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ABSTRACT

This paper proposes a modified formulation of the singular boundary method (SBM) by introducing the combined
Helmholtz integral equation formulation (CHIEF) and the self-regularization technique to exterior acoustics.
In the SBM, the concept of the origin intensity factor (OIF) is introduced to avoid the singularities of the
fundamental solutions. The SBM belongs to the meshless boundary collocation methods. The additional use
of the CHIEF scheme and the self-regularization technique in the SBM guarantees the unique solution of the
exterior acoustics accurately and efficiently. Consequently, by using the SBM coupled with the CHIEF scheme
and the self-regularization technique, the accuracy of the numerical solution can be improved, especially near
the corresponding internal characteristic frequencies. Several numerical examples of two-dimensional and three-
dimensional benchmark examples about exterior acoustics are used to verify the effectiveness and accuracy of the
proposed method. The proposed numerical results are compared with the analytical solutions and the solutions
obtained by the other numerical methods.
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1 Introduction

As we all know, the main numerical methods to study acoustic radiation and scattering are the
finite element method (FEM) [1–4] and the boundary element method (BEM) [5–7]. The FEM is a
general method for solving mathematical and physical equations. However, the FEM is difficult in
dealing with the infinite domain problems and needs several additional technologies [8–10]. The BEM
is a boundary-type numerical algorithm after the FEM. The fundamental solutions of the BEM can
automatically satisfy the Sommerfeld radiation condition at infinity, so the BEM can effectively deal
with infinite domain problems. Moreover, the BEM only needs the boundary discretization on the
surface of the considered computational domains, so that it can save the computational resources.
Therefore, the BEM is a competitive option for infinite domain problems. However, the fundamental
solution of the BEM has singularities, which leads to a great deal of difficulty in the calculation of the
singular/hypersingular integrals. This is also the main factor limiting the application of BEM.
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To avoid these troublesome calculations in the BEM, the method of fundamental solutions (MFS)
[11–16] was proposed. It distributes the source points outside the solution domain to overcome the
singularities of the fundamental solutions, which is effective and easy to implement. However, the
optimal placement of the source points is a nontrivial task, which has a big effect on the numerical
stability and accuracy in the MFS, in particular the problems with multi-connected domains or
complicated-geometric-shaped domains.

Then the boundary knot method (BKM) [17–19] has been proposed, which employs the non-
singular general solutions as basis functions instead of the singular fundamental solutions. It avoids
the troublesome placement of the source points in the MFS. However, it cannot be used for exterior
Helmholtz problems due to the nontrivial task of the derivation of the nonsingular general solutions.
To overcome this drawback, several numerical methods have been proposed to solve acoustic radiation
and scattering problems in recent years, such as the singular boundary method (SBM) [20–24], the
regularized meshless method (RMM) [25,26], and so on. Here we focus on the singular boundary
method (SBM).

The SBM introduces the concept of origin intensity factor (OIF) [27] to substitute the singular
term in the interpolation expression, so that we can obtain the non-singular interpolation expression.
In order to determine the OIF, the SBM uses the inverse interpolation technique (IIT) [28], which
needs to construct the sample solution and select the sample nodes in the physical domain. However,
the accuracy of numerical results will be affected sensitively by the selection of sample points, which
limits the application of the method in three-dimensional problems. The improved formulation of the
singular boundary method is proposed by Chen and his coworkers [29–32] to overcome this issue. The
method derives the origin intensity factor through the subtracting and adding-back technique, so as
to avoid the selection of sample nodes in the SBM.

Although the improved formulation of the SBM has been applied to the acoustic wave propagation
problems [33–35], it still cannot obtain the correct numerical results in the solution of the acoustic
radiation and scattering problems in the infinite domain, which is caused by the non-uniqueness issue
appeared near the corresponding internal characteristic frequencies. The combined Helmholtz integral
equation formulation (CHIEF) method [36–38] and the Burton-Miller formulation [7,21] are two
popular schemes to avoid this non-uniqueness issue. However, the CHIEF method can only avoid the
uniqueness issue at some but not all characteristic frequencies. And the Burton-Miller formulation is
usually difficult to calculate due to the existence of singularities and hyper-singularities in fundamental
solutions. Inspire by Chen’s work [39] in indirect BEM, this study constructs a modified formulation of
the SBM based on CHIEF method and self-regularization technique to deal with this non-uniqueness
issue.

