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ABSTRACT

Traffic simulators are utilized to solve a variety of traffic-related problems. For such simulators, origin-destination
(OD) traffic volumes as mobility demands are required to input, and we need to estimate them. The authors
regard an OD estimation as a bi-level programming problem, and apply a microscopic traffic simulation model
to it. However, the simulation trials can be computationally expensive if full dynamic rerouting is allowed, when
employing multi-agent-based models in the estimation process. This paper proposes an efficient OD estimation
method using a multi-agent-based simulator with restricted dynamic rerouting to reduce the computational load.
Even though, in the case of large traffic demand, the restriction on dynamic rerouting can result in heavier
congestion. The authors resolve this problem by introducing constraints of the bi-level programming problem
depending on link congestion. Test results show that the accuracy of the link traffic volume reproduced with
the proposed method is virtually identical to that of existing methods but that the proposed method is more
computationally efficient in a wide-range or high-demand context.
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1 Introduction

Traffic simulation is used to solve various traffic problems and inform associated policies such
as handling congestion or accidents, controlling CO2 emissions, and guaranteeing mobility in aging
societies. Many simulation models have been developed, and they can be roughly divided into
macroscopic, mesoscopic, and microscopic models. The macroscopic models approximate aggregated
vehicles as a continuous flow on links, where some form of traffic assignment models assign each
link demand. The microscopic models treat each vehicle as a particle, making it possible to distinguish
individual vehicles and thus to describe vehicles’ precise behaviors. In contrast to macroscopic models,
each vehicle has its own route along which it travels in some microscopic models. The mesoscopic
models are just the middle of the macroscopic models and the microscopic models. While each vehicle
is identified like microscopic models, the behavior is expressed in a macroscopic manner.
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The simulation model and input data must be reliable and realistic to reproduce a realistic traffic
situation in a simulator. And in most cases, a single simulator is used for parametric studies by changing
some parameters sets. In this research, the authors focus on the reliability of traffic demand as the input
data given to the simulator.

We can easily obtain road structure information (e.g., intersection configuration) and observable
and controllable information (e.g., traffic light patterns) in the real world. However, traffic demand
data, which directly affect link traffic volume, congestion, and service levels, are more difficult to
obtain because of their unobservability and significant uncertainties.

Origin-destination (OD) matrices describe traffic demand. An OD matrix consists of traffic
demand (traffic volume) for each OD pair, i.e., a pair of an origin and a destination point. Rows and
columns of an OD matrix denote origins and destinations, respectively. For example, the (r, c) element
in an OD matrix represents the number of vehicles per unit time that flow into the road network at
origin point Or and flow out at destination Dc. The unit of traffic demand is often given in vehicles
per hour, veh/h in short.

The authors regard OD estimation as a bi-level programming problem and target OD estimation
problem for microscopic traffic simulation, especially. In this situation, the same traffic model should
be employed in both lower and upper problems to make the input and the output for those problems
consistent.

It is concerned that the computational time increases due to the dynamic rerouting in each
simulation trial and the increased number of trial iterations when using such a method. Dynamic
rerouting is a route search operation required when a vehicle driver faces a high-cost link to pass (e.g., a
congested link) during driving along the route acquired by the initial search. Thus, dynamic rerouting is
reasonable because it corresponds to each driver’s detour behavior. By introducing dynamic rerouting,
vehicles detour to avoid congestion, and consequently, congestions are relaxed. However, each route
search operation, including dynamic rerouting, is computationally expensive. In addition, each vehicle
driver should know the traffic situation of the route candidates at a specific time point to reroute
dynamically. It is concerned to be an unrealistic assumption beyond the vehicle drivers’ capability. The
authors propose a way to suppress the number of dynamic rerouting in OD estimation and deal with
the problems resulting from this restriction.

2 Literature Review

Three general approaches are available for OD estimation: statistical approaches, traffic volume
optimization approaches with demand assignment, and traffic volume optimization approaches with
microscopic simulators. In the statistical approaches, the OD matrices are generated by aggregating
survey data, which can come from personal interviews. A typical example is the four-step model [1],
widely utilized for long-term demand prediction since the 1950s.

The traffic volume optimization approaches with demand assignment optimize link traffic
volume, i.e., match the volume in the simulation to that in the real world by changing the solution
candidates for the OD matrices. The assignment of traffic demand for each link is determined under
the assumption of logit-based decision rules and user equilibrium (UE) theory. Most such methods
handle traffic flow with stochastic turbulence based on minimum entropy [2–4], maximum likelihood
[5,6], or generalized least squares optimization [7]. For further details, see [8].
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The statistical and traffic volume optimization approaches with demand assignment handle wide-
ranging and aggregated traffic flows. Therefore, these methods are often applied in macroscopic
simulators because of the characteristics of aggregated flow.

