rate α is the removing rate of the virus from it. Let us assume that
ρ is a fractional order parameter, i.e., 0 < ρ < 1. To extend the system (1) to corresponding fractional
version, first we describe a few basic concepts related to fractional calculus. These concepts are helpful
to retrieve our goals.

Definition 2.1. [17] Let T > 0, and assume that φ ∈ H1(0, T), if n − 1 < ρ < n, and ρ > 0 such
that n ∈ N, then the derivative in the sense of Caputo as well as the Caputo-Fabrizio with ρ order are
give by

CFDρ

0,t {ϕ (t)} = K(ρ)

(1 − ρ)

∫ t

0

ϕ ′ (z) exp
(

(z − t)ρ
1 − ρ

)
dz, (3)

and

CDρ

0,t {ϕ (t)} = 1
�(−ρ + n)

∫ t

0

(t − z)−1+n−ρϕn (z) dz. (4)

In the above Eqs. (3) and (4), CF and C denote the Caputo-Fabrizio and Caputo. Moreover, t is
positive, and K(ρ) symbolizes the normilization function, and K(0) = 0 = K(1).

Definition 2.2. [17] If 0 < ρ < 1 and ϕ(t), varies with time t, then the integral is described by

RLJρ

0,t {ϕ (t)} = 1
�(ρ)

∫ t

0

(t − z)ρ−1ϕ (z) dz, (5)
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is known as the Riemann-Liouville integral and

CFJρ

0,t {ϕ (t)} = 2
(2 − ρ)K(ρ)

{
(1 − ρ) ϕ (t) + ρ

∫ t

0

ϕ (z) dz
}

. (6)

is said to be the Caputo-Fabrizio-Caputo (CF) integral.

Using the theory of fractional calculus to take the associated fractional version of the considered
model. Since ρ is the fractional order parameter, and we assume ρ1 = γ

ρ

1 +γ
ρ

2 +dρ and �2 = γ
ρ

3 +dρ +dρ

1

for the shake of simplicity, therefore the application of the above definitions to the proposed systems
gives⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CF Dρ

0,tSh(t) = �ρ − (βρ

1 Lh(t) + γ ρβρ

2 Ih(t) + ψρβρ

3 M(t) + dρ)Sh(t),
CF Dρ

0,tLh(t) = (βρ

1 Lh(t) + γ ρβρ

2 Ih(t) + ψρβρ

3 M(t))Sh(t) − ρ1Lh(t),
CF Dρ

0,tIh(t) = γ ρ

1 Lh(t) − ρ2Ih(t), CFDρ

0,tRh(t) = γ ρ

2 Lh(t) + γ ρ

3 Ih(t) − dρRh(t),
CF Dρ

0,tM(t) = ηρ

1 Lh(t) + ηρ

2 Ih(t) − αρM(t).

(7)

To discuss the feasibility of the above epidemiological system (7) of fractional order, we discuss
the existence as well as uniqueness analysis in the subsequent sections.

2.1 Existence and Uniqueness
We exploit fixed point theory to show the model’s existence and uniqueness under-considered, as

Equation reported (7). We transform the reported system into its associated integral equations as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sh(t) = Sh(0) +CF Jρ

0,t

{
�ρ − (βρ

1 Lh(t) + γ ρβρ

2 Ih(t) + ψρβρ

3 M(t) + dρ)Sh(t)
}

,
Lh(t) = Lh(0) +CF Jρ

0,t

{
(βρ

1 Lh(t) + γ ρβρ

2 Ih(t) + ψρβρ

3 M(t))Sh(t) − ρ1Lh(t)
}

,
Ih(t) = Ih(0) +CF Jρ

0,t

{
γ ρ

1 Lh(t) − ρ2Ih(t)
}

, Rh(t) = Rh(0) +CF Jρ

0,t

{
γ ρ

2 Lh(t) + γ ρ

3 Ih(t) − dρRh(t)
}

,
M(t) = M(0) +CF Jρ

0,t{ηρ

1 Lh(t) + ηρ

2 Ih(t) − αρM(t)}.
We apply the definition of CF integral, which ultimately implies that

Sh (t) = Sh (0) + 2(1 − ρ)

K(ρ)(2 − ρ)

{
�ρ − (

βρ

1 Lh (t) + γ ρβρ

2 Ih (t) + ψρβρ

3 M (t) + dρ
)

Sh (t)
}

+ 2ρ

K(ρ)(2 − ρ)

∫ t

0

{
�ρ − (βρ

1 Lh(z) + γ ρβρ

2 Ih(z) + ψρβρ

3 M(z) + dρ)Sh(z)
}

dz,

Lh (t) = Lh (0) + 2(1 − ρ)

(2 − ρ)K(ρ)

{(
βρ

1 Lh (t) + γ ρβρ

2 Ih (t) + ψρβρ

3 M (t)
)

Sh (t) − ρ1Lh (t)
}

+ 2ρ

K(ρ)(2 − ρ)

