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ABSTRACT

Experts use Pythagorean fuzzy hypersoft sets (PFHSS) in their investigations to resolve the indeterminate and
imprecise information in the decision-making process. Aggregation operators (AOs) perform a leading role in
perceptivity among two circulations of prospect and pull out concerns from that perception. In this paper, we
extend the concept of PFHSS to interval-valued PFHSS (IVPFHSS), which is the generalized form of interval-
valued intuitionistic fuzzy soft set. The IVPFHSS competently deals with uncertain and ambagious information
compared to the existing interval-valued Pythagorean fuzzy soft set. It is the most potent method for amplifying
fuzzy data in the decision-making (DM) practice. Some operational laws for IVPFHSS have been proposed.
Based on offered operational laws, two inventive AOs have been established: interval-valued Pythagorean fuzzy
hypersoft weighted average (IVPFHSWA) and interval-valued Pythagorean fuzzy hypersoft weighted geometric
(IVPFHSWG) operators with their essential properties. Multi-criteria group decision-making (MCGDM) shows
an active part in contracts with the difficulties in industrial enterprise for material selection. But, the prevalent
MCGDM approaches consistently carry irreconcilable consequences. Based on the anticipated AOs, a robust
MCGDM technique is deliberate for material selection in industrial enterprises to accommodate this shortcoming.
A real-world application of the projected MCGDM method for material selection (MS) of cryogenic storing vessels
is presented. The impacts show that the intended model is more effective and reliable in handling imprecise data
based on IVPFHSS.
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1 Introduction

MCGDM is deliberated as the most suitable method for a verdict on the adequate alternative
from all possible choices, following criteria or attributes. Most decisions are taken when the intentions
and confines are usually unspecified or unclear in real-life circumstances. Zadeh offered the idea of
the fuzzy set (FS) [1] to overcome such vague and indeterminate facts. It is a fundamental tool to
handle the insignificances and hesitations in decision-making (DM). The existing FS cannot deal with
the scenarios when the experts consider a membership degree (MD) in intervals form during the DM
procedure. Turksen [2] presented the interval-valued FS (IVFS) with fundamental operations. The
prevailing FS and IVFS cannot deliver the information about any alternative’s non-membership degree
(NMD). Atanassov [3] overcame the mentioned above limitations and developed the intuitionistic
fuzzy set (IFS). Wang et al. [4] introduced several operations such as Einstein product, Einstein sum,
etc., and AOs for IFS. Atanassov [5] prolonged the IFS to an interval-valued intuitionistic fuzzy set
(IVIFS) with some basic operations and their properties. Garg et al. [6] protracted the idea of IFS and
settled the cubic intuitionistic fuzzy set (CIFS).

The models mentioned above have been well-recognized by the specialists. Still, the existing IFS
cannot handle the inappropriate and vague data because it envisions the linear inequality among the
MD and NMD. For example, if decision-makers choose MD and NMD 0.6 and 0.7, respectively,
then the IFS, as mentioned earlier, cannot deal with it because 0.6 + 0.7 ≥ 1. Yager [7] offered the
Pythagorean fuzzy set (PFS) to resolve the inadequacy mentioned above by modifying the elementary
state κ + δ ≤ 1 to κ2 + δ2 ≤ 1. He also established the score and accuracy functions to compute the
ranking. Rahman et al. [8] planned Einstein weighted geometric operator for PFS and showed a multi-
attribute group decision-making (MAGDM) technique using their planned operator. Zhang et al. [9]
developed some basic operational laws and prolonged the approach for order of preference by similar-
ity to ideal solution (TOPSIS) to resolve multi-criteria decision-making (MCDM) problems for PFS.
Wei et al. [10] offered the Pythagorean fuzzy power AOs and discussed their important features. Using
their presented operators, they also established a DM technique to resolve multi-attribute decision-
making (MADM). Wang et al. [11] demonstrated the interaction operational laws for Pythagorean
fuzzy numbers (PFNs) and settled power Bonferroni mean operators. IIbahar et al. [12] offered the
Pythagorean fuzzy proportional risk assessment technique to assess the professional health risk. Zhang
[13] proposed a novel DM approach based on similarity measures to resolve MCGDM problems for
the PFS. Peng et al. [14] offered the AOs for interval-valued PFS (IVPFS) and established a DM
technique using their planned methodology. Rahman et al. [15] prolonged the weighted geometric
aggregation operator for IVPFS and offered a DM technique based on their developed operator.

All of the above techniques have broad applications, but these theories have some limitations
on parametric chemistry due to their ineffectiveness. Molodtsov [16] introduced the soft sets (SS)
theory and defined some basic operations with their features to handle the misperception and haziness.
Maji et al. [17] extended the theory of SS and developed many basic and binary operations for SS.
Maji et al. [18] developed the fuzzy soft set with some desirable properties by merging two existing
notions, FS and SS. Maji et al. [19] protracted the intuitionistic fuzzy soft set (IFSS) and some
important operations with their essential properties. Arora et al. [20] presented the AOs for IFSS
and planned a DM technique based on their developed operators. Jiang et al. [21] introduced the
interval-valued IFSS (IVIFSS) and discussed its basic properties. Zulqarnain et al. [22] planned the
TOPSIS technique based on the correlation coefficient (CC) for IVIFSS to resolve MADM problems.
Peng et al. [23] anticipated the Pythagorean fuzzy soft sets (PFSS) by merging two prevailing theories,
PFS and SS. Zulqarnain et al. [24] presented some operational laws for PFSS and prolonged the AOs
and interaction AOs for PFSS. Zulqarnain et al. [25] developed the operational interaction laws for
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PFSS and protracted the interaction AOs based on established operational laws. They also established
the DM methodologies using their developed AOs and interaction AOs with their application in green
supplier chain management. Zulqarnain et al. [26] prolonged the Einstein-ordered operational laws
for PFSS and introduced the Einstein-ordered weighted ordered geometric AO for PFSS. They also
established a MAGDM technique to solve complex real-life problems. Zulqarnain et al. [27] protracted
the Einstein-ordered weighted ordered average AO for PFSS and offered a DM technique based on
their developed operator. Zulqarnain et al. [28] settled the TOPSIS method for PFSS using correlation
coefficient and developed the MADM approach to resolve DM obstacles. Zulqarnain et al. [29]
prolonged the AOs for IVPFSS and presented a MAGDM approach to solving real-life difficulties.

Samarandche [30] proposed the idea of hypersoft set (HSS), which penetrates multiple sub-
attributes in the parameter function f , which is a characteristic of the cartesian product with the n
attribute. Samarandche HSS is the most suitable theory compared to SS and other existing concepts
because it handles the multiple sub-attributes of the considered parameters. Several HSS extensions
and their DM methods have been proposed. Rahman et al. [31] developed the DM techniques based
on similarity measures for the possibility IFHSS. Zulqarnain et al. [32] extended the notion of IFHSS
to PFHSS with fundamental operations and their properties. Rahman et al. [33] established a DM
methodology for neutrosophic HSS. Saeed et al. [34] utilized the neutrosophic hypersoft mapping to
diagnose the brain tumor. Zulqarnain et al. [35] extended the TOPSIS method based on the correlation
coefficient for IFHSS and used it to resolve MADM complications. Zulqarnain et al. [36] expanded
the AOs under the IFHSS environment and developed a DM approach based on their presented AOs.
Zulqarnain et al. [37] developed the correlation-based TOPSIS approach for PFHSS and utilized their
established technique to select the most appropriate face mask. PFHSS is a hybrid intellectual structure
of PFSS. An enhanced sorting process fascinates investigators to crack baffling and inadequate
information. Rendering to the investigation outcomes, PFHSS plays a vital role in decision-making
by collecting numerous sources into a single value. The existing AOs for PFHSS cannot cope with the
situation when the information of any multi-sub attribute is given in the form of intervals. To overcome
the shortcomings mentioned above, we merged the IVPFS and hypersoft set (HSS) and introduced
IVPFHSS, a novel hybrid structure to cope with uncertain problems. Therefore, to inspire the current
research of IVPFHSS, we will state AOs based on rough data. The core objectives of the present study
are given as follows:

• The IVPFHSS capably contracts the multifaceted concerns seeing the multi sub-attributes of
the deliberated parameters in the DM procedure. To preserve this benefit in concentration, we
prolong the PFHSS to IVPFHSS and establish the AOs for IVPFHSS.

