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ABSTRACT

Multiple classifier system exhibits strong classification capacity compared with single classifiers, but they require
significant computational resources. Selective ensemble system aims to attain equivalent or better classification
accuracy with fewer classifiers. However, current methods fail to identify precise solutions for constructing an
ensemble classifier. In this study, we propose an ensemble classifier design technique based on the perturbation
binary salp swarm algorithm (ECDPB). Considering that extreme learning machines (ELMs) have rapid learning
rates and good generalization ability, they can serve as the basic classifier for creating multiple candidates while
using fewer computational resources. Meanwhile, we introduce a combined diversity measure by taking the
complementarity and accuracy of ELMs into account; it is used to identify the ELMs that have good diversity and
low error. In addition, we propose an ECDPB with powerful optimizing ability; it is employed to find the optimal
subset of ELMs. The selected ELMs can then be used to form an ensemble classifier. Experiments on 10 benchmark
datasets have been conducted, and the results demonstrate that the proposed ECDPB delivers superior classification
capacity when compared with alternative methods.
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1 Introduction

Multiple classifier system (MCS) [1] is a popular field in machine learning. Compared with
single classifiers, it provides potential enhancement in classification capability by integrating multiple
base members [2]. MCS has been applied to handle variant tasks, including intrusion detection
[3], expression recognition [4], image processing [5], and imbalanced learning [6]. In addition, some
scholars attempt to solve the classification or regression problems in healthcare [7], well-being index
[8], cancer detection [9], and population forecasting [10]. MCS mainly contains two steps: the first
step is that an initial pool of classifiers with good diversity should be created, and the second one is
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that the results of each classifier should be aggregated to produce the final decisions. Unfortunately,
choosing an MCS with strong ability in actual applications involves tradeoffs [11] because it requires
significant computing resources as the data size and the number of members increase [12]. Selective
ensemble methods [13,14] aim at employing fewer classifiers while maintaining the classification
capability of their ensemble to reduce the computing complexity. Considering their advantages, many
scholars have studied how selective ensemble methods can be used to design well-performing ensemble
classifiers [15].

To build an ensemble classifier with good classification ability, numerous methods have been
developed. Different diversity measures, such as double-fault [13], Kappa [12], and the margin measure
[16], can be used to assess each learner and to extract the members that satisfy certain conditions using
different pruning methods. Finally, the constituents selected are integrated into an ensemble classifier.
Meanwhile, many heuristic algorithms, such as genetic algorithm [17], glowworm swarm optimization
[18], and artificial fish swarm algorithm [19], have been used to search for the final ensemble. Some
scholars also utilize different means, such as graph coloring [20], simple coalitional games [15], greedy
pruning [21], and clustering techniques [22,23], to identify the well-performing classifiers to form an
ensemble. Moreover, the fusion of heuristic algorithms and diversity measures is a new approach to
developing a selective ensemble of classifiers [16,19]. Diversity measures such as double-fault [19] and
the margin measure [16] are used to select the initial classifiers, and heuristic algorithms, such as
AFSA [16], are employed to select the final ensemble. The combination performs well when it comes
to selecting classifiers with good performance within an ensemble [16,19].

In addition, the selective ensemble methods have a direct effect on the final ensemble classifier, and
it is also critical to select the appropriate base classifier, which can be used to create multiple classifiers
with good diversity [13,20]. Meanwhile, the base classifier should also have high computational
efficiency to reduce the training times of multiple classifiers. Compared with traditional methods [24],
extreme learning machines (ELMs) [25,26] are effective and simple learning methods. The random
generation of the ELM’s hidden nodes increases its learning speed [27,28]. Taking the advantages
of ELM into consideration (high learning efficiency, conceptual simplicity, and good generalization
capacity) [29,30], ELMs can be used as the base classifier for designing ensemble classifiers.

From this discussion, we find that fusion approaches work well when designing an ensemble
classifier with good capability. However, the diversity measures used typically consider only the
diversity or the precision of classifiers. This makes it difficult to capture the members with good
diversity and low error to form the ensemble. If we only consider diversity, then the members with
good diversity and low accuracy may be selected to construct the final ensemble, which may result
in its low classification capability. If we only consider accuracy, then members with poor diversity
and high precision may be used, which may lead to only slight improvement compared with single
classifiers [16]. Additionally, the adopted heuristic algorithms cannot reach the expected convergence
performance because of their shortcomings, such as the difficulty of implementation, a tendency to run
into local optimums, and low global search capability. Since the salp swarm algorithm (SSA) [31–33] is
simply constructed, has fewer parameters, and is more easily implemented, we employ a perturbation
binary salp swarm algorithm (PBSSA) to enhance its searching ability. In this article, we propose a
novel method called ensemble classifier design technique based on the perturbation binary salp swarm
algorithm (ECDPB), which employs a combined diversity measure composed of complementarity and
accuracy to yield a segment of candidates. Based on the preselected classifiers, we adopt the proposed
PBSSA to search for better-performing classifiers in order to determine the final ensemble classifier.
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The contributions of this work can be listed as follows:

(1) We propose the ECDPB to design a well-performing ensemble classifier, by using a combined
diversity measure and PBSSA.