∫ t

0

{
(βρ

1 Lh(z) + γ ρβρ

2 Ih(z) + ψρβρ

3 M(z))Sh(z) − ρ1Lh(z)
}

dz,

Ih (t) = Ih (0) + 2(1 − ρ)

K(ρ)(2 − ρ)

{
γ ρ

1 Lh (t) − ρ2Ih (t)
} + 2ρ

(2 − ρ)K(ρ)

∫ t

0

{
γ ρ

1 Lh (z) − �2Ih (z)
}

dz,

Rh (t) = Rh (0) + 2(1 − ρ)

(2 − ρ)

{
γ ρ

2 Lh (t) + γ ρ

3 Ih (t) − dρRh (t)
} 1

K(ρ)

+ 2ρ

K(ρ)(2 − ρ)

∫ t

0

{
γ ρ

2 Lh (z) + γ ρ

3 Ih (z) − dρRh (z)
}

dz,
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M (t) = M (0) + 2(1 − ρ)

(2 − ρ)

{
ηρ

1 Lh (t) + ηρ

2 Ih (t) − αρM (t)
} 1

K(ρ)

+ 2ρ

K(ρ)(2 − ρ)

∫ t

0

{
ηρ

1 Lh (z) + ηρ

2 Ih (z) − αρM (z)
}

dz.

Let us assume that i, i = 1, 2, . . . , 5 describes the kernels such that⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1(Sh(t), t) = �ρ − (βρ

1 Lh(t) + γ ρβρ

2 Ih(t) + ψρβρ

3 M(t) + dρ)Sh(t),
2(Lh(t), t) = (βρ

1 Lh(t) + γ ρβρ

2 Ih(t) + ψρβρ

3 M(t))Sh(t) − �1Lh(t),
3(Ih(t), t) = γ ρ

1 Lh(t) − �2Ih(t), 4(Rh(t), t) = γ ρ

2 Lh(t) + γ ρ

3 Ih(t) − dρRh(t),
5(Mi(t), t) = ηρ

1 Lh(t) + ηρ

2 Ih(t) − αρM(t).

(8)

Theorem 2.1. The kernels i, satisfies axioms of Lipschitz conditions.

Proof 1. We assume that Sh and S1h, Lh and Lh1, Ih and Ih1, Rh and Rh1, and M and M1 are the two
functions for the above kernels 1, 2, 3, 4 and 5 respectively, then establishing the system is given by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1(Sh(t), t) − 1(Sh1(t), t) = {
�ρ − (β

ρ

1 Lh(t) + γ ρβ
ρ

2 Ih(t) + ψρβ
ρ

3 M(t) + dρ)Sh(t)
}

,
2(Lh(t), t) − 2(Lh1(t), t) = {

(β
ρ

1 Lh(t) + γ ρβ
ρ

2 Ih(t) + ψρβ
ρ

3 M(t))Sh(t) − �1Lh(t)
}

,
3(Ih(t), t) − 3(Ih1(t), t) = {

γ
ρ

1 Lh(t) − �2Ih(t)
}

, 4(Rh(t), t) − 4(Rh1(t), t) = γ
ρ

2 Lh(t) + γ
ρ

3 Ih(t) − dρRh(t),
5(M(t), t) − 5(M(t), t) = η

ρ

1 Lh(t) + η
ρ

2 Ih(t) − αρM(t),

Upon, the application of Cauchy’s inequality leads to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

‖1(Sh(t), t) − 1(Sh1(t), t)‖ ≤ ‖ {�ρ − (β
ρ

1 Lh(t) + γ ρβ
ρ

2 Ih(t) + ψρβ
ρ

3 M(t) + dρ)Sh(t)} ‖,
‖2(Lh(t), t) − 2(Lh1(t), t)‖ ≤ ‖ {(βρ

1 Lh(t) + γ ρβ
ρ

2 Ih(t) + ψρβ
ρ

3 M(t))Sh(t) − �1Lh(t)} ‖,
‖3(Ih(t), t) − 3(Ih1(t), t)‖ ≤ ‖γ ρ

1 Lh(t) − �2Ih(t)‖,
‖4(Rh(t), t) − 4(Rh1(t), t)‖ ≤ ‖γ ρ

2 Lh(t) + γ
ρ

3 Ih(t) − dρRh(t)‖,
‖5(M(t), t) − 5(M(t), t)‖ ≤ ‖ηρ

1 Lh(t) + η
ρ

2 Ih(t) − αρM(t)‖.

We then obtain recursively the following relations:

Sh (t) = 2
(2 − ρ)

{
(1 − ρ) 1

(
Sh(n−1) (t) , t

) + ρ

∫ t

0

1

(
Sh(n−1) (z) , z

)
dz

}
1

K(ρ)
,

Lh (t) = 2
(2 − ρ)

{
(1 − ρ) 2

(
Lh(n−1) (t) , t

) + ρ

∫ t

0

2

(
Lh(n−1) (z) , z

)
dz

}
1

K(ρ)
,

Ih (t) = 2
(2 − ρ)

{
(1 − ρ) 3

(
Ih(n−1) (t) , t

) + ρ

∫ t

0

3

(
Ih(n−1) (z) , z

)
dz

}
1

K(ρ)
,

Rh (t) = 2
(2 − ρ)K(ρ)