• The AOs for IVPFHSS are well-known attractive estimate AOs. It has been observed that the
prevalent AOs aspect is unresponsive to scratch the precise finding over the DM process in some
situations. To overcome these specific complications, these AOs necessary to be revised. We
determine innovative operational laws for interval-valued Pythagorean fuzzy hypersoft numbers
(IVPFHSNs).

• Interval-valued Pythagorean fuzzy hypersoft weighted average and geometric operators have
been introduced with their necessary properties using developed operational laws.

• A novel algorithm based on the planned operators to resolve the DM problem is established to
resolve MCGDM issues under the IVPFHSS scenario.

• Material selection is an imperative feature of manufacturing as it realizes the concrete conditions
for all ingredients. MS is an arduous but significant step in professional development. The
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manufacturer’s efficiency, productivity, and eccentric will suffer due to the absence of material
selections.

• A comparative analysis of advanced MCGDM technique and current methods has been
presented to consider utility and superiority.

The organization of this paper is assumed as follows: the second section of this paper involves some
basic notions that support us in developing the structure of the subsequent study. In Section 3, some
novel operational laws for IVPFHSN have been projected. Also, in the same section, IVPFHSWA
and IVPFHSWG operators have been introduced based on our developed operators’ basic properties.
In Section 4, an MCGDM approach has been constructed based on the proposed AOs. In the
same section, a numerical example has been discussed to confirm the pragmatism of the established
technique for material selection in the manufacturing industry. Furthermore, a brief comparative
analysis has been delivered to confirm the competency of the developed approach in Section 5.

2 Preliminaries

This section contains some basic definitions that will structure the following work.

Definition 2.1. [16] Let U and N be the universe of discourse and set of attributes, respectively.
Let P(U) be the power set of U and A ⊆ N. A pair (�, A) is called a SS over U , and its mapping is
expressed as follows:

� : A → P (U)

Also, it can be defined as follows:

(�, A) = {� (t) ∈ P (U) : t ∈ N, � (t) = ∅ if t /∈ A}
Definition 2.2. [30] Let U be a universe of discourse and P(U) be a power set of U and t = {t1, t2,

t3, . . . ,tn}, (n ≥ 1) and Ti represented the set of attributes and their corresponding sub-attributes, such
as Ti ∩ Tj = ϕ, where i �= j for each n ≥ 1 and i, j ε {1, 2, 3 . . . n}. Assume T1 × T2 × T3× . . . × Tn =...
A = {d1h × d2k × · · · × dnl} is a collection of sub-attributes, where 1 ≤ h ≤ α, 1 ≤ k ≤ β, and 1 ≤ l ≤ γ ,
and α, β, γ ∈ N. Then the pair (F , T1 × T2 × T3 × . . . × Tn = (�,

...
A) is known as HSS and defined

as follows:

� : T1 × T2 × T3 × . . . ; ×Tn = ...
A → P(U).

It is also defined as

(�,
...
A) =

{
ď, �...

A

(
ď
)

: ď ∈ ...
A, �...

A

(
ď
)

∈ P(U)
}

.

Definition 2.3. [14] U be a universe of discourse, and A be any subset of U . Then, the interval-
valued Pythagorean fuzzy set (IVPFS) A over U is defined as

A = {(x,
([

κ l
A (t) , κu

A (t)
]

,
[
δl

A (t) , δu
A (t)
])) |t ∈ U

}
where,

[
κ l

A(t), κ
u
A (t)
]

and
[
δl

A(t), δ
u
A (t)
]

represent the MD and NMD intervals, respectively. Also,

κ l
A (t) , κu

A (t), δl
A (t) , δu

A (t) ∈ [0, 1] . and satisfied the subsequent condition 0 ≤ (κu
A (t)
)2 + (δu

A (t)
)2 ≤ 1.

Definition 2.4 [29] U be a universe of discourse and N be a set of attributes. Then a pair (�,N) is
called an interval-valued Pythagorean fuzzy soft set (IVPFSS) over U . Its mapping can be expressed as

� : N → ℘KU
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where ℘KU represents the collection of interval-valued Pythagorean fuzzy subsets of the universe of
discourse U .

(�,N) = {x, (
[
κ l

A(t), κ
u
A(t)
]

,
[
δl

A(t), δ
u
A(t)
]
)|t ∈ A

}
where,

[
κ l

A(t), κ
u
A (t)
]

,
[
δl

A(t), δ
u
A (t)
]

represent the MD and NMD intervals, respectively. Also,

κ l
A (t) , κu

A (t), δl
A (t) , δu

A (t) ∈ [0, 1] . And satisfied the subsequent condition 0 ≤ (κu
A (t)
)2 + (δu

A (t)
)2 ≤ 1

and A ⊂ N.

Definition 2.5. [30] Let U be a universe of discourse and P(U) be a power set of U and t = {t1, t2,
t3, . . . ,tn},(n ≥ 1) and Ti represented the set of attributes and their corresponding sub-attributes, such
as Ti ∩ Tj = ϕ, where i �= j for each n ≥ 1 and i, j ε {1,2,3 . . . n}. Assume T1 × T2 × T3 × . . . × Tn =...
A = {d1h × d2k × · · · × dnl} is a collection of sub-attributes, where 1 ≤ h ≤ α, 1 ≤ k ≤ β, and 1 ≤ l ≤ γ ,
and α, β, γ ∈ N. Then the pair (F , T1 × T2 × T3 × . . . × Tn = (�,

...
A) is known as IFHSS and defined

as follows:

� : T1 × T2 × T3 × . . . ; ×Tn = ...
A → IFSU .

It is also defined as

(�,
...
A) =

{(
ď, �...

A

(
ď
))

: ď ∈ ...
A, �...

A

(
ď
)

∈ IFSU ∈ [0, 1]
}

, where �...
A

(
ď
)

={〈
ζ , κ�(ď)(ζ ), δ�(ď) (ζ )

〉
: ζ ∈ U

}
, where κ�(ď) (ζ ) and δ�(ď) (ζ ) represents the membership and non-

membership values, respectively, such as κ�(ď) (ζ ), δ�(ď) (ζ ) ∈ [0, 1], and 0 ≤ κ�(ď) (ζ ) + δ�(ď) (ζ ) ≤ 1.

Definition 2.6 [32] Let U be a universe of discourse and P(U) be a power set of U and t = {t1, t2,
t3, . . . ,tn},(n ≥ 1) and Ti represented the set of attributes and their corresponding sub-attributes, such
as Ti ∩ Tj = ϕ, where i �= j for each n ≥ 1 and i, j ε {1,2,3 . . . n}. Assume T1 × T2 × T3× . . . × Tn =...
A = {d1h × d2k × · · · × dnl} is a collection of sub-attributes, where 1 ≤ h ≤ α, 1 ≤ k ≤ β, and 1 ≤ l ≤ γ ,
and α, β, γ ∈ N. Then the pair (F , T1 × T2 × T3× . . . × Tn = (�,

...
A) is known as PFHSS and defined

as follows:

� : T1 × T2 × T3 × . . . × Tn = ...
A → PFSU .