Microscopic simulators are also widely used. These simulators seek to capture more detailed
traffic phenomena. A multi-agent system (MAS) is commonly used to implement such models. The
MAS captures each agent’s autonomous recognition, decision-making, and action. When applied to
traffic simulation, the MAS regards each driver or each vehicle as an agent. Entire phenomena such
as congestion emerge from the interactions among the drivers. Since this type of modeling directly
incorporates the individual behavior of actual drivers, the MAS is suitable for simulating traffic
phenomena in the real world at a fine-scale resolution. The MAS employs route search algorithms (e.g.,
Dijkstra’s algorithm [9] or the A∗ algorithm [10]) where each vehicle agent constructs its preferable
route considering heterogeneity and the dynamic changes in the traffic situation. In recent years, many
multi-agent-based microscopic simulators have been applied, including VISSIM [11], Aimsun [12],
SUMO [13], ADVENTURE_Mates [14,15] and MATSim [16].

Microscopic traffic simulations based on a MAS require OD matrices as traffic demand input
data. In one traffic volume optimization approach using a MAS-based simulator for OD estimation,
Nguyen et al. applied the DFROUTER tool to SUMO. This tool reconstructs vehicle routes based
on detector measurements [17]. Shafiei et al. proposed a gradient-based method using a linear
approximation for the demand-link traffic volume relation [18]. The simultaneous perturbation
stochastic approximation model (SPSA) [19] has also been proposed for OD estimation in microscopic
simulations, including MAS-based models. SPSA is one of the gradient-based models that minimize
the absolute error in the simulated link traffic volume (i.e., the difference between the simulated
volume and the observed volume). Unlike the original gradient-based model, the gradient is calculated
stochastically in the SPSA so that it is tolerant to noise. Yang et al. employed the SPSA for OD matrix
optimization with VISSIM [20]. Here, VISSIM is not only the simulation model itself; it is also a part
of the OD matrix estimation model. Thus, the estimated OD matrices provide consistent input data
for the VISSIM simulator. Djukic et al. applied the SPSA method to Aimsun, where both microscopic
and macroscopic models were employed [21]. There are also other OD estimation studies using SPSA,
e.g. [22,23].

Omrani and Lina proposed a genetic-algorithm (GA)-based approach for OD estimation [24].
They used a genetic algorithm to calibrate parameters affecting route choice behavior in the simulation.
Marzano et al. applied a Kalman-filter for OD estimation [25]. Yousefikia et al. proposed the
TflowFuzzy method, which is based on fuzzy set theory [26]. These methods use bi-level programming;
the update process for the OD matrix solution candidates and the simulation process are divided and
conducted alternately. Theoretically, we can apply these methods based on bi-level programming to
congested traffic situations in the real world [8].

Because drivers’ dynamic rerouting behaviors avoid the uneven distribution of vehicles in a net-
work, bi-level-programming-based approaches employing MAS-based microscopic simulators within
the model tend to work well. However, these approaches can involve significantly higher computational
costs for the dynamic rerouting process, as each driver search for the shortest path frequently. For
example, SPSA requires two simulation runs to determine the gradient [27]. Thus, using a fine-modeled
simulator for a large-scale network can be computationally quite expensive.

Nowadays, several OD estimation methods using advanced deep learning models have been
proposed [28,29]. For example, Tang et al. proposed the method using the 3D convolution-based deep
neural network (NN), Res3D, to estimate the OD matrices in Shanghai. Koca et al. proposed the
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graph NN to estimate the OD matrices in New York. These researches aim to estimate OD matrices
by inputting numerous vehicle coordinate data into learned NNs. However, there are difficulties
in employing advanced deep learning models to estimate OD matrices used in microscopic traffic
simulations. For example, Koca et al. [29] reported that the coefficient of determination in link traffic
volume is less than or equal to 0.3 in the cross-validation in which data obtained in an area were input
into the model learned in another area. In other words, the versatility of NN-based methods is not
sufficient. Consequently, as with other methods that do not incorporate microscopic simulators, the
OD matrices estimated by the NN-based methods may be inconsistent with the simulator that intends
to use them.

3 Methodology
3.1 Aims

As mentioned in the previous section, this research aims to solve the OD estimation problem
using a MAS-based simulator with restricted dynamic rerouting functions. Here, the simulator allows
a vehicle agent to reroute only after finding itself in an unintended route, which can occur when a lane
is blocked due to congestion. By restricting dynamic rerouting, it is expected that the computational
cost will be reduced and that vehicle drivers’ routing behavior will be more feasible.