{
(1 − ρ) 5 (Rn−1 (t) , t) + ρ

∫ t

0

5

(
Rh(n−1) (z) , z

)
dz

}
,

M (t) = 2
(2 − ρ)K(ρ)

{
(1 − ρ) 6 (Mn−1 (t) , t) + ρ

∫ t

0

6

(
Mh(n−1) (z) , z

)
dz

}
. (9)
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The difference of two successive terms with the application of norm and majorizing, one may
obtain

‖Un (t) ‖ = ‖Shn (t) − Sh1,h(n−1) (t) ‖ ≤ 2(1 − ρ)

K(ρ)(2 − ρ)
‖1

(
Sh(n−1) (t) , t

) − 1

(
Sh1,h(n−2) (t) , t

) ‖

+ 2ρ

K(ρ)(2 − ρ)

∣∣∣∣
∣∣∣∣
∫ t

0

[
1

(
Sh(n−1) (z) , z

) − 1

(
Sh1,h(n−2) (z) , z

)]
dz

∣∣∣∣
∣∣∣∣ ,

‖Wn (t) ‖ = ‖Lh (t) − Lh1,h(n−1) (t) ‖ ≤ 2(1 − ρ)

(2 − ρ)K(ρ)
‖2

(
Lh(n−1) (t) , t

) − 2

(
Lh1,h(n−2) (t) , t

) ‖

+ 2ρ

(2 − ρ)K(ρ)

∣∣∣∣
∣∣∣∣
∫ t

0

[
2

(
Lh(n−1) (z) , z

) − 2

(
Lh1,a(n−2) (z) , z

)]
dz

∣∣∣∣
∣∣∣∣ ,

‖Xn (t) ‖ = ‖Ihn (t) − Ih1,h(n−1) (t) ‖ ≤ 2(1 − ρ)

K(ρ)(3 − ρ)
‖3

(
Ih(n−1) (t) , t

) − 3

(
Ih1,h(n−2) (t) , t

) ‖

+ 2ρ

(2 − ρ)

∣∣∣∣
∣∣∣∣
∫ t

0

[
3

(
Ih(n−1) (z) , z

) − 3

(
Ih1,h(n−2) (z) , z

)]
dz

∣∣∣∣
∣∣∣∣ 1

K(ρ)
,

‖Yn (t) ‖ = ‖Rhn (t) − Rh1,h(n−1) (t) ‖ ≤ 2(1 − ρ)

K(ρ)(2 − ρ)
‖4

(
Rh(n−1) (t) , t

) − 4

(
Rh1,h(n−2) (t) , t

) ‖

+ 2ρ

(2 − ρ)K(ρ)

∣∣∣∣
∣∣∣∣
∫ t

0

[
4

(
Rh(n−1) (z) , z

) − 4

(
Rh1,h(n−2) (z) , z

)]
dz

∣∣∣∣
∣∣∣∣ ,

‖Zn (t) ‖ = ‖Mn (t) − M1,h(n−1) (t) ‖ ≤ 2(1 − ρ)

K(ρ)(2 − ρ)
‖5

(
M(n−1) (t) , t

) − 5

(
M1,h(n−2) (t) , t

) ‖

+ 2ρ

(2 − ρ)K(ρ)

∣∣∣∣
∣∣∣∣
∫ t

0

[
4

(
M(n−1) (z) , z

) − 5

(
M1,h(n−2) (z) , z

)]
dz

∣∣∣∣
∣∣∣∣ , (10)

with{∑∞
i=0Ui (t) = Shi (t) ,

∑∞
i=0Wi (t) = Lhi (t) ,

∑∞
i=0Xi (t) = Ihi (t) ,

∑∞
i=0Yi (t) = Rhi (t) ,∑∞

i=0Zi (t) = Mi (t)
(11)

It could be noted that the kernels i satisfy Lipschitz conditions, therefore we may obtain

‖Un (t) ‖ = ‖Shn (t) − Sh1,h(n−1) (t) ‖ ≤ 2(1 − ρ)

K(ρ)(2 − ρ)
τ1‖Sh(n−1) (t) − Sh1,h(n−2) (t) ‖

+ 2ρ

(2 − ρ)K(ρ)
τ2

∫ t

0

∣∣∣∣Sh(n−1)(z) − Sh1,h(n−2)(z)
∣∣∣∣ dz,

‖Wn (t) ‖ = ‖Lhn (t) − Lh1,h(n−1) (t) ‖ ≤ 2(1 − ρ)

(2 − ρ)K(ρ)
τ5‖Lh(n−1) (t) − Lh1,h(n−2) (t) ‖

+ 2ρ

K(ρ)(2 − ρ)
τ6

∫ t

0

∣∣∣∣Lh(n−1)(z) − Lh1,h(n−2)(z)
∣∣∣∣ dz,

‖Xn (t) ‖ = ‖Ihn (t) − Ih1,h(n−1) (t) ‖ ≤ 2(1 − ρ)