It is also defined as

(�,
...
A) =

{(
ď, �...

A

(
ď
))

: ď ∈ ...
A, �...

A

(
ď
)

∈ PFSU ∈ [0, 1]
}

, where �...
A

(
ď
)

={〈
ζ , κ�(ď) (ζ ) , δ�(ď) (ζ )

〉
: ζ ∈ U

}
, where κ�(ď) (ζ ) and δ�(ď) (ζ ) represents the MD and NMD,

respectively, such as κ�(ď) (ζ ), δ�(ď) (ζ ) ∈ [0, 1], and 0 ≤
(
κ�(ď) (ζ )

)2

+
(
δ�(ď) (ζ )

)2

≤ 1.

The PFHSN is stated as F =
{(

κ�(ď) (ζ ) , δ�(ď) (ζ )
)}

.

3 Aggregation Operators for Interval Valued Pythagorean Fuzzy Hypersoft Sets

In this section, we will extend the idea of IVPFSS to interval-valued Pythagorean fuzzy hypersoft
sets (IVPFHSS) with some fundamental notions and introduce the operational laws for IVPFHSNs.
We propose interval-valued Pythagorean fuzzy hypersoft weighted average (IVPFHSWA) and interval-
valued Pythagorean fuzzy hypersoft geometric (IVPFHSWG) operators using the developed opera-
tional laws.
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Definition 3.1. Let U be a universe of discourse and P(U) be a power set of U and t = {t1, t2,
t3, . . . ,tn},(n ≥ 1) and Ti represented the set of attributes and their corresponding sub-attributes, such
as Ti ∩ Tj = ϕ, where i �= j for each n ≥ 1 and i, j ε {1,2,3 . . . n}. Assume T1 × T2 × T3× . . . × Tn

= ...
A = {d1h × d2k × · · · × dnl} is a collection of sub-attributes, where 1 ≤ h ≤ α, 1 ≤ k ≤ β, and 1 ≤ l ≤

γ , and α, β, γ ∈ N. Then the pair (F , T1 × T2 × T3× . . . × Tn = (�,
...
A) is known as IVPFHSS and

defined as follows:

� : T1 × T2 × T3 × . . . × Tn = ...
A → IVPFHSU .

It is also defined as

(�,
...
A) =

{(
ď, �...

A

(
ď
))

: ď ∈ ...
A, �...

A

(
ď
)

∈ IVPFSU ∈ [0, 1]
}

, where �...
A

(
ď
)

={〈
ζ , κ�(ď) (ζ ) , δ�(ď) (ζ )

〉
: ζ ∈ U

}
, and κ�(ď) (ζ ) =

[
κ l

�(ď)
(ζ ), κu

�(ď)
(ζ )
]
, δ�(ď) (ζ ) =

[
δl

�(ď)
(ζ ), δu

�(ď)
(ζ )
]
,

where κ�(ď) (ζ ) and δ�(ď) (ζ ) represents the membership and non-membership intervals, respectively,

such as κ l
�(ď)

(ζ ), κu
�(ď)

(ζ ), δl
�(ď)

(ζ ), δu
�(ď)

(ζ ) ∈ [0, 1], and 0 ≤
(
κu

�(ď)
(ζ )
)2

+
(
δu

�(ď)
(ζ )
)2

≤ 1.

The IVPFHSN can be stated as F =
([

κ l
�(ď)

(ζ ), κu
�(ď)

(ζ )
]

,
[
δl

�(ď)
(ζ ), δu

�(ď)
(ζ )
])

.

The score and accuracy functions have been presented to compute the alternative ranking for

IVPFHSS can be stated as, if F =
([

κ l
�(ď)

(ζ ), κu
�(ď)

(ζ )
]

,
[
δl

�(ď)
(ζ ), δu

�(ď)
(ζ )
])

be an IVPFHSN. Then

S (F) =
(
κ l

�(ď)
(ζ )
)2

+
(
κu

�(ď)
(ζ )
)2

−
(
δl

�(ď)
(ζ )
)2

−
(
δu

�(ď)
(ζ )
)2

2

And

A (F) =
(
κ l

�(ď)
(ζ )
)2

+
(
κu

�(ď)
(ζ )
)2

+
(
δl

�(ď)
(ζ )
)2

+
(
δu

�(ď)
(ζ )
)2

2

Definition 3.2. Let Fďk
=
([

κ l
ďk

, κu
ďk

]
,
[
δl

ďk
, δu

ďk

])
, Fď11

=
([

κ l
ď11

, κu
ď11

]
,
[
δl

ď11
, δu

ď11

])
, and

Fď12
=
([

κ l
ď12

, κu
ď12

]
,
[
δl

ď12
, δu

ď12

])
be three IVPFHSNs and β be a positive real number, and by

algebraic norms, we have

1. Fď11
⊕ Fď12

=
([√

κ l
ď11

2 + κ l
ď12

2 − κ l
ď11

2 κ l
ď12

2,
√

κu
ď11

2 + κu
ď12

2 − κu
ď11

2 κu
ď12

2

]
,
[
δl

ď11
δl

ď12
, δu

ď11
δu

ď12

])

2. Fď11
⊗ Fď12

=
([

κ l
ď11

κ l
ď12

, κu
ď11

κu
ď12

]
,
[√

δl
ď11

2 + δl
ď12

2 − δl
ď11

2 δl
ď12

2,
√

δu
ď11

2 + δu
ď12

2 − δu
ď11

2 δu
ď12

2

])
3. βFďk

=([√
1 −
(

1 − κ l
ďk

2
)β

,

√
1 −
(

1 − κu
ďk

2
)β

]
,
[
δl

ďk

β , δu
ďk

β
])

=
⎛
⎝
√

1 −
(

1 −
[
κ l

ďk
, κu

ďk

]2
)β

,
[
δl

ďk

β , δu
ďk

β
]⎞⎠

4. F β

ďk
=([

κ l
ďk

β
, κu

ďk

β
]

,

[√
1 −
(

1 − δl
ďk

2
)β

,

√
1 −
(

1 − δu
ďk

2
)β

])
=
⎛
⎝[κ l

ďk

β
, κu

ďk

β
]

,

√
1 −
(

1 −
[
δl

ďk
, δu

ďk

]2
)β

⎞
⎠.
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Definition 3.3. Let Fďk
=
([

κ l
ďk

, κu
ďk

]
,
[
δl

ďk
, δu

ďk

])
be a collection of IVPFHSNs, and ωi and

νj are the weight vector for experts and multi sub-parameters, respectively, with given conditions
ωi > 0,

∑n

i=1 ωi = 1; νj > 0,
∑m

j=1 νj = 1. Then, the IVPFHSWA operator is defined as IVPFHSWA:
Ψn −→ Ψ

IVPFHSWA
(
Fď11

,Fď12
, . . . ,Fďnm

) = ⊕m
j=1νj

(
⊕n

i=1ωiFďij

)
Theorem 3.1. Let Fďij

=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
be a collection of IVPFHSNs, where (i =

1, 2, 3 . . . , n and j = 1, 2, 3, . . . , m), and the aggregated value is also an IVPFHSN, such as

IVPFHSWA
(
Fď11

,Fď12
, . . . ,Fďnm

)

=
⎛
⎝
√√√√1 −

m∏
j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
m∏

j=1

(
n∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠

ωi and νj show the expert’s and multi sub-attributes weights, respectively, such as ωi > 0,
∑n

i=1 ωi =
1, νj > 0,

∑m

j=1 νj = 1.