This paper presents a modified formulation of the SBM in conjunction with the CHIEF method
and self-regularization technique to exterior acoustics analysis. The paper is briefly summarized as
follows: Section 2 introduces the modified formulation of the SBM in conjunction with the CHIEF
method and self-regularization technique. Section 3 verifies the accuracy of the proposed method
and compared the present solutions with the analytical solutions and the solutions of other methods
through several typical benchmark examples. Finally, Section 4 presents some conclusions of the study.



CMES, 2023, vol.135, no.1 379

2 Methodology

Considering the propagation of time-harmonic acoustic waves in a homogeneous isotropic, the
acoustic radiation and scattering can be described by the Helmholtz equation(
� + k2

)
u (x) = 0, x ∈ D (1)

and the boundary conditions

u (x) = u, x ∈ �D (2)

q (x) = ∂u (x)

∂nx

= q, x ∈ �N (3)

where D is the exterior domain, k = ω

c
stands for the wave number, in which c denotes the sound

velocity, ω presents the angular frequency. Respectively, �D and �N represent the Dirichlet boundary
and Neumann boundary. For different types of the acoustics problems, the acoustic pressure u (x) can
be expressed as

u =
⎧⎨
⎩

uR = uT , if only radiation
us = uT − uinc, if only scattering
uR+S = uT − uinc, if both

(4)

where the subscripts T , R, S, inc represent the total, radiation, scattering and incidence wave,
respectively. For the physical and mechanical problems, it is required to impose the well-known
Sommerfeld radiation condition on the infinite boundary conditions

lim
r→∞

r
1
2 (n−1)

(
∂u
∂r

− iku
)

= 0 (5)

where n stands for the dimension of the problem and i = √−1 .

2.1 Original Singular Boundary Method (SBM)
Considering the Helmholtz equation with infinite domain, the single-layer fundamental solution

is used as the interpolation basic function in the SBM. The approximate solutions u (x) and q (x) can
be expressed as

u (xm) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N∑
j=1

ajφ
H
F

(
xm, sj

)
, xm ∈ D

N∑
j=1
j �=m

ajφ
H
F

(
xm, sj

) + amUjj
S , xm ∈ �D

(6)

q (xm) = ∂u (xm)

∂nx

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N∑
j=1

aj
∂φH

F (xm ,sj)
∂nx

, xm ∈ D

N∑
j=1
j �=m

aj
∂φH

F (xm ,sj)
∂nx

+ amQjj
S, xm ∈ �N

(7)

where aj stands for the unknown coefficient, {xm} denotes the collocation points,
{
sj

}
is the source

points, N represents the number of source points
{
sj

}
, nx stands for the outward unit normal

vector on the collocation points {xm}, Ujj
S and Qjj

S represent the OIFs. The fundamental solutions
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φH
F

(
xm, sj

) =

⎧⎪⎨
⎪⎩

i
4

H (1)

0

(
krmj

)
, 2Dcase

eikrmj

4πrmj

, 3Dcase
, where H (1)

n denotes nth order Hankel function of the first kind,

rmj = ∥∥xm − sj

∥∥
2

is the Euclidean distance. When the collocation point xm coincides with the source
point sj, the fundamental solution φH

F

(
xm, sj

)
has singularities. Here the OIFs are introduced to replace

the singular terms. By considering the same singularity between the Helmholtz fundamental solutions
and Laplace fundamental solutions, the explicit relationship between the OIFs for Laplace equation
and Helmholtz equation is derived. Therefore the key issue in the acoustic SBM is to determine the
OIFs (Ujj