(2 − ρ)K(ρ)
τ5‖Ih(n−1) (t) − Ih1,h(n−2) (t) ‖
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+ 2ρ

K(ρ)(2 − ρ)
τ6

∫ t

0

∣∣∣∣Ih(n−1)(z) − Ih1,h(n−2)(z)
∣∣∣∣ dz,

‖Yn (t) ‖ = ‖Rhn (t) − Rh1,h(n−1) (t) ‖ ≤ 2(1 − ρ)

K(ρ)(2 − ρ)
τ9‖Rh(n−1) (t) − Rh1,h(n−2) (t) ‖

+ 2ρ

(2 − ρ)K(ρ)
τ10

∫ t

0

∣∣∣∣Rh(n−1)(z) − Rh1,h(n−2)(z)
∣∣∣∣ dz,

‖Zn (t) ‖ = ‖Mn (t) − M1,(n−1) (t) ‖ ≤ 2(1 − ρ)

K(ρ)(2 − ρ)
τ9‖Mn−1 (t) − M1,(n−2) (t) ‖

+ 2ρ

(2 − ρ)K(ρ)
τ10

∫ t

0

∣∣∣∣Mn−1(z) − M1,(n−2)(z)
∣∣∣∣ dz. (12)

Theorem 2.2. The epidemiological model of fractional order (7) possesses a solution.

Proof 2. From the assertions derived in Eq. (11) with the utilization of recursive formulas we obtain

‖Un (t) ‖ ≤ ‖Sh (0) ‖ +
{

2
(2 − ρ)K(ρ)

}n {
(tρτ2)

n + ((1 − ρ)τ1)
n
}

,

‖Wn (t) ‖ ≤ ‖Lh (0) ‖ +
{

2
(2 − ρ)K(ρ)

}n {
(τ3(1 − ρ))

n
} + {(tρτ4)

n} ,

‖Xn (t) ‖ ≤ ‖Ih (0) ‖ +
{

2
(2 − ρ)K(ρ)

}n

{(tρτ6)
n} + {

((1 − ρ)τ5)
n
}

,

‖Yn (t) ‖ ≤ ‖Rh (0) ‖ +
{

2
(2 − ρ)K(ρ)

}n {
((1 − ρ)τ7)

n
} + {(ρτ8t)

n} ,

‖Zn (t) ‖ ≤ ‖M (0) ‖ +
{

2
(2 − ρ)K(ρ)

}n {
((1 − ρ)τ9)

n
} + {(ρτ10t)

n} . (13)

So, the relations as described by the above equation are smooth and exists, however to investigate
that the functions in these relations are the solutions for system (7), we making the substitutions{

Sh(t) = Shn(t) − ϒ1,n(t), Lh(t) = Lhn(t) − ϒ2,n(t), Ih(t) = Ihn(t) − ϒ3,n(t),
Rh(t) = Rhn(t) − ϒ5,n(t), M(t) = Mn(t) − ϒ6,n(t),

(14)

where ϒi,n(t), i = 1, 2, . . . , 5 denote remainder terms of the series, thus

Sh (t) − Sh(n−1) (t) = 2(1 − ρ)1(Sh(t) − ϒ1,n(t))
(2 − ρ)K(ρ)

+ 2ρ

K(ρ)(2 − ρ)

∫ t

0

1

(
Sh (z) − ϒ1,n (z)

)
dz,

Lh (t) − Lh(n−1) (t) = 22(Lh(t) − ϒ2,n(t))(1 − ρ)

(2 − ρ)K(ρ)
+ 2ρ

K(ρ)(2 − ρ)

∫ t

0

2

(
Lh (z) − ϒ2,n (z)

)
dz,

Ih (t) − Ih(n−1) (t) = 2(1 − ρ)3(Ih(t) − ϒ3,n(t))
(2 − ρ)K(ρ)

+ 2ρ

K(ρ)(2 − ρ)

∫ t

0

3

(
Ih (z) − ϒ3,n (z)

)
dz,

Rh (t) − Rh(n−1) (t) = (1 − ρ)24(Rh(t) − ϒ4,n(t))
K(ρ)(2 − α)

+ 2α

(2 − ρ)K(ρ)

∫ t

0

4

(
Rh (z) − ϒ4,n (z)

)
dz,
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M (t) − M(n−1) (t) = (1 − ρ)25(M(t) − ϒ5,n(t))
K(ρ)(2 − ρ)

+ 2ρ

(2 − ρ)K(ρ)

∫ t

0

5

(
M (z) − ϒ5,n (z)

)
dz. (15)

The application of norm on both sides of the above system with utilization of the Lipschitz axiom
gives that∣∣∣∣
∣∣∣∣Sh (t) − 2ρ

K(ρ)(2 − ρ)

∫ t

0

1 (Sh (z) , z) dz − 2(1 − ρ)1(Sh(t), t)
(2 − ρ)K(ρ)

− Sh (0)

∣∣∣∣
∣∣∣∣

≤ ‖ϒ1,n (t) ‖
{

2ρτ2t
(2 − ρ)K(ρ)