(2) The presented a combined diversity measure that simultaneously considers complementarity
and accuracy in evaluating ELMs, and the proposed PBSSA delivers improved searching
capacity compared to other algorithms.

(3) Results of 10 benchmark datasets demonstrate that the proposed technique is superior to other
related approaches.

The rest of this work is organized as below. In Section 2, we introduce the combined diversity
measure. Section 3 proposes the ECDPB in detail. Comparison experiments are presented in Section 4.
Conclusions and future research directions are discussed in Section 5.

2 Combined Diversity Measures

As we know, the diversity and the accuracy of ELMs are two fundamental determining factors
for the classification capacity of an ensemble. However, there is no widely accepted measure of
diversity. In addition, the method of designing a standard to extract the ELMs with good diversity and
classification capacity remains an unresolved question [12,13]. We provide a novel combined diversity
measure, which balances the diversity and the accuracy of ELMs. Therefore, the ELMs selected by
the measure can be used to form an ensemble with high classification capacity in contrast to most
current measures, which assess ELMs separately in terms of their complementarities or accuracies
[34]. Instead, we evaluate the ELMs by simultaneously considering both these factors.

An ensemble with good predictive capability requires ELMs that complement each other [12,34].
In order to measure the ELM’s complementarity with others, a complementarity measure is intro-
duced, which can be used to select those ELMs that can correct the predictive errors obtained by
other ELMs on the training samples. Meanwhile, the measure can make the selected ELMs perform
diversely, which is an important prerequisite for attaining better classification capacity. If the ELMs
provide identical output, it is then impossible to attain an improvement in classification by aggregating
them [13].

Consider a series of samples, X = {(xi, yi), i = 1, 2, . . . , N}. Each sample is denoted by a feature
vector xi with its label yi. For a set of ELMs H = {h1, h2, . . . , hM}, the complementarity measure, Comi

of ELM hi, can be calculated as follows:

Comi = 1
M × N

M∑
j=1

N∑
k=1

I
(
hi(xk) = yk ∩ hj(xk) �= yk

)
(1)

where I(•) expresses an indicator function (I(true) = 1 and I(false) = 0), hi(xk) denotes the predictive
result of ELM hi on the sample xk.

Although the complementarity measure shows which ELM has higher complementarity with
others, using it to select the ELMs can be problematic. The selection of ELMs using the measure can
increase the diversity of ELMs, however, it may lead to a higher or lower error rate for an ensemble.

Selecting an ELM with a high complementarity measure may correct the predictive errors on some
samples, however, it may produce flawed results in the remaining samples, particularly when the ELM
has high complementarity with others, but its classification error is high. Therefore, the ensemble may
generate incorrect decisions, which can result in the low precision of the final ensemble. Hence, we
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should take into consideration not only the ELM’s complementarity but also its accuracy. We define
accuracy in this work, in terms of the classification error of the ELM. The accuracy measure of ELM
hi can be calculated as follows:

Acci = 1
N

N∑
k=1

I (hi(xk) = yk) (2)

To choose an ensemble with high predictive ability, the ELMs in the ensemble should possess
high levels of diversity and accuracy. When we attempt to increase the complementarity measures of
the ELMs, the mean accuracies of all the ELMs may be reduced. However, when we try to increase
the precision of the ELMs, their complementarity may be reduced. There is a trade-off between
the complementarity measure and the accuracy measure of the ELMs. In order to find the optimal
combination, we assign a set of weights for the complementarity measure and the accuracy measure,
which we use to create the combined diversity measure. The combined diversity measure CDMi of
ELM hi can be formulated as follows:

CDMi = α × Comi + β × Acci (3)

where α and β indicate the weights of the complementarity measure and the accuracy measure of the
ELM hi, respectively, and where α + β = 1.

The combined diversity measure (CDM) can be used to assess the ELMs to reduce the prob-
ability of selecting ELMs with good diversity and low accuracy. Instead, those ELMs with higher
complementarity measures and accuracy measures can be selected to form a final ensemble with
good classification capacity. We can rank the ELMs using the combined diversity measure in Eq. (3).
According to the rankings of the ELMs, we start the ensemble with the ELM that has the maximal
measure value, and then select additional ELMs individually to construct the ensemble [34]. In the
following analysis of the combined diversity measure, the weights (α, β) are set as (0.4, 0.6).