0 and Qjj
0) of Laplace equations. Then the corresponding OIFs Ujj

0 and Qjj
0 can be determined

by using the subtracting and adding-back technique, which can be represented as follows [32]:

Ujj
0 =

⎧⎪⎨
⎪⎩

− ln(Lj/2π)
2π

, 2Dcase

−
J∑

j=1,j �=m

Lj

Lm

[
φL

F

(
xm, sj

)
qSL

(
sj

) − ∂φL
F

(
xm, sj

)
∂ns

uSL

(
sj

)]
, 3Dcase

(8)

Qjj
0 = − 1

Lm

−
N∑

j=1
j �=m

Lj

Lm

∂φL
F

(
xm, sj

)
∂ns

(9)

where Lm is the influence area of mth source point, uSL

(
sj

) = 〈
sj − xm, nxm

〉
and qSL

(
sj

) = ∂uSL(sj)
∂nsj

=〈
nsj , nxm

〉
denotes the specific sample solutions, in which 〈vec1, vec2〉 stands for the dot product of

two vectors, vec1 and vec2. Fig. 1 shows the schematic configuration of the source points and their
infinitesimal areas Lj. More detailed derivation can be found in the literature [32].

Then the corresponding OIFs Ujj
S and Qjj

S can be represented as follows:

Ujj
S = Ujj

0 + B, (10)

Qjj
S = Qjj

0 = − 1
Lm

−
N∑

j = 1
j �= m

Lj

Lm

∂φL
F

(
xm, sj

)
∂ns

(11)

where the complex number B = − 1
2π

[
ln
(

k
2

) + γ − iπ
2

]
in 2D problems and B = ik

4π
in 3D problems.

Figure 1: Schematic configuration of the source points sj (a) the curve sj−1sj+1 on 2D problems, (b) the
corresponding infinitesimal area Lj on 3D problems
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Taking the collocation points and the source points as the same set of boundary points, the
following matrix form can be obtained by substituting Eqs. (6) and (7) into Eqs. (1)–(3),

AN×NaN×1 = bN×1 (12)

in which

A =
[

A1

A2

]
, b =

[
b1

b2

]
A1 = (A1)mj , m = 1, · · · , N1; j = 1, · · · , N

A2 = (A2)mj , m = N1 + 1, · · · , N; j = 1, · · · , N

(A1)mj = φH
F

(
xm, sj

)
, m �= j, (A1)mj = Ujj

S , m = j

(A2)mj = ∂φH
F

(
xm, sj

)
∂nx

, m �= j, (A1)mj = Qjj
S, m = j

b1 = [
u (x1) , · · · , u

(
xN1

)]T

b2 = [
q
(
xN1+1

)
, · · · , q (xN)

]T

By solving Eq. (12), the unknown coefficients a = {
aj

}
can be determined. After that, the

numerical acoustic pressure u (x) inside the domain and on the boundary can be calculated by using
the SBM formulation (6).

2.2 The SBM Coupled with the CHIEF Method and Self-Regularization Technique
(SR-CHIEF-SBM)
In the SBM solution of exterior acoustic problems, the resultant matrix is rank deficient when the

wave frequency is exactly equal to the eigenfrequency of the corresponding interior acoustic problems,
which makes the original SBM unable to obtain the correct solution. To overcome this non-uniqueness
issue, it needs to introduce NC CHIEF points {xc} in the interior domain 	2\D to provide NC additional
independent constraint equations for generating a sufficient number of independent equations.

Based on the self-regularization technique and the singular value decomposition (SVD) technique,
NC additional independent constraint equations can be represented as follows:

N∑
j=1

ajφ
H
SVDc

(
xc, sj

) = 0, c = 1, 2, · · · , NC (13)

where φSVDc denotes the right unitary vectors of the right unitary matrix �SVD = [φSVDN, · · · , φSVD1]
decomposed by using the singular value decomposition on the matrix [A]N×N = [�SVD]N×N [�SVD]N×N

[�SVD]H
N×N, in which �SVD =

⎡
⎢⎣

σN · · · 0
...