However, employing such a restricted MAS-based simulator faces several challenges in the OD
estimation process. If high traffic demand is assigned to a low-throughput route in a certain iteration
step, congestion may occur at intersections. This is a natural characteristic in real situations, and if full
dynamic rerouting is allowed, the demand is adequately distributed to mitigate the congestion. But,
when the restricted dynamic rerouting proposed in this paper is employed, a kind of positive feedback
occurs so that heavier congestion arises at successive iteration steps. Once congestion incurs stuck of
vehicles upstream of the observation point, the link traffic volume, i.e., the number of vehicles that
passed the link, is under-measured compared to the link traffic demand, i.e., the number of vehicles
that intend to pass the link. In order to resolve this shortage of link traffic volume, more vehicles
are assigned to pass the link, regardless of whether it is the congested link or not. Consequently,
the congestion becomes even heavier, and the traffic volume is further reduced unexpectedly. This
traffic congestion generated by the restricted simulator functions is hereafter referred to as “fictitious
congestion”.

To resolve the fictitious congestion problem, the authors introduce upper-bound constraints for
link demand reflecting a congested state in the OD estimation process. It is handled outside the
simulator used in the OD estimation process. As a result, the proposed method is applicable to
simulators even when dynamic rerouting is fully available.

3.2 Overview
The authors aim to solve the following two problems: (1) calculation cost for bi-level-

programming-based OD estimation and (2) fictitious congestion when employing the simulator with
restricted dynamic rerouting. Especially, the OD estimation method is not established in context of
restricted dynamic rerouting. In this paper, the OD estimation problem is solved based on a framework
that deals with OD traffic volume assignment to links by alternately using simulation and optimization
of the solution candidate of the OD matrix via a numerical solver. Within this framework, a MAS-
based simulator with restricted dynamic rerouting is employed. By using this simplified framework,
the computational cost can be substantially reduced. To demonstrate the practical performance of the
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proposed method, three cases were tested: a low-demand case, a high-demand case with link demand
constraints, and a high-demand case without link demand constraints.

A flowchart of the proposed OD estimation method is shown in Fig. 1. This is based on the
authors’ previously proposed OD estimation method that embeds a MAS-based simulator [30,31].

Figure 1: Flowchart of proposed OD estimation method

Here, x denotes the OD matrix in vector form. The dimension of x is N, the number of OD pairs.
Q and Q̂ denote the observed and simulated link traffic volumes, respectively. The observed link traffic
volumes are given from the beginning; the simulated link traffic volumes are obtained from simulation
results with the OD matrix x. (k) denotes the iteration number. T denotes transposition. r denotes the
residual of the observed and simulated link traffic volumes; that is, r = Q − Q̂. The dimensions of r,
Q and Q̂ are all M. In general, N is larger than M. j denotes the index of OD pairs. xu denotes the
common upper bound of each OD traffic volume. This value is a constant regardless of the importance
of the OD pair such as trunk or branch ones.

The estimation process starts with an initial OD matrix in vector form, x(k) = x(0). In this form,
each element of the vector denotes an OD traffic volume. Next, a simulation is conducted with the
OD matrix x(k) to obtain the simulated link traffic volume in vector form Q̂

(k)

and assignment matrix
A(k), which is explained in Subsection 3.3. Convergence is then examined. If the root mean square
error (RMSE), as defined in Eq. (1), in the k-th iteration step is smaller than a threshold value ε or
the iteration number reaches the maximum number of iterations kmax, the solution is judged to have
converged. ε is often determined considering the total traffic demand or variant of that.

RMSE =
√‖r‖2

M
. (1)
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If the solution does not converge, a new OD matrix candidate is calculated by solving a quadratic
programming (QP) problem. When the QP is solved, some constraints corresponding to the congestion
situation are considered. The Fig. 1 indicates this operation as Congestion detection and Sign
inversion. The detail is described in Section 3.3. These operations are iterated until a solution candidate
converges. The flow of alternately conducting the simulation and solving the QP problem corresponds
to a bi-level programming problem. To avoid an overly long computational time, a QP solver is used
iteratively instead of the SPSA. Details of the formulation and variables are given in Subsection 3.3.

To simplify the OD estimation problem, the authors assume that the traffic situation is nearly
steady during a one-hour simulation. This assumption is based on the fact that link traffic volume is
aggregated every hour in many data sources. Importantly, this OD estimation is performed offline, i.e.,
all the link traffic volumes are determined before the estimation starts. By focusing on a particular one-
hour period to be estimated, the model can be considered static. There is no problem discussing the
function of dynamic rerouting under the assumption of static conditions because the MAS itself shows
a dynamic process. The behavior of an agent means that the environment is dynamically changing for
other agents.

The fictitious congestion appears in a simulation during the OD estimation process. In reality,
even if congestion occurs, it will be resolved over time due to drivers’ dynamic rerouting behavior.
However, under the assumption of the static OD matrix, with the difficulty of detouring as explained
in Section 2, the congestion will not be resolved since link demand is constant during the targeted
hour, even if the link is congested. In such a situation, congestions must be avoided, i.e., there should
be no assignment of higher demand than the link traffic capacity. Here, the authors define fictitious
congestion more concretely: It is the emergence of a vehicle queue that continuously exceeds a certain
length in a simulation during the OD estimation. Then, whether or not fictitious congestion appears
can be distinguished in terms of the simulation results. The authors seek to reduce the fictitious
congestion by modifying the OD matrix rather than invoking dynamic rerouting in the simulation.