Fig. 1 presents the error trend curves gained by the combined diversity measures under different
combinations of weights (α, β) with the sizes of 100, and 200 on different datasets. In Fig. 1, we can
see that, as the sizes of the ELMs increase, the error curves under the weight combinations of (0.1,
0.9), (0.2, 0.8) and (0.4, 0.6) display lower error rates than the weight combinations of (0.6, 0.4), (0.8,
0.2) and (0.9, 0.1). Under the weight combinations of (0.1, 0.9), (0.2, 0.8) and (0.4, 0.6), the weight
of the accuracy measure is greater than that of the complementarity measure, leading to the selection
of ELMs with lower errors at the beginning. Thereby, they can perform better as the complementary
ELMs are added into the ensemble. Under the weight combinations of (0.6, 0.4), (0.8, 0.2) and (0.9,
0.1), and the ELMs with high complementarity measures are selected to form the ensemble. However,
they perform poorly because of low accuracy measures. We can clearly observe from Fig. 1 that, among
the weight combinations of (0.1, 0.9), (0.2, 0.8) and (0.4, 0.6), the weight combination (0.4, 0.6) has
significantly lower errors in classification. The ELMs selected by the combined weights (0.1, 0.9) and
(0.2, 0.8) have higher precision, however, they lack complementarity.

According to the above analyses, it is easy to identify the tradeoff between the complementarity
and the error of ELMs. The combined diversity measure with weights (0.4, 0.6) performs the best.
Fig. 1 shows that the errors generated by this combined measure decline first and then rise as the
ELMs’ sizes increase, which shows that we use the combined measure to extract the well-performing
ELMs. As such, the weights (α, β) of the combined diversity measure are set at (0.4, 0.6).
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(a) Size of 100 on Statlog (b) Size of 200 on Statlog

(c) Size of 100 on Choice  (d) Size of 200 on Choice

Figure 1: The error curves with different combinations of weights

To evaluate the performance of the combined diversity measure, we test its classification errors
in comparison with the double-fault measure [13], kappa measure [12], complementarity measure
[12], and margin measure [16]. Fig. 2 displays the error trend curves of these diversity measures. We
compare the classification errors of the combined diversity measure with its weights of (0.4, 0.6) with
other diversity measures. The combined diversity measure can achieve lower classification errors than
others, because it evaluates ELMs by considering their accuracy and complementarity simultaneously,
outperforming the alternative ones that only consider either one of them. In conclusion, the analysis
demonstrates that the combined diversity measure produces good classification results.
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(a) Size of 100 on Statlog (b) Size of 200 on Statlog

(c) Size of 100 on Choice  (d) Size of 200 on Choice

Figure 2: The error curves achieved by different diversity measures

3 Ensemble Classifier Design via the Perturbation Binary Salp Swarm Algorithm

In this section, we propose the ECDPB. First, we present the process used to generate the base
ELMs. Second, we present the proposed PBSSA. Finally, we propose the ECDPB using the combined
diversity measure and PBSSA. We also show how to employ the ECDPB to identify the final subset
of ELMs to design a well-performing ensemble classifier. In addition, the pseudo-code of the ECDPB
is presented.

3.1 Generating Multiple Extreme Learning Machines
In this section, we design an ensemble classifier with good capacity and employ ECDPB to select

the ELMs for the ensemble. That is, we extract the ELMs with good complementarity and low error
for inclusion in the final ensemble classifier. Before this, we need to generate a pool of ELMs with
good diversity [20] in order to select a collection of well-performing ELMs. ELMs have fast learning
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rates and strong generalization ability; we make complete use of these advantages in creating multiple
classifiers that work quickly. To increase the diversity of the generated ELMs, we utilize bootstrap
extraction [35] to select a part of the samples in the training set, which can be used as the input of
ELM; this produces the trained ELM. We utilize bootstrap extraction [35] with M iterations to extract
the training set, generating M subsets. Then, multiple ELMs can be obtained by training the model of
the ELM on each subset. Therefore, multiple ELMs with good diversity are created.