. . .
...

0 · · · σ1

⎤
⎥⎦ with the singular values σN ≥ σN−1 ≥ · · · ≥ σ1, the

superscript H denotes the Hermitian transpose. The SBM formulations (6) and (7) coupled with
Eq. (13) are abbreviated as CHIEF-SBM in this study. The following matrix form of the CHIEF-SBM
can be obtained by substituting Eqs. (6) and (7) into Eqs. (1)–(3),[

A N×N


NC×N

]
aN×1 =

[
bN×1

0NC×1

]
(14)
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where 
NC×N =
⎡
⎣φH

SVD1· · ·
φH

SVDNC

⎤
⎦. By solving Eq. (14), the unknown coefficients a = {

aj

}
can be determined.

After that, the numerical acoustic pressure u (x) inside the domain and on the boundary can be
calculated by using the SBM formulation (6).

Moreover, to improve the numerical performance, the CHIEF points can be also considered as
the extra source points, namely,

{
sj

} = {
sj

} ∪ {xc}. The related SBM formulations (6) and (7) can be
modified as follows:

u (xm) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N∑
j=1

ajφ
H
F

(
xm, sj

) +
N+NC∑
j=N+1

βjφ
H
F

(
xm, sj

)
, xm ∈ D

N∑
j = 1
j �= m

ajφ
H
F

(
xm, sj

) +
N+NC∑

j = N + 1
j �= m

βjφ
H
F

(
xm, sj

) + amUjj
S , xm ∈ �D

(15)

q (xm) = ∂u (xm)

∂nx

=

⎧⎪⎪⎨
⎪⎪⎩

N∑
j=1

aj
∂φH

F (xm ,sj)
∂nx

+
N+NC∑
j=N+1

βj
∂φH

F (xm ,sj)
∂nx

, xm ∈ D

N∑
j=1

aj
∂φH

F (xm ,sj)
∂nx

+
N+NC∑
j=N+1

βj
∂φH

F (xm ,sj)
∂nx

+ amQjj
S, xm ∈ �N

(16)

subjected to NC constraint conditions (13). The SBM formulations (15) and (16) coupled with Eq. (13)
are abbreviated as SR-CHIEF-SBM in this study. The following matrix form of the SR-CHIEF-SBM
can be obtained by substituting Eqs. (15) and (16) into Eqs. (1)–(3),[

A N×N A N×NC

ΦNC×N 0NC×NC

] [
aN×1

βNC×1

]
=
[

bN×1

0NC×1

]
(17)

where β = {
βj

}
stands for the strengths of the extra source points, and A =

[
A1

A2

]
, in which

A1 = (
A1

)
mj

, m = 1, · · · , N1; j = 1, · · · , NC

A2 = (
A2

)
mj

, m = N1 + 1, · · · , N; j = 1, · · · , NC(
A1

)
mj

= φH
F (xm, xc) ,

(
A2

)
mj

= ∂φH
F (xm, xc)

∂nx

By solving Eq. (17), the unknown coefficients a = {
aj

}
can be determined. After that, the

numerical acoustic pressure u (x) inside the domain and on the boundary can be calculated by using
the SBM formulation (15).

3 Numerical Results

In this section, several benchmark examples are presented to verify the feasibility and accuracy of
the proposed SR-CHIEF-SBM in analyzing exterior acoustic radiation and scattering behavior. The
present numerical solutions are compared with the analytical solutions and the ones obtained by the
original SBM, the CHIEF-SBM, and the Burton-Miller SBM (BM-SBM). To measure the accuracy,
the root mean square error RMSE (u) and the maximum error Merr (u) are defined as follows:
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RMSE (u) =

√√√√√√√√
Nt∑
i=1

[unum (xi) − uana (xi)]
2

Nt∑
i=1

u2
ana (xi)

(18)

Merr (u) = max
1≤i≤Nt

|unum (xi) − uana (xi)| (19)

where uana (xi) and unum (xi) represent the analytical solutions and numerical solutions at ith test nodexi,
Nt denotes the number of total test nodes inside the domain.