+
(

τ12(1 − ρ)

K(ρ)(2 − ρ)

)
+ 1

}
,

∣∣∣∣
∣∣∣∣Lh (t) − 2ρ

(2 − ρ)K(ρ)

∫ t

0

2 (Lh (z) , z) dz − 22(Lh(t), t)(1 − ρ)

K(ρ)(2 − ρ)
− Lh (0)

∣∣∣∣
∣∣∣∣

≤ ‖ϒ2,n (t) ‖
{(

2τ3(1 − ρ)

(2 − ρ)K(ρ)
+ 2tτ4ρ

k(ρ)(2 − ρ)

)
+ 1

}
,

∣∣∣∣
∣∣∣∣Ih (t) − 23(Ih(t), t)(1 − ρ)

(2 − ρ)K(ρ)
− Ih (0) − 2ρ

(2 − ρ)K(ρ)

∫ t

0

3 (Ih (z) , z) dz

∣∣∣∣
∣∣∣∣

≤ ‖ϒ3,n (t) ‖
{(

2tρτ6

(2 − ρ)K(ρ)
+ (1 − ρ)2τ5

(2 − ρ)K(ρ)

)
+ 1

}
,

∣∣∣∣
∣∣∣∣Rh (t) − 24(Rh(t), t)(1 − ρ)

(2 − ρ)K(ρ)
− Rh (0) − 2ρ

K(ρ)(2 − ρ)

∫ t

0

4 (Rh (z) , z) dz

∣∣∣∣
∣∣∣∣

≤ ‖ϒ4,n (t) ‖
{(

2τ7(1 − ρ)

(2 − ρ)K(ρ)
+ 2tτ8ρ

(2 − ρ)K(ρ)

)
+ 1

}
,

∣∣∣∣
∣∣∣∣M (t) − 5(M(t), t)2(1 − ρ)

(2 − ρ)K(ρ)
− M (0) − 2ρ

K(ρ)(2 − ρ)

∫ t

0

5 (M (z) , z) dz

∣∣∣∣
∣∣∣∣

≤ ‖ϒ5,n (t) ‖
{(

2ρtτ12

K(ρ)(2 − ρ)
+ (1 − ρ)2τ11

(2 − ρ)K(ρ)

)
+ 1

}
. (16)

The application of lim without bound, i.e., whenever t tend to ∞ leads to

Sh (t) = 2
K(ρ)(2 − ρ)

{
(1 − ρ) 1 (Sh (t) , t) + ρ

∫ t

0

1 (Sh (z) , z) dz + Sh (0)

}
,

Lh (t) = 2
(2 − ρ)K(ρ)

{
(1 − ρ) 2 (Lh (t) , t) + ρ

∫ t

0

2 (Ah (z) , z) dz + Lh (0)

}
,

Ih (t) = 2
K(ρ)(2 − ρ)

{
(1 − ρ) 3 (Ih (t) , t) + ρ

∫ t

0

3 (Ih (z) , z) dz + Ih (0)

}
,

Rh (t) = 2
K(ρ)(2 − ρ)

{
(1 − ρ) 4 (Rh (t) , t) + ρ

∫ t

0

4 (Rh (z) , z) dz + Rh (0)

}
,

M (t) = 2
K(ρ)(2 − ρ)

{
(1 − ρ) 5 (M (t) , t) + ρ

∫ t

0

5 (M (z) , z) dz + M (0)

}
, (17)

which completes the proof that solutions of the reported model described by Eq. (7) exists.
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Theorem 2.3. The model reported by Eq. (7) posses a unique solution.

Proof 3. Let us assume that (S+
h (t), L+

h (t), I+
h (t), R+

h (t), M+(t)) is also a solution of the system (7),
then

Sh (t) − S+
h (t) = 2(1 − ρ)

{
1(Sh(t), t) − 1(S+

h (t), t)
}

K(ρ)(2 − ρ)

+ 2ρ

K(ρ)(2 − ρ)

∫ t

0

{
1(Sh(z), z) − 1(S+

h (z), z)
}

dz,

Lh (t) − L+
h (t) =

{
2(Lh(t), t) − 2(L+

h (t), t)
}

2(1 − ρ)

(2 − ρ)K(ρ)

+ 2ρ

K(ρ)(2 − ρ)

∫ t

0

{
2(Lh(z), z) − 2(L+

h (z), z)
}

dz,

Ih (t) − I+
h (t) = 2(1 − ρ)

{
3(Ih(t), t) − 3(I+

h (t), t)
}

K(ρ)(2 − ρ)

+ 2ρ

(2 − ρ)K(ρ)

∫ t

0

{
3(Ih(z), z) − 3(I+

h (z), z)
}

dz,

Rh (t) − R+
h (t) = 2(1 − ρ)

{
4(Rh(t), t) − 4(R+

h (t), t)
}

K(ρ)(2 − ρ)

+ 2ρ

(2 − ρ)K(ρ)

∫ t

0

{
4(Rh(z), z) − 4(R+

h (z), z)
}

dz,

M (t) − M+ (t) = 2(1 − ρ) {5(M(t), t) − 5(M+(t), t)}
K(ρ)(2 − ρ)

+ 2ρ

(2 − ρ)K(ρ)

∫ t

0

{
5(M(z), z) − 5(M+(z), z)

}
dz.