3.2 Perturbation Binary Salp Swarm Algorithm
In this section, we join the PBSSA and the combined diversity measure to select a fraction

of well-performing ELMs in order to design an ensemble classifier. We first introduce the SSA.
Mirjalili et al. [31] first proposed the SSA, which was inspired by the salps’ swarming behavior in
the ocean. Salps consume marine phytoplankton; they move to other places by inhaling or exhaling
seawater. And they usually gather to form a chain called a salp chain. The chain behavior can be
adopted to forage food. In the SSA, the salp chain is composed of two kinds of salps: the leader and
the follower. The updating process of the leader salp can be formulated as shown in Eqs. (4) and (5).

x1
j =

{
Fj + c1

((
ubj − lbj

)
c2 + lbj

)
, c3 ≥ 0.5

Fj − c1

((
ubj − lbj

)
c2 + lbj

)
, c3 < 0.5

(4)

c1 = 2e−
(

4t
Tmax

)m

(5)

where x1
j shows the jth dimension of the leader; Fj indicates the jth dimension of food source; ubj and lbj

represent the upper and lower bound of the jth dimension space, respectively; c2 and c3 denote random
numbers between 0 and 1, respectively; m represents the power factor; t denotes the current iteration;
Tmax denotes the maximal iteration; and c1 expresses the parameter that balances the exploring and
developing capabilities of SSA.

The followers’ position can be updated utilizing the Eq. (9), denoting their movement.

xi
j = 1

2

(
xi

j + xi−1
j

)
(6)

where xi
j (i ≥ 2) declares the ith follower (because the first salp is the leader). After the population

initialization of salps, the salps can seek the optimal solution in terms of Eqs. (4) and (6).

The selection of ELMs is a combinatorial optimization problem, which the basic SSA cannot
directly solve. Hence, we need to improve the motion pattern of the salps, such that they can search
for the optimal solution in the discrete solution space. The enhancements of SSA are discussed next.

3.2.1 Improvement of the Search Process

The motion pattern of salps in the SSA cannot match the movements of individuals in a discrete
solution space; this means that the motion of the leader and the follower should be changed.
Considering the characteristics of the problem to be solved and that the motion pattern should be
simple and effective, we change the original updating process of the leader and the follower in SSA.
The updating processes of the leader and the follower are presented in the following equations.

For leaders, if c3 ≥ 0.5, then we update their movement according to Eq. (7), otherwise, we use
Eq. (8).

x1
j =

{
1, if Fj + c1c2 > 0
0, if Fj + c1c2 ≤ 0 (7)
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x1
j =

{
1, if Fj − c1c2 > 0
0, if Fj − c1c2 ≤ 0 (8)

For followers, we update their movement using Eq. (9).

xi
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if
1
2

(
xi

j + xi−1
j

)
> 0.5

r, if
1
2

(
xi

j + xi−1
j

) = 0.5

0, if
1
2

(
xi

j + xi−1
j

)
< 0.5

(9)

where r points to a random number, which is either 0 or 1.

3.2.2 Perturbation Mechanism

In the SSA, the individuals usually gather to construct the salp chain, and the population may
lack diversity. Hence, we attempt to improve the solution diversity in order to enhance the searching
efficiency. A perturbation mechanism [36] is introduced to the SSA, which can optimize the tradeoff
between exploitation and exploration in the searching process. A predefined perturbation factor
perfactor is introduced, and the perturbation mechanism is presented as follows:

perfactor = 1
π

arctan
(
t
/

Tmax

) + 1
2

e−coh (10)

coh = 1
n

n∑
i=1

∥∥∥∥xi − x̄
x̄

∥∥∥∥ (11)

xi = xi + �perfactor × step� , if rand < rp (12)

where coh signifies the cohesion index of the salp population; xi denotes the ith individual; x̄ shows the
center position of all of the salps; rp indicates a predefined perturbation probability; and step denotes a
perturbation step. When coh is smaller, it suggests that the cohesion index is larger and the individuals
flock together, which requires a large perturbation; otherwise, it indicates that the cohesion index is
smaller and the individuals are dispersed, which may require only a small perturbation.

In the early stage of the SSA’s search, the individuals are scattered in the solution space, and the
cohesion index is low, which produces a small perturbation. In the later stage of the search, most of
the individuals have gathered, and the cohesion index is high, generating a large perturbation. This
process ensures that the population performs diversely.

3.2.3 Gauss Mutation Operation

To avoid having the salp individuals caught in local optimum, we introduce a Gauss mutation
operation [37,38], such that, some of the individuals break away from the local optimum with a large
probability. After each iteration, we select 20% of the individuals with the worst performance to carry
out the Gauss mutation operation. The operation can be described as follows:

xi = xi + ⌈
rg × step

⌉
(13)

where rg denotes a random number from the Gaussian distribution N (1, 1).
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3.3 Selection Process of Extreme Learning Machines
In this section, we utilize the ECDPB to select the ELMs for constructing the ensemble classifier.