Proof. The above presented IVPFHSWA operator can be proved by using the principle of
mathematical induction:

For n = 1, we get ω1 = 1. Then, we have

IVPFHSWA
(
Fď11

,Fď12
, . . . ,Fďnm

) = ⊕m
j=1νjFď1j

IVPFHSWA
(
Fď11

,Fď12
, . . . ,Fďnm

) =
⎛
⎝
√√√√1 −

m∏
j=1

(
1 −
[
κ l

ď1j
, κu

ď1j

]2
)νj

,
m∏

j=1

([
δl

ď1j
, δu

ď1j

])νj

⎞
⎠

=
⎛
⎝
√√√√1 −

m∏
j=1

(
1∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
m∏

j=1

(
1∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠ .

For m = 1, we get ν1 = 1. Then, we have

IVPFHSWA
(
Fď11

,Fď12
, . . . ,Fďnm

) = ⊕n
i=1ωiFďi1

=
⎛
⎝
√√√√1 −

n∏
i=1

(
1 −
[
κ l

ďi1
, κu

ďi1

]2
)ωi

,
n∏

i=1

([
δl

ďi1
, δu

ďi1

])ωi

⎞
⎠

=
⎛
⎝
√√√√1 −

1∏
j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
1∏

j=1

(
n∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠

So, the above theorem is proved for n = 1 and m = 1.

Assume that for m = α1 + 1, n = α2 and m = α1, n = α2 + 1, the above theorem holds. Such as

⊕α1+1
j=1 νj

(
⊕α2

i=1ωiFďij

)
=
⎛
⎝
√√√√1 −

α1+1∏
j=1

(
α2∏
i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
α1+1∏
j=1

(
α2∏
i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠
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⊕α1
j=1νj

(
⊕α2+1

i=1 ωiFďij

)
=
⎛
⎝
√√√√1 −

α1∏
j=1

(
α2+1∏
i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
α1∏
j=1

(
α2+1∏
i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠

For m = α1 + 1 and n = α2 + 1, we have

⊕α1+1
j=1 νj

(
⊕α2+1

i=1 ωiFďij

)
= ⊕α1+1

j=1 νj

(
⊕α2

i=1ωiFďij
⊕ ωα2+1Fď(α2+1)j

)
= ⊕α1+1

j=1 ⊕α2
i=1 νjωiFďij

⊕α1+1
j=1 νjωα2+1Fď(α2+1)j

=
⎛
⎝
√√√√1 −

α1+1∏
j=1

(
α2∏
i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

⊕
√√√√1 −

α1+1∏
j=1

((
1 −
[
κ l

ď(α2+1)j
, κu

ď(α2+1)j

]2
)ωα2+1

)νj

,

α1+1∏
j=1

(
α2∏
i=1

([
δl

ďij
, δu

ďij

])ωi

)νj

⊕
α1+1∏
j=1

(([
δl

ď
(α2+1)j

, δu
ď
(α2+1)j

])ω
(α2+1)

)νj
)

=
⎛
⎝
√√√√1 −

α1+1∏
j=1

(
α2+1∏
i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
α1+1∏
j=1

(
α2+1∏
i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠

Hence, it holds for m = α1 +1 and n = α2 +1. So, we can say that Theorem 3.1 holds for all values
of m and n.

Example. 3.1

Let R = {R1,R2,R3} be a set of experts with the given weight vector ωi = (0.38, 0.45, 0.17)
T . The

group of experts describes the beauty of a house under-considered attributes Å = {e1 = lawn, e2 =
security system} with their corresponding sub-attributes Lawn = e1 = {e11 = with grass, e12 = without
grass}, security system = e2 = {e21 = guards, e22 = cameras}. Let Å = e1 × e2 be a set of sub-attributes

Å = e1 × e2 = {e11, e12} × {e21, e22} = {(e11, e21) , (e11, e22) , (e12, e21) , (e12, e22)
}

Å =
{

ď1, ď2, ď3, ď4

}
be a set of multi sub-attributes with weights νj = (0.2, 0.2, 0.2, 0.4)

T . The rating

values for each alternative in the form of IVPFHSN
(
F , Å

) =
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
3×4

given as:

(
F , Å

) =
⎡
⎣([0.3, 0.8] , [0.4, 0.5]) ([0.4, 0.6] , [0.3, 0.7]) ([0.5, 0.8] , [0.5, 0.6]) ([0.4, 0.9] , [0.3, 0.7])

([0.1, 0.5] , [0.2, 0.3]) ([0.3, 0.8] , [0.5, 0.7]) ([0.2, 0.4] , [0.2, 0.3]) ([0.3, 0.8] , [0.6, 0.7])
([0.2, 0.9] , [0.2, 0.3]) ([0.5, 0.7] , [0.2, 0.6]) ([0.2, 0.4] , [0.2, 0.8]) ([0.3, 0.8] , [0.5, 0.8])

⎤
⎦

IVPFHSWA
(
Fď11

,Fď12
, . . . ,Fď34

)

=
⎛
⎝
√√√√1 −

4∏
j=1

(
3∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
4∏

j=1

(
3∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.36, 0.91]0.38 [0.75, 0.84]0.45

[0.19, 0.96]0.17

}0.2 {
[0.64, 0.84]0.38

[0.36, 0.91]0.45 [0.51, 0.75]0.17

}0.2

{
[0.36, 0.75]0.38 [0.84, 0.96]0.45

[0.84, 0.96]0.17

}0.2 {
[0.19, 0.84]0.38 [0.36, 0.91]0.45

[0.36, 0.91]0.17

}0.4

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{

[0.4, 0.5]0.38 [0.2, 0.3]0.45

[0.2, 0.3]0.17

}0.2 {
[0.3, 0.7]0.38 [0.5, 0.7]0.45

[0.2, 0.6]0.17

}0.2

{
[0.5, 0.6]0.38 [0.2, 0.3]0.45

[0.2, 0.8]0.17

}0.2 {
[0.3, 0.7]0.38 [0.6, 0.7]0.45

[0.5, 0.8]0.17

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.36, 0.91]0.38 [0.75, 0.84]0.45

[0.19, 0.96]0.17

}0.2 {
[0.64, 0.84]0.38

[0.36, 0.91]0.45 [0.51, 0.75]0.17

}0.2

{
[0.36, 0.75]0.38 [0.84, 0.96]0.45

[0.84, 0.96]0.17

}0.2 {
[0.19, 0.84]0.38 [0.36, 0.91]0.45

[0.36, 0.91]0.17

}0.4

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{

[0.4, 0.5]0.38 [0.2, 0.3]0.45

[0.2, 0.3]0.17

}0.2 {
[0.3, 0.7]0.38 [0.5, 0.7]0.45

[0.2, 0.6]0.17

}0.2

{
[0.5, 0.6]0.38 [0.2, 0.3]0.45

[0.2, 0.8]0.17

}0.2 {
[0.3, 0.7]0.38 [0.6, 0.7]0.45

[0.5, 0.8]0.17

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.96, 0.68] [0.92, 0.88]
[0.99, 0.75]

}0.2 {
[0.93, 0.84]

[0.95, 0.63] [0.95, 0.89]