Example 1: Radiation problem of a hard infinite circular cylinder (Neumann boundary condition)

Consider the acoustic radiation by a hard infinite circular cylinder. The analytical solution of the
radiation field uR is

u (r, θ) = − kaH (1)

4 (kr)

kaH (1)

3 (ka) − 4H (1)

4 (ka)
cos (4θ) (20)

In the proposed SR-CHIEF-SBM implementation, the parameters are set as N = 300 and NC = 2,
the location of 2 CHIEF points in polar coordinates are (0.8a, 5π/18) and (0.8a, 5π/9), the test points
are placed on a circle with a radius of 2a, and a = 1. Fig. 2 shows the convergence rates of the proposed
SR-CHIEF-SBM in comparison with the original SBM, CHIEF-SBM and BM-SBM in Example 1
with ka = 5. It can be found that the numerical results obtained by the proposed SR-CHIEF-SBM,
CHIEF-SBM and original SBM converge to the analytical solutions with a similar rate of convergence,
while the BM-SBM provides the correct numerical results with lower accuracy due to the use of the
double-layer fundamental solutions.

Figure 2: Convergence rates of the proposed SR-CHIEF-SBM in comparison with the original SBM,
CHIEF-SBM and BM-SBM in Example 1 with ka = 5

Then Tables 1–3 show the RMSE errors of the real part, imaginary part and the modulus of
unum obtained by the proposed SR-CHIEF-SBM with N = 300 and NC = 2 in comparison with the
original SBM, CHIEF-SBM and BM-SBM in Example 1. It can be found from these tables that at
some specific non-dimensional wavenumbers ka = 14.372, 17.616, the original SBM cannot obtain the
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correct numerical solutions, while both the CHIEF-SBM and SR-CHIEF-SBM provide more accurate
results than the BM-SBM.

Table 1: RMSE errors of the real part of unum

ka RMSEreal

Original SBM BM-SBM CHIEF-SBM SR-CHIEF-SBM

1 4.49E−08 1.06E−02 4.49E−08 1.16E−05
7.588 4.10E−03 4.40E−03 1.20E−05 1.07E−05
11.065 4.10E−03 3.10E−03 7.00E−04 9.00E−04
14.372 1.10E−03 1.40E−03 3.00E−04 4.00E−04
17.616 5.32E−02 5.00E−04 4.00E−04 6.00E−04
20 2.16E−06 1.56E−02 5.02E−06 1.69E−05

Table 2: RMSE errors of the imaginary part of unum

ka RMSEimag

Original SBM BM-SBM CHIEF-SBM SR-CHIEF-SBM

1 4.52E−08 4.60E−01 4.52E−08 6.29E−05
7.588 3.00E−03 2.20E−03 8.35E−06 1.36E−05
11.065 2.74E−02 1.97E−02 2.10E−03 1.60E−03
14.372 1.10E−01 1.30E−01 3.30E−03 4.70E−04
17.616 2.43E+00 1.64E−01 6.60E−03 1.13E−02
20 2.03E−05 1.88E−02 2.65E−05 3.13E−05

Table 3: RMSE errors of the modulus of unum

ka RMSEmod

Original SBM BM-SBM CHIEF-SBM SR-CHIEF-SBM

1 4.49E−08 1.20E−02 4.49E−08 1.40E−05
7.588 4.30E−03 3.20E−03 1.02E−05 1.26E−05
11.065 1.01E−02 7.30E−03 1.00E−03 1.00E−03
14.372 8.90E−03 1.05E−02 4.00E−04 6.00E−04
17.616 2.06E−01 1.35E−02 7.00E−04 1.10E−03
20 1.23E−05 1.48E−02 1.64E−05 2.31E−05

Example 2: Acoustic radiation by a pulsating-sphere (Neumann boundary condition)

Next, consider acoustic radiation from a pulsating sphere as shown in Fig. 3. The sphere is applied
with uniform radial velocity v0 with radius a. This model is a typical example to verify the efficiency
of the numerical methods for exterior acoustics. The analytical solution of the radiation field uR is
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uR (r, θ) = a
r

(
ikaz0

ika − 1

)
v0eik(r−a) (21)

where z0 = ρ0c0 stands for the characteristic impedance of the medium, ρ0 is the density of the medium
and c0 represents the sound velocity.