This process involves four main steps. First, the combined diversity measure of each ELM is calculated
using Eq. (3). Second, we rank all the ELMs in terms of their combined measures to obtain their new
ordering. Third, we retain the first M ′ (M ′ ≤ M) ELMs with the largest combined diversity measures;
M ′ is a parameter of the ECDPB, and we analyze it in Section 4.3. Finally, we adopt the PBSSA to
choose well-performing ELMs from the remaining M ′ options. Thereby, the proposed ECDPB can
extract the ELMs with good diversity and low error to constitute an ensemble classifier with good
classification capacity.

The selection of ELMs is accomplished using the ECDPB, and the classification error of the
ensemble classifier is taken as the objective function in this study. The ensemble process of multiple
ELMs is calculated as follows:

EH(x) = arg max
m∑

i=1

I(hi(x) = y), y ∈ C (14)

where hi shows the ith ELM; (x, y) denotes a sample; and C denotes the class label set. In addition, we
present the pseudo-code of the ECDPB as follows:

Algorithm ECDPB
Inputs: Training set and test set.
Outputs: An ensemble classifier, and its error.
1: Multiple ELMs are created utilizing bootstrap extraction for constructing H ← {h1, h2, . . . , hM}.
2: The combined diversity measure, CDMi, of each ELM, hi, can be calculated utilizing Eq. (3).
3: The new sequence CDM ′ = (CDM ′

1, CDM ′
2, . . . , CDM ′

M) is attained by ranking that measure in
descending order.

4: The ELMs’ sequence h′
1, h′

2, . . . , h′
m corresponds to the new sequence, CDM ′.

5: H ′ ← ∅.
6: for j ← 1 to M ′ do
7: H ′ ← H ′ ∪ {h′

j}.
8: end for
9: The population initialization of salps is achieved.
10: t ← 1.
11: while t ≤ Tmax do
12: Calculate the classification error of each salp.
13: Rank the salp individuals in terms of their classification errors.
14: Choose the half of the salps with the lowest errors as the leaders and the rest as followers.
15: for i ← 1 to N do
16: if i ≤ n

/
2 do

17: Execute leader behavior via Eq. (7) or Eq. (8).
18: else
19: Execute follower behavior using Eq. (9).
20: end if
21: if rand < rp

(Continued)
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Algorithm (Continued)
22: Introduce perturbation mechanism.
23: end if
24: if i > 4n

/
5

25: Perform the Gauss mutation operation.
26: end if
27: end for
28: end while
29: return outputs.

3.4 Complexity Analysis of ECDPB
In this section, we analyze the time complexity of the proposed ECDPB. Assume that the number

of PBSSA’s population is N, the maximal number of iterations is Tmax, the number of ELMs in the
initial pool is M, and the dimension of salp is M ′. Firstly, we use combined diversity measure to
select M ′ ELMs, and its complexity is O(Mlog2M). Secondly, the time complexity of salp population
initialization is O(N × M ′), and the searching process’s complexity is O(N2). Finally, the overall
complexity of ECDPB is O(Tmax × N2) after Tmax iterations.

4 Experiments

To evaluate the ECDPB’s utility, we employ 10 benchmark tasks as the empirical dataset, as
listed in Table 1. In this work, to reduce the randomness of experimental results, each experiment
was repeated 30 times. The experiments were carried out in Matlab 2020a on a computer running
64-bit Windows 10 with 3.6 GHz processor i7-9700K and 32 GB memory. Each dataset is randomly
divided into five equal parts. Three are used for training; one is used for verification; and one is used
for testing.

Table 1: Benchmark datasets

Datasets Instances Attributes Classes

Sonar 208 60 2
Statlog 270 13 2
Energy 768 8 5
Vowel 871 3 6
Flare 1066 11 6
Website 1353 9 3
Choice 1473 9 3
Navigation 5456 24 4
Satimage 6435 36 7
Marketing 6876 13 9

4.1 Experimental Results
The ECDPB is composed of two parts: the CMD and the PBSSA. We attempt to determine

whether the ECDPB (the fusion of the CMD and the PBSSA) can attain lower errors than the CMD
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and the PBSSA. Tables 2 and 3 illustrate the classification errors produced by the ECDPB and those
obtained by the CDM and the PBSSA. The Wilcoxon test [20] is applied in this study to verify whether
the differences between the ECDPB and others are significant (its significance level is usually set to
0.05). When the p-value is lower than 0.05, we should reject the null hypothesis, and the difference
in results between the two methods can be regarded as significant. As can be seen in Tables 2 and
3, the errors and standard deviations of the ECDPB are lower than the CDM and PBSSA, and it
indicates that the ECDPB achieves obvious improvements in classification over the two alternatives.
Additionally, the results in Tables 2 and 3 include p-values that are under 0.05. The results in Tables 2
and 3 indicate that the ECDPB utilizes fewer ELMs than the CMD and PBSSA and produces fewer
errors. Meanwhile, the ECDPB employs fewer ELMs in constructing an ensemble classifier. Therefore,
we can conclude that the ECDPB is an effective technique for designing an ensemble classifier with
greater classification ability.