}0.2

{
[0.89, 0.68] [0.98, 0.92]

[0.99, 0.9]

}0.2 {
[0.93, 0.53] [0.95, 0.63]

[0.98, 0.84]

}0.4

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{

[0.77, 0.70] [0.58, 0.48]
[0.81, 0.76]

}0.2 {
[0.87, 0.63] [0.85, 0.73]

[0.92, 0.76]

}0.2

{
[0.82, 0.76] [0.58, 0.48]

[0.96, 0.76]

}0.2 {
[0.87, 0.63] [0.85, 0.79]

[0.96, 0.76]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(√

1 − ([0.87, 0.45]0.2 [0.84, 0.4]0.2 [0.86, 0.61]0.2 [0.86, 0.28]0.4),(
[0.36, 0.25]0.2 [0.68, 0.34]0.2 [0.46, 0.28]0.2 [0.71, 0.38]0.4)

)

=
(√

1 − ([0.8524, 0.9725] [0.8325, 0.9657] [0.9059, 0.9703] [0.6009, 0.9414]),
([0.7579, 0.8152] [0.8059, 0.9258] [0.7752, 0.8561] [0.6791, 0.8719])

)

= (√1 − [0.3863, 0.8579], [0.3215, 0.5634]
)

= (√[0.6137, 0.1421], [0.3215, 0.5634]
)

= [0.3769, 0.7833], [0.3215, 0.5634].
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3.1 Properties of IVPFHSWA Operator
3.1.1 Idempotency

If Fďij
= Fďk

=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
∀i, j. Then

IVPFHSWA
(
Fď11

,Fď12
, . . . ,Fďnm

) = Fďk

Proof. As we know that all Fďij
= Fďk

=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
, then, we have

IVPFHSWA
(
Fď11

,Fď12
, . . . ,Fďnm

)

=
⎛
⎝
√√√√1 −

m∏
j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
m∏

j=1

(
n∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠

=
⎛
⎜⎝
√√√√1 −

((
1 −
[
κ l

ďij
, κu

ďij

]2
)∑n

i=1 ωi
)∑m

j=1 νj

,
(([

δl
ďij

, δu
ďij

])∑n
i=1 ωi
)∑m

j=1 νj

⎞
⎟⎠

As
∑m

j=1 νj = 1 and
∑n

i=1 ωi = 1, then we have

=
(√

1 −
(

1 −
[
κ l

ďij
, κu

ďij

]2
)

,
[
δl

ďij
, δu

ďij

])

=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])

= Fďk
.

3.1.2 Boundedness

Let Fďij
=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
be a collection of IVPFHSNs where F−

ďij
=(

min
j

min
i

{[
κ l

ďij
, κu

ďij

]}
,

max
j

max
i

{[
δl

ďij
, δu

ďij

]})
andF+

ďij
=
(

max
j

max
i

{[
κ l

ďij
, κu

ďij

]}
,
min

j
min

i

{[
δl

ďij
, δu

ďij

]})
,

then

F−
ďij

≤ IVPFHSWA
(
Fď11

,Fď12
, . . . ,Fďnm

) ≤ F+
ďij

Proof. As we know that Fďij
=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
be an IVPFHSN, then

min
j

min
i

{[
κ l

ďij
, κu

ďij

]2
}

≤
[
κ l

ďij
, κu

ďij

]2

≤ max
j

max
i

{[
κ l

ďij
, κu

ďij

]2
}

⇒ 1 − max
j

max
i

{[
κ l

ďij
, κu

ďij

]2
}

≤ 1 −
[
κ l

ďij
, κu

ďij

]2

≤ 1 − min
j

min
i

{[
κ l

ďij
, κu

ďij

]2
}

⇔
(

1 − max
j

max
i

{[
κ l

ďij
, κu

ďij

]2
})ωi

≤
(

1 −
[
κ l

ďij
, κu

ďij

]2
)ωi

≤
(

1 − min
j

min
i

{[
κ l

ďij
, κu

ďij

]2
})ωi

⇔
(

1 − max
j

max
i

{[
κ l

ďij
, κu

ďij

]2
})∑n

i=1 ωi

≤
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi

≤
(

1 − min
j

min
i

{[
κ l

ďij
, κu

ďij

]2
})∑n

i=1 ωi
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⇔
(

1 − max
j

max
i

{[
κ l

ďij
, κu

ďij

]2
})∑n

j=1 νj

≤
m∏

j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

≤
(

1 − min
j

min
i

{[
κ l

ďij
, κu

ďij

]2
})∑n

j=1 νj

⇔ 1 − max
j

max
i

{[
κ l

ďij
, κu

ďij

]2
}

≤
m∏

j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

≤ 1 − min
j

min
i

{[
κ l

ďij
, κu

ďij

]2
}

⇔ min
j

min
i

{[
κ l

ďij
, κu

ďij

]2
}

≤ 1 −
m∏

j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

≤ max
j

max
i

{[
κ l

ďij
, κu

ďij

]2
}

⇔ min
j

min
i

{[
κ l

ďij
, κu

ďij

]}
≤
√√√√1 −

m∏
j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

≤ max
j

max
i

{[
κ l

ďij
, κu

ďij

]}
(a)

Similarly,

min
j

min
i

{[
δl

ďij
, δu

ďij

]}
≤

m∏
j=1

(
n∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj

≤ max
j

max
i

{[
δl

ďij
, δu

ďij

]}
(b)

Let IVPFHSWA(Fď11
,Fď12

, . . . ,Fďnm) =
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
= Fďij

. So, (a) and (b) can be

transferred into the form:
min

j
min

i

{[
κ l

ďij
, κu

ďij

]}
≤ Fďk

≤ max
j

max
i

{[
κ l

ďij
, κu

ďij

]}
and

min
j

min
i

{[
δl

ďij
, δu

ďij

]}
≤ Fďk

≤ max
j

max
i{[

δl
ďij

, δu
ďij

]}
, respectively.

Using the score function, we have

S
(
Fďk

) =
(
κ l

ďk

)2

+
(
κu

ďk

)2

−
(
δl

ďk

)2

−
(
δu

ďk

)2

2
≤ max

j
max

i

{[
κ l

ďij
, κu

ďij

]}
− min

j
min

i

{[
δl

ďij
, δu

ďij

]}
= S
(
F−

ďk

)

S
(
Fďk

) =
(
κ l

ďk

)2

+
(
κu

ďk

)2

−
(
δl

ďk

)2

−
(
δu

ďk

)2

2
≥ min

j
min

i

{[
κ l

ďij
, κu

ďij

]}
− max

j
max

i

{[
δl

ďij
, δu

ďij

]}
= S
(
F+

ďk

)
By order relation between two IVPFHSNs, we have

F−
ďk

≤ IVPFHSWA(Fď11
,Fď12

, . . . ,Fďnm) ≤ F+
ďk

.