Figure 3: Sketch of the pulsating-sphere model

In the proposed SR-CHIEF-SBM implementation, the parameters are set as N = 900 and NC = 9,
9 CHIEF points are evenly distributed on a spherical surface with radius of 0.1, the test points are
placed on a spherical surface with a radius of 2. Fig. 4 shows the convergence rates of the proposed
SR-CHIEF-SBM in comparison with the original SBM, CHIEF-SBM and BM-SBM in Example 2
with ka = 5. It can be found that the proposed SR-CHIEF-SBM provides the most accurate results
among these four schemes. And both the CHIEF-SBM and original SBM provide accurate results
with a similar rate of convergence, while the BM-SBM provides the correct numerical results with
lower accuracy due to the use of the double-layer fundamental solutions.

Figure 4: Convergence rates of the proposed SR-CHIEF-SBM in comparison with the original SBM,
CHIEF-SBM and BM-SBM in Example 2 with ka = 5
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Then Tables 4–6 show the RMSE errors of the real part, imaginary part and the modulus
of unum obtained by the proposed SR-CHIEF-SBM with N = 900 and NC = 9 in compari-
son with the original SBM, CHIEF-SBM and BM-SBM in Example 2. The tables show that at
some specific non-dimensional wavenumbers ka = π , 2π , 3π , the original SBM cannot obtain the
correct numerical solutions. The CHIEF-SBM can correct the numerical results at these specific
non-dimensional wavenumbers, however, it may fail in the vicinity of the aforementioned specific
non-dimensional wavenumbers ka = 3.15, 6.27, 9.45. The proposed SR-CHIEF-SBM performs the
accurate solutions at all these non-dimensional wavenumbers. The BM-SBM can correct the numerical
solutions with lower accuracy at all these non-dimensional wavenumbers.

Table 4: RMSE errors of the real part of unum

ka RMSEreal

Original SBM BM-SBM CHIEF-SBM SR-CHIEF-SBM

π 4.06E+00 2.45E−02 1.97E−04 2.08E−06
3.15 8.92E−02 2.46E−02 8.92E−02 1.89E−06
2π 2.45E+00 1.87E−02 1.10E−03 9.28E−05
6.27 1.20E−01 1.87E−02 1.20E−01 2.07E−05
3π 1.58E+00 2.37E−02 1.70E−03 2.65E−05
9.45 9.65E-02 2.36E−02 9.65E−02 2.97E−05

Table 5: RMSE errors of the imaginary part of unum

ka RMSEimag

Original SBM BM-SBM CHIEF-SBM SR-CHIEF-SBM

π 1.89E+01 4.67E−02 3.63E−04 4.91E−06
3.15 1.70E−01 4.91E−02 1.70E−01 8.93E−06
2π 1.98E+01 1.01E−01 5.70E−03 5.79E−04
6.27 5.55E−01 9.32E−02 5.55E−01 1.14E−04
3π 1.84E+01 1.68E−01 1.28E−02 2.81E−04
9.45 9.52E−01 2.25E−01 9.52E−01 3.80E−04