3.3 Formulation
In the proposed method, the residual between the observed and simulated link traffic volumes is

minimized subject to constraints on OD traffic volume, as a kind of QP problem. The optimization
problem with the objective function and its constraints is

minimize f (x),
s.t.0 ≤ xj ≤ xu∀j, (2)

where

f (x) = ‖r‖2 = ‖Q − Q̂‖2. (3)

To solve Eq. (2), the authors assume a relation between the OD matrix and link traffic volume as

Q̂ = Ax. (4)

This assumption means that the product of matrix A and OD matrix x is equal to the simulated
link traffic volume Q̂. Matrix A is an OD-link assignment matrix. Element Aij is defined as

A(k)

ij =
{

A(k−1)

ij (x(k)

j < δ),
y(k)

ij /x(k)

j (x(k)

j ≥ δ).
(5)
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Here, yij the traffic volume of vehicles that passed through link i among the vehicles traveled from
the origin Oj to the destination Dj of ODpairj = (Oj, Dj). Thus, element Aij is regarded as the fraction
of the vehicles that selected link i for entire vehicles in ODpairj. The parameter δ denotes a minimum
traffic volume threshold. Because the selection fraction of link i cannot be calculated if the OD traffic
volume xj is too small, the relevant element in the assignment matrix is not updated in such case.

Based on the relation in Eq. (4), a standard form of the QP problem is obtained as

minimize g(x),
s.t.0 ≤ xj ≤ xu∀j, (6)

where

g (x) = 1
2

xT
(
ATA + λI

)−1
x − Q

T
Ax. (7)

λI is a regularization term that renders the square matrix ATA non-singular. In this study, the
authors set λ to 1. In Spiess’s original formulation, the objective function is f (x) = ‖r‖2 + λ‖x − x‖2,
where x is a target OD matrix that is typically obtained from a data source, such as a trip-based model
[5]. The authors assume no target OD matrix due to the difficulty of accessibility to the detailed OD
matrix generated by another method. Then, parameter λ in the proposed method is equivalent to that
of Spiess, and Eq. (7) is regarded as a case where the target OD matrix is zero in Spiess’s formulation.

The assumption in Eq. (4) is expected to be satisfied in the free-flow state. The QP problems are
solved using the open-source solver qpOASES [32] in this paper. This solver employs the active set
method, which is suitable for large-scale problems.

3.4 Congestion Detection
The model described in the previous subsection is a basic optimization model that works well

only in a free-flow state for a network. As described in Section 2, the authors introduce congestion
detection into the simulation during the OD estimation process and consider congestion effects. In
the estimation method assuming static traffic demand, the traffic volume at a congested link becomes
smaller than in a non-congested, free-flow state. In such a situation, adding traffic demand in order
to increase link traffic volume leads to heavier congestion, and as a result, link traffic volume drops.

The number of stuck vehicles si is counted at each link i to detect congestion. Though we can also
consider occupancy at each link for this purpose, the number of stuck vehicles is preferable because
it is independent of the link length. The stuck vehicles are counted at a specific point in time, when
sufficient time passed. A vehicle whose most recent Tc minute mean velocity is lower than vc [km/h]
is judged to be stuck. These values are obtained from each vehicle’s trajectory data. The purpose of
the detection is to reduce fictitious congestion in a simulation during the OD estimation process. The
number of stuck vehicles corresponds to the congestion length, which can be measured by sensors at
signalized intersections.

The authors add a constraint regarding stuck vehicles to the optimization problem in Eq. (6). The
new constraint is shown in Eq. (8). The constraint is applied only for links where observed real-world
link traffic volume data are available.

Aix ≤ Q̂i − si for i s.t. si ≥ s̃. (8)
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Here, Ai denotes an assignment column vector for link i and Aix denotes the traffic demand
calculated in the QP problem without simulation. The right term Q̂i − si denotes the acceptable traffic
demand of link i in the simulation.

This constraint is given for a particular link i where the number of stuck vehicles si is greater
than or equal to the critical value s̃. The constraint prevents the traffic volume from being suppressed
unexpectedly at too many links.

In addition, to reduce the fictitious congestion, the authors introduce sign inversion of the
elements of matrix A. When link i is judged to be congested, i.e., si is greater than or equal to s̃, the
sign of Aij for all j is inverted. This sign inversion is a simplified strategy for handling the change in
link traffic volume over time in static OD matrix contexts.

The sign inversion is based on typical traffic flow characteristics [33]. Originally, the relation
between traffic volume and spatial density was configured as an inverse-lambda-shaped function,
as shown in Fig. 2, and the authors assume that the density reflects demand indirectly. If a link is
congested, the throughput will decrease when the demand increases. This effect works as positive
feedback in the OD matrix optimization and thus renders the solution candidates unstable. If the
sign of Aij is inverted, it works as negative feedback, and the OD matrix solution candidates are likely
to be less congested.