3.1.3 Shift Invariance

Let Fďk
=
([

κ l
ďk

, κu
ďk

]
,
[
δl

ďk
, δu

ďk

])
be an IVPFHSN. Then

IVPFHSWA(Fď11
⊕ Fďk

,Fď12
⊕ Fďk

, . . . ,Fďnm ⊕ Fďk
) = IVPFHSWA(Fď11

,Fď12
, . . . ,Fďnm) ⊕ Fďk

Proof. As Fďk
=
([

κ l
ďk

, κu
ďk

]
,
[
δl

ďk
, δu

ďk

])
and Fďij

=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
be two IVPFHSNs. Then,

using Definition 3.2 (1)

Fďk
⊕ Fďij

=
(√[

κ l
ďk

, κu
ďk

]
+
[
κ l

ďij
, κu

ďij

]2

−
[
κ l

ďk
, κu

ďk

] [
κ l

ďij
, κu

ďij

]2

,
[
δl

ďk
, δu

ďk

] [
δl

ďij
, δu

ďij

])
,

So,

IVPFHSWA
(
Fď11

⊕ Fďk
,Fď12

⊕ Fďk
, . . . ,Fďnm ⊕ Fďk

) == ⊕m
j=1νj

(
⊕n

i=1ωi

(
Fďij

⊕ Fďk

))
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=
⎛
⎝
√√√√1 −

m∏
j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
(

1 −
[
κ l

ďk
, κu

ďk

]2
)ωi
)νj

,
m∏

j=1

(
n∏

i=1

([
δl

ďij
, δu

ďij

])ωi
([

δl
ďk

, δu
ďk

])ωi

)νj
⎞
⎠

=
⎛
⎝
√√√√1 −

(
1 −
[
κ l

ďk
, κu

ďk

]2
) m∏

j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
[
δl

ďk
, δu

ďk

] m∏
j=1

(
n∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠

=
⎛
⎝
⎛
⎝
√√√√1 −

m∏
j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
m∏

j=1

(
n∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠⊕

([
κ l

ďk
, κu

ďk

]
,
[
δl

ďk
, δu

ďk

])⎞⎠
= IVPFHSWA(Fď11

,Fď12
, . . . ,Fďnm) ⊕ Fďk

.

3.1.4 Homogeneity

Prove that IVPFHSWA (βFď11
, βFď12

, . . . , βFďnm) = β IVPFHSWA (Fď11
,Fď12

, . . . ,Fďnm) for any
positive real number β.

Proof. Let Fďij
=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
be an IVPFHSN and β > 0. Then using Definition 3.2,

we have

βFďij
=
⎛
⎝
√

1 −
(

1 −
[
κ l

ďij
, κu

ďij

]2
)β

,
[
δl

ďij
, δu

ďij

]β⎞⎠
So,(

βFď11
, βFď12

, . . . , βFďnm

)

=
⎛
⎝
√√√√1 −

m∏
j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)βωi
)νj

,
m∏

j=1

(
n∏

i=1

([
δl

ďij
, δu

ďij

])βωi

)νj
⎞
⎠

=
⎛
⎝
√√√√1 −

(
m∏

j=1

(
n∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj
)β

,

(
m∏

j=1

(
n∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
)β
⎞
⎠

= β IVPFHSWA (Fď11
,Fď12

, . . . ,Fďnm).

Definition 3.4. Let Fďk
=
([

κ l
ďk

, κu
ďk

]
,
[
δl

ďk
, δu

ďk

])
be a collection of IVPFHSNs, and ωi and νj are

the weight vector for experts and multi sub-parameters, respectively, with given conditions ωi >

0,
∑n

i=1 ωi = 1; νj > 0,
∑m

j=1 νj = 1. Then, the IVPFHSWG operator is defined as IVPFHSWG:
Ψn −→ Ψ

IVPFHSWG
(
Fď11

,Fď12
, . . . ,Fďnm

) = ⊗m
j=1νj

(
⊗n

i=1ωiFďij

)
Theorem 3.2. Let Fďij

=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
be a collection of IVPFHSNs, where (i =

1, 2, 3 . . . . . . , n and j = 1, 2, 3, . . . , m), and the aggregated value is also an IVPFHSN, such as

IVPFHSWG
(
Fď11

,Fď12
, . . . ,Fďnm

)
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=
⎛
⎝ m∏

j=1

(
n∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
m∏

j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠

ωi and νj represents the expert’s and multi sub-attributes weights, respectively, such as ωi > 0,∑n

i=1 ωi = 1, νj > 0,
∑m

j=1 νj = 1.

Proof. Using mathematical induction, we can prove the IVPFHSWG operator as follows:

For n = 1, we get ω1 = 1. Then, we have

IVPFHSWG
(
Fď11

,Fď12
, . . . ,Fďnm

) = ⊗m
j=1F

νj

ď1j

IVPFHSWG
(
Fď11

,Fď12
, . . . ,Fďnm

)

=
⎛
⎝ m∏

j=1

([
κ l

ď1j
, κu

ď1j

])νj

,

√√√√1 −
m∏

j=1

(
1 −
[
δl

ď1j
, δu

ď1j

]2
)νj

⎞
⎠

=
⎛
⎝ m∏

j=1

(
1∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
m∏

j=1

(
1∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠ .

For m = 1, we get ν1 = 1. Then, we have

IVPFHSWG
(
Fď11

,Fď21
, . . . ,Fďn1

) = ⊗n
i=1

(
Fďn1

)ωi

=
⎛
⎝ n∏

i=1

([
κ l

ďi1
, κu

ďi1

])ωi

,

√√√√1 −
n∏

i=1

(
1 −
[
δl

ďi1
, δu

ďi1

]2
)ωi

⎞
⎠

=
⎛
⎝ 1∏

j=1

(
n∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
1∏

j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠

So, for n = 1 and m = 1 the IVPFHSWG operators holds.

Now, for m = α1 + 1, n = α2 and m = α1, n = α2 + 1, such as

⊗α1+1
j=1

(
⊗α2

i=1

(
Fďij

)ωi
)νj

=
⎛
⎝α1+1∏

j=1

⎛
⎝ α2∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

,

√√√√1 −
α1+1∏
j=1

(
α2∏
i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠
⎞
⎠

⊗α1
j=1

(
⊗α2+1

i=1

(
Fďij

)ωi
)νj

=
⎛
⎝ α1∏

j=1

(
α2+1∏
i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
α1∏
j=1

(
α2+1∏
i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠

For m = α1 + 1 and n = α2 + 1, we have

⊗α1+1
j=1

(
⊗α2+1

i=1

(
Fďij

)ωi
)νj = ⊗α1+1

j=1

(
⊗α2

i=1

(
Fďij

)ωi ⊗
(
Fď(α2+1)j

)ωα2+1
)νj

= ⊗α1+1
j=1 ⊗α2

i=1

((
Fďij

)ωi
)νj ⊗α1+1

j=1

((
Fď(α2+1)j

)ωα2+1
)νj
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=
(

α1+1∏
j=1

(
α2∏
i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

⊗
α1+1∏
j=1

(([
κ l

ď
(α2+1)j

, κu
ď
(α2+1)j

])ω
(α2+1)

)νj

,

√√√√1 −
α1+1∏
j=1

(
α2∏
i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj

⊗
√√√√1 −

α1+1∏
j=1

((
1 −
[
δl

ď(α2+1)j
, δu

ď(α2+1)j

]2
)ωα2+1

)νj)

=
⎛
⎝α1+1∏

j=1

(
α2+1∏
i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
α1+1∏
j=1

(
α2+1∏
i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠

So, it is proved the for m = α1 + 1 and n = α2 + 1 holds. So, the IVPFHSWG operator holds for
all values of m and n.