Table 2: Classification errors and standard deviation of the ECDPB in comparison with the CDM and
PBSSA with 100 ELMs

Datasets ECDPB Size CDM Size ECDPB vs. CDM PBSSA Size ECDPB vs. PBSSA
Sonar 0.0689 ± 0.0320 16 0.1181 ± 0.0374 35 1.73e − 06 0.1392 ± 0.0387 54 1.73e − 06
Statlog 0.2290 ± 0.0361 16 0.2823 ± 0.0400 35 1.71e − 06 0.2920 ± 0.0384 66 1.72e − 06
Energy 0.1684 ± 0.0262 15 0.1914 ± 0.0251 35 2.52e − 06 0.1922 ± 0.0321 67 8.25e − 06
Vowel 0.1538 ± 0.0272 15 0.1920 ± 0.0292 35 1.73e − 06 0.2083 ± 0.0307 50 1.73e − 06
Flare 0.2218 ± 0.0309 15 0.2456 ± 0.0347 35 1.69e − 06 0.2490 ± 0.0347 53 1.68e − 06
Website 0.1085 ± 0.0288 14 0.1316 ± 0.0320 35 2.49e − 06 0.1392 ± 0.0283 54 1.69e − 06
Choice 0.3791 ± 0.0348 15 0.4171 ± 0.0337 35 1.68e − 06 0.4252 ± 0.0338 66 1.69e − 06
Navigation 0.1653 ± 0.0169 16 0.1843 ± 0.0182 35 1.73e − 06 0.1862 ± 0.0178 60 1.73e − 06
Satimage 0.3770 ± 0.0162 18 0.3936 ± 0.0172 35 1.73e − 06 0.3987 ± 0.0185 63 1.73e − 06
Marketing 0.6237 ± 0.0215 16 0.6414 ± 0.0212 35 1.73e − 06 0.6449 ± 0.0201 62 1.73e − 06
Note: Bold indicates that the results gained by ECDPB perform better than others.

Table 3: Classification errors and standard deviation of the ECDPB in comparison with the CDM and
PBSSA with 200 ELMs

Datasets ECDPB Size CDM Size ECDPB vs. CDM PBSSA Size ECDPB vs. PBSSA
Sonar 0.0542 ± 0.0296 15 0.0958 ± 0.0345 35 1.73e − 06 0.1495 ± 0.0431 113 1.73e − 06
Statlog 0.2123 ± 0.0347 17 0.2559 ± 0.0401 35 1.69e − 06 0.2954 ± 0.0409 109 1.71e − 06
Energy 0.1690 ± 0.0213 13 0.1833 ± 0.0204 35 8.23e − 06 0.1896 ± 0.0234 117 5.53e − 06
Vowel 0.1441 ± 0.0282 17 0.1717 ± 0.0288 35 1.73e − 06 0.2120 ± 0.0370 110 1.73e − 06
Flare 0.2078 ± 0.0299 15 0.2303 ± 0.0332 35 2.51e − 06 0.2559 ± 0.0347 105 1.70e − 06
Website 0.1030 ± 0.0270 14 0.1207 ± 0.0295 35 3.56e − 06 0.1416 ± 0.0299 115 1.70e − 06
Choice 0.3632 ± 0.0338 16 0.4033 ± 0.0377 35 1.69e − 06 0.4265 ± 0.0391 112 1.69e − 06
Navigation 0.1568 ± 0.0175 19 0.1743 ± 0.0189 35 1.73e − 06 0.1910 ± 0.0196 126 1.73e − 06
Satimage 0.3662 ± 0.0195 16 0.3798 ± 0.0186 35 1.73e − 06 0.3988 ± 0.0205 110 1.73e − 06
Marketing 0.6265 ± 0.0210 16 0.6442 ± 0.0239 35 1.72e − 06 0.6555 ± 0.0228 109 1.73e − 06
Note: Bold indicates the results gained by ECDPB perform better than others.