Majorizing one may leads to the assertions as given by

‖Sh (t) − S+
h (t) ‖ = 2(1 − ρ)‖1(Sh(t), t) − 1(S+

h (t), t)‖
K(ρ)(2 − ρ)

+ 2ρ

K(ρ)(2 − ρ)

∫ t

0

‖1 (Sh(z), z) − 1

(
S+

h (z) , z
) ‖dz,

‖Lh (t) − L+
h (t) ‖ = 2(1 − ρ)‖2(Lh(t), t) − 2(L+

h (t), t)‖
K(ρ)(2 − ρ)

+ 2ρ

(2 − ρ)K(ρ)

∫ t

0

‖2 (Lh(z), z) − 2

(
L+

h (z) , z
) ‖dz,

‖Ih (t) − I+
h (t) ‖ = 2(1 − ρ)‖3(Ih(t), t) − 3(I+

h (t), t)‖
K(ρ)(2 − ρ)

+ 2ρ

(2 − ρ)K(ρ)

∫ t

0

‖3 (Ih(z), z) − 3

(
I+

h (z) , z
) ‖dz,
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‖Rh (t) − R+
h (t) ‖ = 2(1 − ρ)‖4(Rh(t), t) − 4(R+

h (t), t)‖
K(ρ)(2 − ρ)

+ 2ρ

(2 − ρ)K(ρ)

∫ t

0

‖4 (Rh(z), z) − 4

(
R+

h (z) , z
) ‖dz,

‖M (t) − M+ (t) ‖ = 2(1 − ρ)‖5(M(t), t) − 5(M+(t), t)‖
K(ρ)(2 − ρ)

+ 2ρ

(2 − ρ)K(ρ)

∫ t

0

‖5 (M(z), z) − 5

(
M+ (z) , z

) ‖dz. (18)

We now use the result stated by Theorems 2.1 and 2.2, we obtain

‖Sh (t) − S+
h (t) ‖ ≤

(
ρτ22tφ2

(2 − ρ)K(ρ)

)n

+ 2τ1ψ1(1 − ρ)

K(ρ)(2 − ρ)
, ‖Lh (t) − L+

h (t) ‖ ≤ 2τ3(1 − ρ)ψ3

K(ρ)(2 − ρ)
+

(
ρφ42τ4t

(2 − ρ)K(ρ)

)n

,

‖Ih (t) − I+
h (t) ‖ ≤ 2(1 − ρ)τ5ψ5

(2 − ρ)K(ρ)
+

(
2ρτ6φ6t

(2 − ρ)K(ρ)

)n

, ‖Rh (t) − R+
h (t) ‖ ≤ 2τ7ψ7(1 − ρ)

K(ρ)(2 − ρ)
+

(
2ρτ8φ8t

(2 − ρ)K(ρ)

)n

,

‖M (t) − M+ (t) ‖ ≤ 2τ9ψ9(1 − ρ)

K(ρ)(2 − ρ)
+

(
2ρτ10φ10t

K(ρ)(2 − ρ)

)n

. (19)

For all n, the inequalities as reported by the above Eq. (19) holds, so

Sh(t) = S+
h (t), Lh(t) = L+

h (t), Ih(t) = I+
h (t), Rh(t) = R+

h (t), M(t) = M+(t). (20)

Now we are going to discuss the biological as well as mathematical feasibility of the problem
under consideration. Notably, we discuss the positivity and boundedness of the reported model (7) to
prove that the under-considered problem is well-possed. We also investigate that the dynamics of the
proposed model are confined to a specific region that is invariant positively. The following Lemmas is
established for this purpose.

Lemma 2.1. Since (Sh(t), Lh(t), Ih(t), Rh(t), M(t)) is the solution of the proposed model (7) and
let us consider that it possessing non-negative initial sizes of population, then (Sh(t), Lh(t), Ih(t), Rh(t),
M(t)) are non-negative for all t ≥ 0.

Proof 4. We assume that, ω is the fractional order for the system (7), then⎧⎪⎪⎪⎨
⎪⎪⎪⎩

GDω

0,t(Sh(t)) = �ω − (βω

1 Lh(t) + γ ωβω

2 Ih(t) + ψωβω

3 M(t) + dω)Sh(t),
GDω

0,t(Lh(t)) = (βω

1 Lh(t) + γ ωβω

2 Ih(t) + ψωβω

3 M(t))Sh(t) − �1Lh(t),
GDω

0,t(Ih(t)) = γ ω

1 Lh(t) − �2Ih(t),
GDω

0,t(Rh(t)) = γ ω

2 Lh(t) + γ ω

3 Ih(t) − dωRh(t), GDω

0,t(M(t)) = ηω

1 Lh(t) + ηω

2 Ih(t) − αωM(t),

(21)

where G represents the fractional operator having order is ω, so we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