Example 3.2. Let R = {R1,R2,R3} be a set of experts with the given weight vector ωi =
(0.38, 0.45, 0.17)

T . The group of experts describes the beauty of a house under-considered attributes
Å = {e1 = lawn, e2 = security system} with their corresponding sub-attributes Lawn = e1 =
{e11 = with grass, e12 = without grass}, security system = e2 = {e21 = guards, e22 = cameras}. Let
Å = e1 × e2 be a set of sub-attributes

Å = e1 × e2 = {e11, e12} × {e21, e22} = {(e11, e21) , (e11, e22) , (e12, e21) , (e12, e22)
}

Å =
{

ď1, ď2, ď3, ď4

}
be a set of multi sub-attributes with weights νj = (0.2, 0.2, 0.2, 0.4)

T . The rating

values for each alternative in the form of IVPFHSN
(
F , Å

) =
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
3×4

given as:

(
F , Å

) =
⎡
⎣([0.3, 0.8] , [0.4, 0.5]) ([0.4, 0.6] , [0.3, 0.7]) ([0.5, 0.8] , [0.5, 0.6]) ([0.4, 0.9] , [0.3, 0.7])

([0.1, 0.5] , [0.2, 0.3]) ([0.3, 0.8] , [0.5, 0.7]) ([0.2, 0.4] , [0.2, 0.3]) ([0.3, 0.8] , [0.6, 0.7])
([0.2, 0.9] , [0.2, 0.3]) ([0.5, 0.7] , [0.2, 0.6]) ([0.2, 0.4] , [0.2, 0.8]) ([0.3, 0.8] , [0.5, 0.8])

⎤
⎦

By using the above theorem, we have

IVPFHSWG
(
Fď11

,Fď12
, . . . ,Fď34

)

=
⎛
⎝ 4∏

j=1

(
3∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
3∏

j=1

(
4∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{

[0.3, 0.8]0.38 [0.1, 0.5]0.45

[0.2, 0.9]0.17

}0.2 {
[0.4, 0.6]0.38 [0.3, 0.8]0.45

[0.5, 0.7]0.17

}0.2

{
[0.5, 0.8]0.38 [0.2, 0.4]0.45

[0.2, 0.4]0.17

}0.2 {
[0.4, 0.9]0.38 [0.3, 0.8]0.45

[0.3, 0.8]0.17

}0.4

⎞
⎟⎟⎠ ,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.75, 0.84]0.38 [0.91, 0.96]0.45

[0.91, 0.96]0.17

}0.2 {
[0.51, 0.91]0.38

[0.51, 0.75]0.45 [0.64, 0.96]0.17

}0.2

{
[0.64, 0.75]0.38 [0.91, 0.96]0.45

[0.36, 0.96]0.17

}0.2 {
[0.51, 0.91]0.38 [0.51, 0.64]0.45

[0.36, 0.75]0.17

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{

[0.92, 0.63]0.38 [0.73, 0.35]0.45

[0.98, 0.76]0.17

}0.2 {
[0.82, 0.70]0.38 [0.90, 0.38]0.45

[0.94, 0.89]0.17

}0.2

{
[0.92, 0.77]0.38 [0.66, 0.48]0.45

[0.85, 0.76]0.17

}0.2 {
[0.96, 0.70]0.38 [0.90, 0.58]0.45

[0.96, 0.81]0.17

}0.4

⎞
⎟⎟⎠ ,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.75, 0.84]0.38 [0.91, 0.96]0.45

[0.91, 0.96]0.17

}0.2 {
[0.51, 0.91]0.38

[0.51, 0.75]0.45 [0.64, 0.96]0.17

}0.2

{
[0.64, 0.75]0.38 [0.91, 0.96]0.45

[0.36, 0.96]0.17

}0.2 {
[0.51, 0.91]0.38 [0.51, 0.64]0.45

[0.36, 0.75]0.17

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

(
[0.66, 0.17]0.2 [0.69, 0.24]0.2 [0.52, 0.28]0.2 [0.83, 0.33]0.4) ,√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.93, 0.89] [0.98, 0.96]
[0.99, 0.98]

}0.2 {
[0.96, 0.77]

[0.88, 0.74] [0.99, 0.93]

}0.2

{
[0.89, 0.84] [0.98, 0.96]

[0.99, 0.84]

}0.2 {
[0.96, 0.77] [0.81, 0.74]

[0.95, 0.84]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

=
(

(0.7016, 0.9202] [0.7516, 0.9284] [0.7752, 0.8774] [0.6418, 0.9282])√
1 − ([0.9023, 0.8373]0.2 [0.8363, 0.5299]0.2 [0.8634, 0.6773]0.2 [0.7387, 0.4786]0.4)

)

= ([0.2623, 0.6957],
√

1 − ([0.9651, 0.9796] [0.8807, 0.9649] [0.9250, 0.9710] [0.7447, 0.8859]))

= [0.2623, 0.6957],
√

1 − [0.5855, 0.8131]

= [0.2623, 0.6957],
√

[0.4146, 0.1869]

= [0.2623, 0.6957], [0.4323, 0.6438].

3.2 Properties of IVPFSWG
3.2.1 Idempotency

If Fďij
= Fďk

=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
∀i, j. Then

IVPFHSWG (Fď11
,Fď12

, . . . ,Fďnm) = Fďk
.

Proof. As we know that all Fďij
= Fďk

=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
, then, we have

IVPFHSWG
(
Fď11

,Fď12
, . . . ,Fďnm

)

=
⎛
⎝ m∏

j=1

(
n∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
m∏

j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠

=
⎛
⎜⎝(([κ l

ďij
, κu

ďij

])∑n
i=1 ωi
)∑m

j=1 νj

,

√√√√1 −
((

1 −
[
δl

ďij
, δu

ďij

]2
)∑n

i=1 ωi
)∑m

j=1 νj

⎞
⎟⎠
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As
∑m

j=1 νj = 1 and
∑n

i=1 ωi = 1, then we have

=
([

κ l
ďij

, κu
ďij

]
,

√
1 −
(

1 −
[
δl

ďij
, δu

ďij

]2
))

=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
= Fďk

.

3.2.2 Boundedness

Let Fďij
be a collection of IVPFHSNs, where F−

ďij
=
(

min
j

min
i

{[
κ l

ďij
, κu

ďij

]}
,
max

j
max

i

{[
δl

ďij
, δu

ďij

]})

and F+
ďij

=
(

max
j

max
i

{[
κ l

ďij
, κu

ďij

]}
,
min

j
min

i

{[
δl

ďij
, δu

ďij

]})
, then

F−
ďij

≤ IVPFHSWG
(
Fď11

,Fď12
, . . . ,Fďnm

) ≤ F+
ďij

Proof. As we know that Fďij
=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
be an IVPFHSN, then

min
j

min
i

{[
δl

ďij
, δu

ďij

]2
}

≤
[
δl

ďij
, δu

ďij

]2

≤ max
j

max
i

{[
δl

ďij
, δu

ďij

]2
}

⇒ 1 − max
j

max
i

{[
δl

ďij
, δu

ďij

]2
}

≤ 1 −
[
δl

ďij
, δu

ďij

]2

≤ 1 − min
j

min
i

{[
δl

ďij
, δu

ďij

]2
}

⇔
(

1 − max
j

max
i

{[
δl

ďij
, δu

ďij

]2
})ωi

≤
(

1 −
[
δl

ďij
, δu

ďij

]2
)ωi

≤
(

1 − min
j

min
i

{[
δl

ďij
, δu

ďij

]2
})ωi

⇔
(

1 − max
j

max
i

{[
δl

ďij
, δu

ďij

]2
})∑n

i=1 ωi

≤
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi

≤
(

1 − min
j

min
i

{[
δl

ďij
, δu

ďij

]2
})∑n

i=1 ωi

⇔
(

1 − max
j

max
i

{[
δl

ďij
, δu

ďij

]2
})∑n

j=1 νj

≤
m∏

j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj

≤
(

1 − min
j

min
i

{[
δl

ďij
, δu

ďij

]2
})∑n

j=1 νj

⇔ 1 − max
j

max
i

{[
δl

ďij
, δu

ďij

]2
}

≤
m∏

j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj

≤ 1 − min
j

min
i

{[
δl

ďij
, δu

ďij

]2
}

⇔ min
j

min
i

{[
δl

ďij
, δu

ďij

]2
}

≤ 1 −
m∏

j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj

≤ max
j

max
i

{[
δl

ďij
, δu

ďij

]2
}

⇔ min
j

min
i

{[
δl

ďij
, δu

ďij

]}
≤
√√√√1 −

m∏
j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj

≤ max
j

max
i

{[
δl

ďij
, δu

ďij

]}
(C)