It also can be seen from Tables 2 and 3 that, overall, over 75 percent of the ELMs can be eliminated
employing the ECDPB, meaning that we can utilize fewer ELMs to design a better-performing
ensemble classifier and save significant computational resources in practical applications. Regarding
the selection of ELMs, as the size of an ELM increases, its computational complexity increases
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exponentially [12,13]. In comparison with the CDM and PBSSA using 100 and 200 ELMs, the ECDPB
has the capability to produce fewer errors with ELMs of different sizes. In addition, the errors can
be reduced as the number of ELMs increases. When we employ 200 ELMs to design an ensemble
classifier, the ECDPB achieves only a slight enhancement in classification. As a result, the number of
ELMs should be set at 100.

To verify the utility of the ECDPB, we compare the proposed method with the following
techniques: GASEN [17], DMEP [20], MDOEP [39], IBAFSEN [19], PEAD [40], RCOA [34], and
IDAFMEP [16]. The primary goal of these techniques is to enhance the classification capacity in
comparison with a bagging ensemble. The implementations of these approaches are based on their
corresponding literatures. In contrast to IBAFSEN and IDAFMEP, the proposed ECDPB wields
the combined diversity measure and PBSSA by optimizing them overall, and the combined diversity
measure takes the diversity and accuracy of classifiers into consideration. IBAFSEN and IDAFMEP
use a double-fault or margin measure and AFSA to select the final ensemble by optimizing them
separately. Double-fault and margin measures consider only either diversity or accuracy at a time. In
addition, the proposed PBSSA has more powerful optimization ability compared to AFSA, which is
shown in Section 4.2.

We present the comparisons of classification errors and standard deviations between the proposed
method and the alternatives with 100 ELMs in Table 4. The results in Table 4 reveal that the proposed
ECDPB produces lower errors and standard deviations than the other methods, though it does
produce higher errors than IDAFMEP on Website datasets. Moreover, the proposed technique does
not obtain the highest errors on any of the 10 datasets. Overall, the ECDPB yields lower errors than
its competitors with good stability. Meanwhile, IDAFMEP can also obtain lower errors than other
methods. The sizes of the ELMs used by different approaches to design an ensemble classifier have been
displayed in Table 5. We find that the ECDPB uses smaller ELMs than most methods for designing
an ensemble classifier, however, it still uses larger ELMs than DMEP and IDAFMEP. Although the
proposed ECDPB does not use the smallest ELMs, it does produce lower classification errors.

In addition, we use the Wilcoxon test [20] to verify the significance of differences between the
proposed ECDPB and its competitors for each of the datasets, as shown in Table 6, where “+/–”
indicates the number of datasets that there exist significant differences between the proposed ECDPB
and other methods or not. The results in Table 6 suggest that most of the values are lower than 0.05,
which by and large implies that there are significant differences between the proposed method and
the comparison methods. Therefore, we can conclude that the proposed ECDPB provides superior
classification compared with other techniques, and it is an effective approach for designing a better-
performing ensemble classifier. Meanwhile, the proposed ECDPB can deliver better classification
capacity because it employs the combined diversity measure to evaluate each ELM by simultaneously
considering diversity and accuracy. It can choose a collection of better-performing ELMs than
alternative measures that consider only one of the two factors. Furthermore, the proposed ECDPB
also uses PBSSA with powerful optimizing ability to search for a more competitive subset of ELMs,
which can provide an ensemble classifier with superior performance. Therefore, the proposed ECDPB
is a reasonable and effective technique for designing an ensemble classifier.
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Table 5: Sizes of the ensembles produced by comparison techniques with 100 ELMs

Datasets ECDPB GASEN DMEP MDOEP IBAFSEN PEAD RCOA IDAFMEP

Sonar 16 42 7 30 23 29 21 13
Statlog 16 35 6 30 21 42 29 10
Energy 15 42 3 30 19 55 26 6
Vowel 15 38 9 30 18 28 29 12
Flare 15 39 5 30 21 32 25 13
Website 14 27 4 30 22 27 26 7
Choice 15 34 7 30 23 29 23 12
Navigation 16 45 11 30 23 26 23 13
Satimage 18 44 7 30 21 25 27 15
Marketing 16 23 9 30 23 31 23 11