Figure 2: Conceptual diagram of the relation between traffic volume and spatial density

The BPR function, the empirical velocity-traffic volume relation, is often used for traffic assign-
ment in traffic engineering conventionally [34]. This function is also based on the relation of this
diagram, i.e., it indicates same velocity in lower traffic volume and indicates slower velocity over a
critical traffic volume. The sign inversion is an analogy of such an empirical relationship. In addition,
though the sign inversion is applied to QP, the basic idea of that is based on the gradient method. In
the other words, since the sign which is to be inverted is an element of the gradient of the objective
function, that element works as a sort of barriers in the QP.

Since the shape of this diagram and the value of the critical density, where the relation of the
volume and the density inverses, depends on the links, it is difficult to determine this relation directly.
Therefore, it is important to employ congestion detection to estimate congestion situations.

4 Numerical Experiments
4.1 Simulator

In the numerical experiments in this study, a MAS-based microscopic simulator, ADVEN-
TURE_Mates [14,15], was employed. In the simulator, each vehicle travels from an origin node whose
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out-degree is 1 to a destination node whose in-degree is 1. Vehicles are modeled in detail: In the
longitudinal direction, they proceed based on a car-following model, specifically the Intelligent Driver
Model [35]; in the lateral direction, they change lanes considering the space to be occupied. They
are generated stochastically at each origin node in accordance with a Poisson distribution. For this
operation, the random seed is given exogenously.

Vehicle searches the shortest travel time route, referring to the mean travel time of each link during
the nearest 5 min. If a vehicle cannot keep its desired route because of some unexpected event, e.g., a
lane-change failure due to congestion, rerouting is invoked.

The authors conducted 90-min simulations and measured link traffic volumes during the last 60-
min for the evaluation. Since there were no vehicles in the initial state and the system was in a transient
state for the first 30 min, the authors excluded these irregular states from consideration.

4.2 Simulation Configuration
The authors applied the method to a real city road network to test the proposed method. The

network and observation point locations are shown in Fig. 3.

Figure 3: Target network and observation points (in red)

The north-south and east-west ranges are both approximately 8 km in length. The network is in
the central area of Fukui City, Japan. In this network, there are 5,852 possible OD pairs; however, in an
effort to simplify, the authors extracted 1336 pairs (N = 1336) for the estimation. The simplification
method used to select the final OD pairs is explained below.

First, the authors assigned a small OD traffic volume-2 veh/h (vehicles per hour)-to all 5,852
possible OD pairs to create the initial OD matrix x(0). This OD traffic volume was sufficient to calculate
the matrix A and did not produce congestion at any of the links. Giving a small OD traffic volume
as an initial condition makes it easy to calculate gradients in the solution space without congestions,
where the relationship between the link traffic volume Q̂ and the OD traffic volume x is almost linear.
Candidates in the solution space considering congestions, where the relationship between Q̂ and x
is nonlinear, are searched through iterations. Note that though the initial OD traffic volume is only
2 veh/h, the traffic volume of the link connected to an origin node is about 2

√
N veh/h. Because the
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number of possible destination nodes from one origin node is about
√

N. Next, Eq. (6) was solved, not
with a QP solver, but rather by using one of the gradient-based methods, the Levenberg-Marquardt
method, for a single iteration. The gradient was calculated using

�x = xT(ATA + λI)−1ATr. (9)

A roughly-estimated OD matrix was then obtained by calculating x(1) = x(0) +�x, where negative
traffic volumes were forced to zero to satisfy the constraint.

Then, OD pairs with large OD traffic volumes were extracted. Fig. 4 shows the cumulative relative
frequency of the roughly-estimated OD traffic volumes obtained from this procedure.

Figure 4: Cumulative relative frequency for OD traffic volume in roughly estimated OD matrix in range
of 0–10 veh/h

As seen in the figure, a jump in frequency occurs at 3.7–3.8 veh/h. The authors regarded
3.8 veh/h as a threshold and assumed that the OD pairs with a traffic volume smaller than the threshold
were ineffective in terms of the overall traffic phenomena. Therefore, these pairs were excluded to
reduce the total number of OD pairs.

The network includes 118 observation points (M = 118). The observed link traffic volume was
aggregated from traffic census data for each of the observation points. The link traffic volumes were
observed from 8 to 9 a.m. on Saturdays, 2014, 2016, and 2017. That is the peak congestion time on
weekends.

In the experiments, the criteria for the congestion detection are set as follows: Duration criterion
Tc is set to 5 min, which is based on the signal cycle. The velocity criterion vc is set to 1.0 km/h, which
is chosen based on the numerical errors in the simulation.