Table 6: RMSE errors of the modulus of unum

ka RMSEmod

Original SBM BM-SBM CHIEF-SBM SR-CHIEF-SBM

π 6.92E+00 2.73E−02 2.17E−04 2.48E−06
3.15 9.89E−02 2.76E−02 9.89E−02 3.19E−06
2π 3.95E+00 2.44E−02 1.40E−03 1.29E−04

(Continued)
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Table 6 (continued)

ka RMSEmod

Original SBM BM-SBM CHIEF-SBM SR-CHIEF-SBM

6.27 1.51E−01 2.44E−02 1.51E−01 2.80E−05
3π 2.50E+00 2.95E−02 2.10E−03 3.97E−05
9.45 1.22E−01 2.96E−02 1.22E−01 4.25E−05

Example 3: Acoustic scattering by a hard sphere (Neumann boundary condition)

In this example, the scattering problem of a hard sphere subjected to an incident plane wave is
considered. The incident plane wave is given as

uinc = eik[z cos θ0+sin θ0(x cos φ0+y sin φ0)] (22)

where (θ0, φ0) denotes the angle of the incident plane wave in the spherical coordinates as shown in
Fig. 5.

Figure 5: Sketch of the plane wave by a spherical scatter

The analytical solution of the total field is represented as

u =
∞∑

v=0

v∑
w=0

ivεw (2v + 1) × (v − w) !
(v + w) !

[
jv (kρ) + j′ (ka)

h(2)

v (kρ)

h′
v (ka)

]

Pw
v (cos θ0) Pw

v (cos θ) × cos (wφi) cos (wφ) (23)

In the present numerical implementation, the parameters are set as N = 1600 and NC = 9, 9
CHIEF points are evenly distributed on a spherical surface with a radius of 0.8. Fig. 6 shows the
real part Re (u (2a, 0, 0)) and imaginary part Im (u (2a, 0, 0)) of the acoustic pressures obtained by
the proposed SR-CHIEF-SBM in comparison with the original SBM, CHIEF-SBM and BM-SBM
in Example 3 with the varied non-dimensional wavenumbers ka from 0.01 to 10. It can be observed
that, with the increasing non-dimensional wavenumber ka, the original SBM may fail to obtain the
correct numerical solutions at some specific non-dimensional wavenumbers. The BM-SBM provides
the correct numerical results with lower accuracy, in particular at larger non-dimensional wavenumbers
ka. Both the numerical results obtained by the CHIEF-SBM and the SR-CHIEF-SBM are in good
agreement with the analytical solutions.



388 CMES, 2023, vol.135, no.1

Figure 6: Frequency-sweep plot: (a) Real part of acoustic pressure Re (u (2a, 0, 0)), (b) Imaginary part
of acoustic pressure Im (u (2a, 0, 0)) in Example 3

In the following examples, the normal velocity on the surface is produced by a point source of
spherical dilatation wave with unit intensity located at the coordinate origin, then the related analytical
radiation fields uR have the following unified formulation:

u (r, θ) = eikr

r
(24)

Example 4: Acoustic radiation by a hard ellipsoid (Dirichlet boundary condition)

This example considers acoustic radiation by a hard ellipsoid
{
(x, y, z)

∣∣∣x2 + y2 + z2

4
≤ R2

}
as

shown in Fig. 7.

Figure 7: Sketch of wave radiation by an ellipsoid and its node distribution

In the present numerical implementation, the parameters are set as N = 900 and NC = 9, 9 CHIEF
points are evenly distributed on a spherical surface with a radius of 0.8. Fig. 8 shows the real part
Re (u (4a, 0, 0)) and imaginary part Im (u (4a, 0, 0)) of the acoustic pressures obtained by the proposed
SR-CHIEF-SBM in comparison with the original SBM, CHIEF-SBM and BM-SBM in Example 4
with the varied non-dimensional wavenumbers ka from 0.01 to 10. It can be observed that, with the
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increasing non-dimensional wavenumber ka, the original SBM may fail to obtain the correct numerical
results at some specific non-dimensional wavenumbers. The CHIEF-SBM can correct the numerical
results at some small specific non-dimensional wavenumbers, however, it may still fail at some large
specific non-dimensional wavenumbers. Both the numerical results obtained by the SR-CHIEF-SBM
and the BM-SBM are in good agreement with the analytical solutions.