Table 6: Results of the Wilcoxon test comparing the ECDPB with other methods

Datasets GASEN DMEP MDOEP IBAFSEN PEAD RCOA IDAFMEP

Sonar 5.22e − 06 3.59e − 04 3.45e − 04 2.26e − 03 5.22e − 06 2.35e − 06 4.28e − 02
Statlog 8.92e − 05 6.64e − 04 6.62e − 05 5.32e − 03 5.22e − 06 5.75e − 06 3.71e − 02
Energy 5.26e − 02 1.72e − 03 9.27e − 03 2.30e − 02 7.71e − 04 1.60e − 04 4.20e − 02
Vowel 3.41e − 05 1.25e − 04 1.48e − 04 1.74e − 04 3.52e − 06 2.88e − 06 1.11e − 02
Flare 1.75e − 02 6.73e − 03 2.10e − 03 1.06e − 02 5.32e − 03 2.11e − 03 4.91e − 02
Website 4.22e − 02 1.01e − 02 2.11e − 03 2.45e − 02 1.97e − 05 5.10e − 02 7.50e − 01
Choice 1.71e − 03 1.57e − 02 1.45e − 02 2.83e − 02 9.31e − 06 3.40e − 05 4.71e − 02
Navigation 2.11e − 03 4.53e − 04 4.20e − 04 1.48e − 02 5.79e − 05 1.92e − 06 1.78e − 02
Satimage 1.32e − 02 1.71e − 03 9.84e − 03 8.31e − 03 1.25e − 04 1.97e − 05 4.28e − 02
Marketing 2.42e − 03 1.36e − 04 2.61e − 04 4.05e − 02 1.02e − 05 1.36e − 04 4.53e − 02
+/– 9/1 10/0 10/0 10/0 10/0 9/1 9/1
Note: Bold expresses there is not significant difference between the proposed ECDPB and other methods.

4.2 Parameters Sensitivity
In this study, we employ the proposed ECDPB to design an ensemble classifier, and its parameters

have great effects on its performance. Hence, we need to explore the effects of the ECDPB’s parameters:
the maximal iterations Tmax, the retained size M ′, population size N, the perturbation probability rp,
and the power factor m. Due to space constraints, we carry out the experiments on the Energy dataset
utilizing 100 ELMs. The sensitivity analysis of the parameters is reported next.

The ECDPB uses the PBSSA proposed in Section 3.2 as its component. We need to analyze the
influence of the number of iterations on the performance of the PBSSA, which is shown in Fig. 3.
Fig. 3 indicates that the classification errors of the PBSSA initially decrease as the number of iterations
increases, flattening out afterward. Moreover, we assess the search performance of the proposed
PBSSA in comparison with other heuristic algorithms. The comparison algorithms include IDAFS
[16], IBAFS [19], BAFS [41], IAFS [42], DGSO [43], BGSO [44], MPSO [45], BPSO [46], and BGA [17].
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The trends in Fig. 3 suggest that the proposed PBAFSA produces fewer errors than other methods, and
it has a more powerful optimizing ability and higher optimizing precision. The results also show that
the different strategies we employ to modify the basic SSA are reasonable and effective. We explore the
effect of the retained size of ELMs produced by the CDM on the results of the ECDPB, as shown in
Fig. 4a. Fig. 4b demonstrates the impacts of population size on the classification errors. We show the
relationship between the perturbation probability and performance of PBSSA in Fig. 4c. The effect of
the power factor on the results of the PBSSA is exhibited in Fig. 4d. With these figures, we can identify
the best choice for each parameter. In addition, similar observations on other datasets can be made.
Therefore, we set Tmax = 600, M ′ = 35, N = 35, rp = 0.6, m = 3.5 for the experiments in this
study.

Figure 3: Effects of iteration on errors obtained by different algorithms

(a) Retained size of CDM (b) Population

Figure 4: (Continued)
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(c) Perturbation probability   (d) Power factor

Figure 4: Effects of different parameters on errors of ECDPB

5 Conclusions

We proposed the ECDPB as a powerful means for designing a well-performing ensemble classifier.
The proposed ECDPB unifies the combined diversity measure, the high-performance PBSSA, and
the efficient ELM to form an ensemble classifier. The combined diversity measure can optimize the
selection of the ELMs to account for the tradeoff between diversity and precision, and it enables
those ELMs with good performance to be selected. The high-performance PBSSA selects the ELMs
rapidly and accurately, which allows the ensemble classifier to attain good classification results while
utilizing smaller ELMs. The efficient ELM can create a base classifier utilizing very few computing
resources, and it is critical for minimizing resource consumption when generating multiple ELMs. The
aforementioned methods allow for improvements in classification.

We have assessed the classification capacity of the ECDPB in 10 benchmark datasets, and the
results imply that, compared with other algorithms, the proposed ECDPB can deliver superior
performance in classification with smaller ELM sizes. In summary, the proposed ECDPB is an effective
way to design an ensemble classifier. In the future, we attempt to apply the proposed technique in
the stock market [47], compared with its feature extraction using the deep learning method, and the
enhancements in prediction precisions of stock price indices can be made to provide support for stock
investments.
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