4.3 Evaluation Indices
Among many evaluation indices, at least it is necessary to evaluate based on the objective

function. Thus, the authors confirmed the reproducibility of the link traffic volumes by evaluating
the correlation coefficient R and the regression coefficient a between the observed and the simulated
link traffic volumes. Here, the authors assumed that the y-intercept of the regression line was zero. The
closer the values of R and a are to 1, the better the estimated OD matrix reproduces the link traffic
volume.
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In addition, the second index is used. This one indicates the degree of congestion measured as
the number of stuck vehicles. Heat maps for this index are used to visually identify and evaluate the
congestion range and magnitude. In this study, if the number of stuck vehicles is closer to zero, the
result is recognized to be more effective in suppressing fictitious congestion.

4.4 Experimental Cases
The authors considered four experimental cases, as shown in Table 1. The cases are categorized

into two groups: verification in free-flow conditions and performance in congested conditions. In
the former, simulations were conducted where vehicle collisions were ignored, i.e., in the country
where vehicles are driven on the left, and right-turning vehicles do not yield even when there are on-
coming vehicles. Implementing this modification increases traffic capacity and, as a result, congestions
are suppressed. In such a situation, the problem assumption is equivalent to the authors’ previously
proposed methods [30,31]. The authors regarded this case as a reference for comparisons with existing
research.

Table 1: Experimental cases

Verification Control Weak Strong

Permitting vehicle collision Yes No No No
Congestion detection No No Yes Yes
Congestion measurement timing∗ N/A N/A 30 min 60 min
Critical number of stuck vehicles s̃ N/A N/A 5 10
Sign inversion of Aij No No Yes Yes
Note: ∗ Values denote the elapsed time after the start of simulations.

The latter category is composed of three cases: Control, Weak and Strong. In all three cases, vehicle
collisions should be avoided. In the Control case, congestion detection is not considered. If traffic
volume is large, fictitious congestion is expected to occur. As the label suggests, this case is used as the
reference case for the group. In contrast, congestion detection, as described in the previous section,
is considered in both the Weak and Strong cases. The differences between the Weak and Strong cases
are (1) the timing of the congestion measurement, i.e., the threshold used to judge congestion, and (2)
sign inversion. In the Strong case, the constraints are applied to more links than in the Weak case.

5 Results
5.1 Verification

The proposed method was verified in the free-flow condition using five trials with different
random seeds for the simulator. The results are shown in Table 2. Fig. 5 shows the scatter plot for
the link traffic volume. As expected, using random seeds varied the number of generated vehicles and
the timing they flowed the network. The relative root mean square error (RRMSE) shown in Table 2
is calculated using Eq. (10). The numerator of the right hand denotes the RMSE.

RRMSE =
√

1
M

‖r‖2

1
M

∑
i Q̂i

. (10)
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Table 2: Comparison of results between the proposed method and existing studies in free-flow
condition

Proposed method Yang et al. [20] Omrani et al. [24]

RRMSE[%] 14.8–16.9 21.6–29.9 15
Correlation coefficient 0.97–0.99 0.93–0.96 N/A
Method for upper-level optimization QP SPSA Parallel GA
Dynamic rerouting Restricted Fully available Fully available

Figure 5: Scatter plot for verification using regression line

Table 2 also shows the estimation performance of the methods proposed by Yang et al. [20] and
Omrani et al. [24]. Like the method proposed in this paper, both of these existing approaches employ
MAS-based microscopic traffic simulators; however, the three approaches differ in the upper-level
optimization method and whether the dynamic rerouting functions are fully available.

Under the free-flow assumption, the traffic situations reproduced by the three approaches
showed no substantial differences regardless of whether the full dynamic rerouting functions were
available, as congestion rarely occurred. Furthermore, all three methods produced small RRMSEs
and large correlation coefficients. Namely, we can judge the proposed model has a similar estimation
performance as the methods of Yang et al. and Omrani et al.

5.2 Reproducibility of Link Traffic Volume in Congestion Conditions
The link traffic volume reproducibilities under congestion conditions are shown in Table 3. The

mean RMSEs of 10 trials with different random seeds are plotted in Fig. 6 for the Control, Weak
and Strong cases. The error bars indicate the 30–70th percentiles. In these tests, the authors set the
convergence threshold ε to zero to investigate the transition of RMSE and examined 9 iterations for
each trial.
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Table 3: Comparison of results between the proposed method and existing studies in congested
condition

Proposed method Yang et al. [20] Shafiei et al. [18]

RMSE[veh/h] 70–80 N/A 20.79
Iterations to minimum RMSE 3–4 3–4 N/A
Method for upper-level
optimization

QP SPSA Gradient-based optim.

Dynamic rerouting Restricted Fully available Fully available

Figure 6: Change in RMSE for control, weak and strong cases

In all cases, the RMSEs were observed at the 3rd or 4th iteration step, and increased subsequently.
This can be explained by the fact that congestion grew worse in later iterations. There were no
significant differences among the cases in terms of their RMSE. The number of iteration steps needed
to produce a feasible optimal result with the proposed method was nearly identical to that for Yang
et al.’s method [20]. Considering that SPSA requires simulations twice as lower-level optimizations
to calculate the gradient [27] and that simulation runs occupy a large portion of the estimation time
(see also Subsection 6.2), the proposed method is computationally more efficient than Yang et al.’s
method.