GDω

0,tSh(t)|κ(Sh) = �ω > 0,
GDω

0,tLh(t)|κ(Lh) = (βω

1 Lh(t) + γ ωβω

2 Ih(t) + ψωβω

3 M(t))Sh(t) ≥ 0,
GDω

0,tIh(t)|κ(Ih) = γ ω

1 Lh(t) ≥ 0,G Dω

0,tRh(t)|κ(Rh) = γ ω

2 Lh(t) + γ ω

3 Ih(t) ≥ 0,
GDω

0,tM(t)|κ(M) = ηω

1 Lh(t) + ηω

2 Ih(t) ≥ 0,

(22)

where κ(ξ) = {ξ = 0 and Sh, Lh, Ih, Rh, M is in C(R+ × R+)} and ξ ∈ {Sh, Lh, Ih, Rh, M}. Following the
methodology proposed in [45], we reach to the conclusion that the solutions are non-negative for all
non-negative t.
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Lemma 2.2. Let us assume that the � is the feasible region of the model (7), then within it the
model that is under consideration is invariant positively and

� =
{
(Sh (t) , Lh (t) , Ih (t) , Rh (t) , M (t)) ∈ R5

+ : Sh + Lh + Ih + Rh ≤
(

�

d

)ρ

and M (t) ≤ �ρ(η
ρ

1 + η
ρ

2 )

dραρ

}
.

(23)

Proof 5. Let Nh(t) represents the total human population, then the use of proposed fractional
model leads to the assertion is give by
GDρ

0,tNh(t) + dρNh(t) ≤ �ρNh(t). (24)

Solving the above Eq. (24) which looks like

Nh (t) ≤ Nh (0) Eω (−dρtρ) +
(

�

d

)ρ (
1 − Eρ (−dρtρ)

)
. (25)

It could be also noted that Lh, Ih ≤ Nh, so the last equation of the fractional model (7) looks like

GDρ

0,tM (t) + αρM (t) ≤ (η
ρ

1 + η
ρ

2 )�
ρ

αρdρ
. (26)

The solution of Eq. (26) leads to

M (t) ≤ M (0) Eρ (−αρtρ) +
(

�ρ(η
ρ

1 + η
ρ

2 )

dραρ

) (
1 − Eρ (−αρtρ)

)
. (27)

In Eqs. (25) and (27), E(.) denote the Mittag-Leffler function and Eρ (Z) = ∑∞
n=0

Zn

�(ρi+1)
. Further,

it is obvious that when times grows without bound then Eqs. (25) and (27) gives that Nh (t) → (
�

d

)ρ

and M (t) →
(

�(η
ρ
1 +η

ρ
2 )

dραρ

)
. Thus, if Nh (0) ≤ (

�

d

)ρ

and M (0) ≤
(

�ρ(η
ρ
1 +η

ρ
2 )

dραρ

)
, then Nh (t) ≤ (

�

d

)ρ

and

M (t) ≤
(

�ρ(η
ρ
1 +η

ρ
2 )

dραρ

)
for every t > 0, while if Nh (0) >

(
�

d

)ρ

and M (0) >
(

�ρ(η
ρ
1 +η

ρ
2 )

dραρ

)
, then Nh and

M contained in ρ and will never leave. So, the dynamics of the fractional epidemic model can be
investigated in feasible region �.

3 Numerical Analysis

We discuss the temporal dynamics of the considered model for the long run and present the
significance of the fractional parameter. We find the numerical simulation to verify the theocratical
work carried out for the fractional-order SARS-CoV-2 transmission epidemiological model (7). To
show the validity of the analytical findings we present the large-scale simulation. There are not
many choices like the traditional numerical methods to choose various schemes for the numerical
simulation of fractional order models [46], therefore extensive attention is required to formulate new
and convenient techniques for the simulation of fractional models. We follow a numerical scheme
formulated in [47]. We assume the time step h = 10−3 for integration with the simulation interval [0, t],
n = T

h
and n ∈ N. We also assume that u = 0, 1, 2, . . . , n, therefore the discretization for the proposed