Figure 8: Frequency-sweep plot: (a) Real part of acoustic pressure Re (u (4a, 0, 0)), (b) Imaginary part
of acoustic pressure Im (u (4a, 0, 0)) in Example 4

Example 5: Acoustic radiation by a microphone model (Neumann boundary condition)

Consider acoustic radiation by a microphone model. Coarse and refined node distributions are
shown in Fig. 9. Here, the nodes are generated by COMSOL with coarse and refined meshes.

(a) Coarse node distribution 794N= (b) Refined node distribution 3136N=

5

Figure 9: Sketch of wave radiation by a microphone model and its node distributions: (a) Coarse node
distribution N = 794, (b) Refined node distribution N = 3136

In the present numerical implementation, 9 CHIEF points (NC = 9) are evenly distributed on
a spherical surface with a radius of 0.05, coarse node distribution N = 794 is used in the SR-
CHIEF-SBM, CHIEF-SBM and original SBM. It should be mentioned that the BM-SBM with coarse
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node distribution N = 794 may fail to obtain the correct numerical results, therefore refined node
distribution N = 3136 is used in the BM-SBM. Fig. 10 shows the real part Re (u (0, 0, 2a)) and
imaginary part Im (u (0, 0, 2a)) of the acoustic pressures obtained by the proposed SR-CHIEF-SBM
(N = 794) in comparison with the original SBM (N = 794), CHIEF-SBM (N = 794) and BM-SBM
(N = 3136) in Example 5 with the varied non-dimensional wavenumbers ka from 0.01 to 7. It can
be observed that, with the increasing non-dimensional wavenumber ka, the original SBM may fail to
obtain the correct numerical results at some specific non-dimensional wavenumbers. The CHIEF-SBM
can correct the numerical solutions at these small specific non-dimensional wavenumbers, however, it
may still fail at these large specific non-dimensional wavenumbers and their adjacent regions. Both
the numerical results obtained by the SR-CHIEF-SBM and the BM-SBM are in good agreement with
the analytical solutions, while the BM-SBM requires more refined nodes to obtain acceptable results
compared with the proposed SR-CHIEF-SBM.

Figure 10: Frequency-sweep plot: (a) Real part of acoustic pressure Re (u (0, 0, 2a)), (b) Imaginary part
of acoustic pressure Im (u (0, 0, 2a)) in Example 5

4 Conclusion

This paper proposes a modified formulation of the singular boundary method (SBM) by intro-
ducing the combined Helmholtz integral equation formulation (CHIEF) and the self-regularization
technique to exterior acoustics. In the proposed scheme, the use of the CHIEF scheme and the
self-regularization technique not only guarantees the unique solution of exterior acoustics, but also
improves the numerical accuracy in the solution of 2D and 3D acoustic radiation and scattering
problems.

Numerical investigations under several 2D and 3D benchmark examples show that the original
SBM fails to obtain the correct numerical solutions at some specific non-dimensional wavenumbers
related to the internal characteristic frequencies due to the non-uniqueness issue frequently encoun-
tered in the boundary discretization of exterior acoustics. The CHIEF-SBM can eliminate these non-
uniqueness problems at the relatively small specific non-dimensional wavenumbers, but it may still fail
at large specific non-dimensional wavenumbers and their adjacent regions. The BM-SBM can provide
the correct numerical solutions. However, it may require more refined node discretization and usually
lose the numerical accuracy due to the use of double-layer fundamental solutions. In comparison with
the aforementioned three schemes, the proposed SR-CHIEF-SBM solves the non-uniqueness issue
and performs the accurate results in the present numerical experiments.



CMES, 2023, vol.135, no.1 391

It is worth noting that with the increase of the non-dimensional wavenumber, the number and
location of the CHIEF points will be sensitive to the numerical results. Some suggestions in reference
[32] can be referenced to guide the way to select the CHIEF points. Extensive numerical investigations
also need to be carried out to determine the optimal selection of CHIEF points. This work is under
intense study and will be reported in a subsequent paper.
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