Figs. 7a–7c show scatter plots obtained from a trial whose RMSE was the median at the 4th
iteration. The correlation and regression coefficients are sufficiently high and similar to those in the
verification case. Therefore, the authors concluded that, the link traffic volumes were reproduced well
as a whole. However, from a different perspective, the fact that the RMSE remains at approximately
80 veh/h shows a limitation of the application in its current stage. Some large differences between
the simulated and the observed link traffic volumes were seen at various observation points, with
differences of 463 and 61 representing the most remarkable examples (Fig. 7a). The reason for this
is traffic volume drop due to congestion. Congestion detection leads to suppressing traffic volume
on all links evenly. Thus, the RMSE can be improved only to a certain extent, as long as the entire
reproducibility of the link traffic volumes across all links is limited. Further improvements require
simulation parameters that more accurately describe driver behavior.
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Figure 7: Scatter plots for cases with/without congestion detection with regression lines

Next, the results were compared to a study by Shafiei et al. [18] that used gradient-based
optimization. Their method is also implemented offline and is nearly the same as the method described
in Subsection 4.2 for preparing an initial OD matrix.

Shafiei et al. pointed out that if the gradient of the objective function was simply used for updating
the OD matrix solution candidate, it would be invalid under congested conditions. Though their
approach is similar to the congestion detection method employed in this research, as given in Eq. (8),
they dealt with the problem by considering the results of a sensitivity analysis of link traffic volume
to determine the assignment matrix A. In brief, they attempted to substitute Eq. (4) with a first-order
Taylor approximation, similar to Eq. (11). Note that the assignment matrix A changes from a constant
to a function of the OD vector x.

Q̂j = Aj (x∗) +
(

∂Aj(x∗)

∂x
x∗

)T

(x − x∗) . (11)

Here, subscript j denotes the index of the row, and the differential symbol denotes vector
differentiation. x∗ is the current OD matrix candidate solution.

Shafiei et al. calculated the second term of Eq. (11) in partial rather than total terms. This
operation is based on introducing the initial OD matrix into the objective function.

As a result of testing their approach on a small-scale network, Shafiei et al. obtained an RMSE of
20.79 in a heavy congestion scenario. Clearly, this is much smaller than the RMSE of 70–80 obtained
in the present study. The authors consider that the difference arises from the dynamic rerouting feature
implemented in the traffic simulator used by Shafiei et al. In terms of distributing demand, full
dynamic rerouting affects each vehicle’s routing strategy dynamically, whereas the presently proposed
method affects traffic volume statically outside the simulation. Therefore, the authors doubt that the
larger RMSE for the proposed method arises from fictitious congestion occurring in the simulation.
Subsection 6.1 clarifies the congestion behavior.

6 Discussion
6.1 Suppression Effect in Congestion

The change of the total number of stuck vehicles, which is calculated simply by summing all values
for all links, is shown in Fig. 8.
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Figure 8: Change in total number of stuck vehicles

Fig. 8 shows that there were fewer stuck vehicles in the Strong case than in the Control case.
Although there was no statistically significant difference, in comparing the mean values at the 4th
iteration step, the number of stuck vehicles is 12% less in the Strong case than in the Control case. This
result shows that the proposed congestion detection successfully reduces the number of such vehicles
under the situation employing restricted dynamic rerouting.

The results also show that the total number of stuck vehicles increases monotonically at each
iteration in all cases. In iteration steps 1–4, since the total number of generated vehicles increases with
each iteration, there is an increase in the total number of stuck vehicles. In later iteration steps, as noted
in Subsection 5.2, there are many stuck vehicles and it is difficult to measure the true demand on the
link because of the heavy congestion. In addition, the regression coefficient is always below 1.0, i.e.,
the renewal of the OD matrices in the estimation loop always leads to increased demand in some OD
pairs. This renewal causes positive feedback for congestion. It is also noteworthy that the number of
stuck vehicles increases greatly in these later iteration steps. Considering above, these results suggest
that the maximum number of iterations kmax should be 5.