model looks like
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

CF Sh(u+1) = Sh(0) + {
�ρ − (β

ρ

1 Lh(t) + γ ρβ
ρ

2 Ih(t) + ψρβ
ρ

3 M(t) + dρ)Sh(t)
}
(1 − ρ)

+ρh
∑u

k=0

{
�ρ − (

β
ρ

1 Lh (t) + γ ρβ
ρ

2 Ih (t) + ψρβ
ρ

3 M (t) + dρ
)

Sh (t)
}

,

CF Lh(u+1) = Lh(0) + {
(β

ρ

1 Lh(t) + γ ρβ
ρ

2 Ih(t) + ψρβ
ρ

3 M(t))Sh(t) − �1Lh(t)
}
(1 − ρ)

+ρh
∑u

k=0

{(
β

ρ

1 Lh (t) + γ ρβ
ρ

2 Ih (t) + ψρβ
ρ

3 M (t)
)

Sh (t) − �1Lh (t)
}

,

CF Ih(u+1) = (1 − α)
{
γ

ρ

1 Lh (t) − �2Ih (t)
} + αh

∑u

k=0

{
γ

ρ

1 Lh (t) − �2Ih (t)
} + Ih (0) ,

CF Rh(u+1) = (1 − ρ)
{
γ

ρ

2 Lh (t) + γ
ρ

3 Ih (t) − dρRh (t)
} + ρh

∑u

k=0

{
γ

ρ

2 Lh (t) + γ
ρ

3 Ih (t) − dρRh (t)
} + Rh (0) ,

CF M(u+1) = (1 − ρ)
{
η

ρ

1 Lh (t) + η
ρ

2 Ih (t) − αρM (t)
} + M (0) + ρh

∑u

k=0

{
η

ρ

1 Lh (t) + η
ρ

2 Ih (t) − αρM (t)
}

.

Furthermore, we have chosen the value of epidemic parameters biologically as given in Table 1.
We also assume the initial population sizes for various compartments of the proposed model as
(100, 90, 80, 70, 60). We use the Matlab software package to execute the model for numerical simu-
lations. The collection of all these data along with the execution of developed scheme for the epidemic
problem leads to the results as depicted in Figs. 2–6, which respectively visualize the temporal dynamics
of Sh, Ah, Ih, Qh, Rh and M. Notably, the temporal dynamics of the susceptible are shown in Fig. 2. We
note a significant impact of the fractional-order on the transmission dynamics of sensitive individuals
that if the fractional parameter ρ, increases, the number of susceptible individuals are decreases as
shown in Fig. 2. This guarantees that there is a strong relation between fractional parameter and the
dynamics of susceptible individuals. Further, the dynamics of the considered problem describe that
the long run for latent, infected and recovered compartmental populations are also influencing with
the variation in fractional parameter as shown in Figs. 3–5, respectively. This reveals that there is a
strong influence of the fractional parameter (ρ) on the disease propagation as depicted respectively in
Figs. 3–5. In a similar fashion, the temporal dynamics of the reservoir are depicted in Fig. 6. It could
be seen that the parameter, ρ is a direct relation, and so the ratio of the reservoir is increased whenever
ρ is increased as presented in Fig. 6. Thus, the above analysis and the comparison with the integer-
order ρ = 1 investigate that the CF model gives more accurate dynamics of the disease and provide
valuable outputs instead of classical models. Also, it could be concluded that integer order models
are not appropriate while models with fractional order are more feasible to represent the accurate
dynamics of such type of infectious diseases propagation.

Table 1: Parametric values used in the numerical simulation

Parameter Value Parameter Value

� 0.4000 β1 0.0110
β2 0.0050 ψ 0.0160
γ 0.8631 β3 0.0100
D 0.0100 γ1 0.0500
γ2 0.0500 γ3 0.0050
d1 0.0020 η1 0.0010
η2 0.0600 σ 0.0600
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Figure 2: The graph visualizes the temporal dynamics of the susceptible for long run against various
value of the fractional parameter (ρ) and epidemic parameters given in Table 1. We also used the initial
population sizes are as (100, 90, 80, 70, 60)
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Figure 3: The plot demonstrate the dynamical behaviour of the latent individuals against the epidemic
parameters value presented in Table 1 and different value of fractional parameter (ρ), while the initial
sizes for compartmental population are as (100, 90, 80, 70, 60)
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Figure 4: The graph represents the temporal dynamics of infected individuals against the fractional
parameter (ρ) and model parameters given in Table 1 with initial conditions (100, 90, 80, 70, 60)
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Figure 5: The graph describes the dynamics of the recovered individuals for different value of
the fractional parameter (ρ) and model parameters given in Table 1, while the initial guess are as
(100, 90, 80, 70, 60)
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Figure 6: The graph describes the dynamics of the ratio of reservoir for different value of the fractional
parameter (ρ) and model parameters given in Table 1, while the initial guess are as (100, 90, 80, 70, 60)

4 Conclusion

We investigated the dynamics of SARS-CoV-2 with latent and infected individuals using an
epidemic model. First, the formulation of the model is proposed and then consequently fractionalized
due to the increased development in fractional calculus. Mainly, we used the well-known Caputo-
Fabrizio operator for the said purposes, because this operator is based on the non-singular kernel and is
more appropriate than the other fractional operator. Moreover, we applied the fixed point theorem to
perform the existence analysis with unique properties regarding the developed epidemic problem. The
biological and mathematical feasibilities are discussed in detail for the proposed model and prove that
the problem is well-possed. Finally, we gave some graphical representations and showed the validations
of the obtained results. We also presented the relative impact of the fractional parameter on the various
groups of the compartmental populations graphically. We proved that the significant outcome of the
reported work is that the fractional-order CF epidemic models are more appropriate and the best
choice rather than the classical order.

In the near future, we will use the operators Atangana Baleanu Caputo, Atangana bi order,
Atangana Gomez and fractal-fractional operator to study the complex dynamics of novel corona virus
disease transmission. We will also apply the optimal control theory to the model reported in this study
to present the control mechanism for the novel corona virus disease transmission.
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