6.2 Computational Efficiency and Scalability
The authors used a simulator with restricted dynamic rerouting to reduce the computational time

in the OD estimation process. The most calculation-expensive operation in the simulation is the route
search. In Dijkstra’s algorithm, the origin of the A∗ algorithm, the worst-case time complexity is
O(E + V log V), where E and V are the numbers of links and nodes in the network, respectively.
The A∗ algorithm is more efficient than Dijkstra’s method, but not to the extent that it significantly
reduces the order of the time complexity. When invoked dynamic rerouting based on the A∗ algorithm,
the computational cost is multiplied by the total traffic demand and the total number of rerouting
operations per vehicle. Especially, the latter corresponds to the size of the network. Because driving on
a larger network increases rerouting chance during driving. Though the computational complexity for
this cannot be defined strictly, it can be formulated like O(NE(E + V log V)) with some assumptions;
The first assumption is that total traffic demand is proportional to the number of OD pairs. The second
is that number of rerouting operations is proportional to the number of links.
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Here, considering additional assumptions, the formulation is expressed like O(N2 log N). The
assumptions are like below: First, the number of links is proportional to the number of nodes:
O(E) = O(V). There is no significant variation in the number of links that connect to one node.
Second, the number of the origin or destination nodes P is proportional to the total number of nodes:
O(P) = O(V). Third, the number of the OD pairs is the total number of combinations of origin and
destination nodes: O(N1/2) = O(P).

Quadratic programming was used in this study reduce the number of simulation runs in one
iteration, and a majority of the computational time is consumed in the simulation portion of the
procedure. For example, the mean values in one iteration of the Control case were 131.4 s in running
simulation and 38.6 s in running QP solver. Even in the free-flow state, the computational time for the
simulation predominates in the OD estimation. Our work supports that 75% of the computation time
is spent in routing operation through a simulation run [36]. By introducing dynamic rerouting into the
simulator, the computational time for the simulation is expected to be several times longer than in the
Control case.

Here, Fig. 9 shows the relationship between computational time for QP and simulation. The red
points indicate these typical values in the examined cases. Purple and green lines are the approximated
computation time discussed above. This figure shows that if the number of nodes is smaller than about
400–500, the simulation time is lower than QP. This result suggests that when computing the OD
estimation in a typical medium-sized city in Japan like this experiment, since the computational cost
for simulation is larger than upper-level optimization, the proposed method has an effect in reducing
calculation cost.

Figure 9: Estimated computational time for QP and simulation

When dealing with extremely large networks, the QP solver may take longer computational time
than the simulation. The worst-case time complexity for the QP algorithm is roughly approximated as
O(N3) under the assumption that the linear equations are solved with LU decomposition and that
upper or lower bounds are not considered. These rough estimates show that the QP solver could
potentially cause a bottleneck in the estimation procedure. However, it is worthwhile to reduce the
simulation time by using the proposed method even for large networks where QP is dominant.

If we need to reduce the time for solving QP, reducing the number of variables is preferable. Since it
is possible to conduct clustering for the results of a traffic simulation [37], a reduced-order estimation
model can be developed using such a method.
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7 Conclusions

In this paper, the OD estimation problem was formulated as a bi-level programming problem;
the authors introduced congestion detection into the process of updating the OD matrices (upper-
level optimization) to combine with a MAS-based microscopic simulator (lower-level optimization)
with restricted dynamic rerouting. Because full dynamic rerouting functions are computationally
expensive, restricted dynamic rerouting was used to reduce the computational cost. At the same time,
a congestion detection was introduced to suppress excess traffic demand that cannot be treated well
by the restricted dynamic rerouting. Although the congestion detection was combined with restricted
dynamic rerouting, the method can also be applied to a simulator with full dynamic rerouting. The
proposed congestion detection could reduce fictitious congestions that result from restricting dynamic
rerouting. Test results showed that stuck vehicles were reduced by 12%. The reduction of fictitious
congestion can improve the numerical stability of the entire estimation method.

Additionally, the reproducibility of link traffic volume using the proposed method proved to be
nearly the same as that of existing methods. At the same time, the proposed method is computationally
more efficient since the calculation cost of dynamic rerouting is reduced. This advantage is particularly
evident when targeting wider-area or higher-demand conditions. However, the proposed method
guarantees that reproducibility at the link without observation. It is required additional observation
points or additional data source to fit the volume at such a link, velocities or other measurements. The
authors regard it as for future task.

Importantly, the proposed method can be applied to any other traffic simulators that can output
link traffic volume and the number of stuck vehicles. In addition, the proposed approach of adding
information to the analysis may contribute to enhancing the efficiency of NN-based methods. For
example, the authors have shown in the previous work [38] that a similar approach improves the
efficiency of traffic state estimation in the event of a traffic incident using a graph convolutional
recurrent neural network (GCRNN).

It would be prudent for future work to consider utilizing other observable traffic attributes as data
sources for validation. For example, as described in Subsection 3.3, since the number of stuck vehicles
corresponds to congestion length in the real world, it should be taken into account in the proposed
method.

Availability of Data and Materials: The data that support the findings of this study are available
from the corresponding author, K. Abe, upon reasonable request, except the observed traffic volume
data. The observed traffic volume data are parts of the traffic survey result conducted by Fukui
prefecture and the authors are permitted only to use them, not to distribute them. The simulator
which is employed, ADVENTURE_Mates, is an open source software and is available at https://
adventure.sys.t.u-tokyo.ac.jp/. Everyone can freely use this simulator for the purposes permitted under
the simulator’s license and terms.
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