Similarly,

min
j

min
i

{[
κ l

ďij
, κu

ďij

]}
≤

m∏
j=1

(
n∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

≤ max
j

max
i

{[
κ l

ďij
, κu

ďij

]}
(D)

If IVPFHSWG
(
Fď11

,Fď12
, . . . ,Fďnm

) =
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
= Fďk

, then inequalities (C) and

(D) can be transferred into the form.
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min
j

min
i

{[
κ l

ďij
, κu

ďij

]}
≤ Mσ ≤ max

j
max

i

{[
κ l

ďij
, κu

ďij

]}
and

min
j

min
i

{[
δl

ďij
, δu

ďij

]}
≤ Fďk

≤
max

j
max

i

{[
δl

ďij
, δu

ďij

]}
, respectively.

Using the score function,

S
(
Fďk

) =
(
κ l

ďk

)2

+
(
κu

ďk

)2

−
(
δl

ďk

)2

−
(
δu

ďk

)2

2
≤ max

j
max

i

{[
κ l

ďij
, κu

ďij

]}
− min

j
min

i

{[
δl

ďij
, δu

ďij

]}
= S
(
F−

ďij

)

S
(
Fďk

) =
(
κ l

ďk

)2

+
(
κu

ďk

)2

−
(
δl

ďk

)2

−
(
δu

ďk

)2

2
≥ min

j
min

i

{[
κ l

ďij
, κu

ďij

]}
− max

j
max

i

{[
δl

ďij
, δu

ďij

]}
= S
(
F+

ďij

)
By order relation between two IVPFHSNs, we have

F−
ďk

≤ IVPFHSWG (Fď11
,Fď12

, . . . ,Fďnm) ≤ F+
ďk

.

3.2.3 Shift Invariance

Let Fďk
=
([

κ l
ďk

, κu
ďk

]
,
[
δl

ďk
, δu

ďk

])
be an IVPFHSN. Then

IVPFHSWG(Fď11
⊗ Fďk

,Fď12
⊗ Fďk

, . . . ,Fďnm ⊗ Fďk
) = IVPFHSWG(Fď11

,Fď12
, . . . ,Fďnm)

⊗ Fďk

Proof. As Fďk
=
([

κ l
ďk

, κu
ďk

]
,
[
δl

ďk
, δu

ďk

])
and Fďij

=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
be two IVPFHSNs. Then,

using Definition 3.2 (2)

Fďk
⊗ Fďij

=
([

κ l
ďk
κ l

ďij
, κu

ďk
κu

ďij

]
,
[√

δl
ďk

2 + δl
ďij

2 − δl
ďk

2δl
ďij

2,
√

δu
ďk

2 + δu
ďij

2 − δu
ďk

2δu
ďij

2

])
So,

IVPFHSWG
(
Fď11

⊗ Fďk
,Fď12

⊗ Fďk
, . . . ,Fďnm ⊗ Fďk

)
= ⊗m

j=1νj

(
⊗n

i=1ωi

(
Fďij

⊗ Fďk

))

=
⎛
⎝ m∏

j=1

(
n∏

i=1

([
κ l

ďij
, κu

ďij

])ωi
([

κ l
ďk

, κu
ďk

])ωi

)νj

,

√√√√1 −
m∏

j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
(

1 −
[
δl

ďk
, δu

ďk

]2
)ωi
)νj
⎞
⎠

=
⎛
⎝[κ l

ďk
, κu

ďk

] m∏
j=1

(
n∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
(

1 −
[
δl

ďk
, δu

ďk

]2
) m∏

j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠

=
⎛
⎝
⎛
⎝ m∏

j=1

(
n∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
m∏

j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠⊗

([
κ l

ďk
, κu

ďk

]
,
[
δl

ďk
, δu

ďk

])⎞⎠
IVPFHSWG(Fď11

,Fď12
, . . . ,Fďnm) ⊗ Fďk

.

3.2.4 Homogeneity

Prove that IVPFHSWG (βFď11
, βFď12

, . . . , βFďnm) = β IVPFHSWG (Fď11
,Fď12

, . . . ,Fďnm) for any
positive real number β.
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Proof. Let Fďij
=
([

κ l
ďij

, κu
ďij

]
,
[
δl

ďij
, δu

ďij

])
be an IVPFHSN and β > 0. Then using Definition 3.2,

we have

Fďk

β =
⎛
⎝[κ l

ďk

β
, κu

ďk

β

]
,

√
1 −
(

1 −
[
δl

ďk
, δu

ďk

]2
)β

⎞
⎠

So,

IVPFHSWG
(
βFď11

, βFď12
, . . . , βFďnm

)

=
⎛
⎝ m∏

j=1

(
n∏

i=1

([
κ l

ďij

β , κu
ďij

β

])ωi

)νj

,

√√√√1 −
m∏

j=1

(
n∏

i=1

((
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)β
)νj
⎞
⎠

=
⎛
⎝( m∏

j=1

(
n∏

i=1

([
κ l

ďij
, κu

ďij

])βωi

)νj
)

,

√√√√1 −
(

m∏
j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
)β
⎞
⎠

=
⎛
⎝( m∏

j=1

(
n∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj
)β

,

√√√√1 −
(

m∏
j=1

(
n∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
)β
⎞
⎠

= β IVPFHSWG (Fď11
,Fď12

, . . . ,Fďnm).

4 Multi-Criteria Group Decision-Making Approach Based on Proposed Operators

A decision-making method has been present to resolve the MCGDM obstacles to authenticate
the implication of the planned AOs. Also, a statistical illustration has been offered to confirm the
pragmatism of the developed methodology.

4.1 Proposed MCGDM Approach
Consider I = {I1, I2, I3, . . . , Is

}
be the set of s alternatives, U = {U1,U2,U3, . . . ,Ur} be the set of

r decision-makers. The weights of experts are given as ωi = (ω1, ω2, ω3, . . . , ωn)
T such that ωi > 0,∑n

i=1 ωi = 1. Suppose Let L = {e1, e2, e3, . . . , em} be the set of attributes with their corresponding
multi sub-attributes such as L

′ = {(e1ρ × e2ρ × . . . × emρ

)
for all ρ ∈ {1, 2, . . . , t}} with weights ν =

(ν1, ν2, ν3, . . . , νn)
T such that νi > 0,

∑n

i=1 νi = 1. and can be stated as L′ =
{

ď∂ : ∂ ∈ {1, 2, . . . , m}
}

. The

group of experts {κ i: i = 1, 2, . . . , n} assess the alternatives {H(z): z = 1, 2, . . . , s} under the chosen sub-

attributes {ď∂ : ∂ = 1, 2, . . . , k} in the form of IVPFHSNs such as
(
I

(z)

ďik

)
n×m

=
([

κ l
ďik

, κu
ďik

]
,
[
δl

ďik
, δu

ďik

])
n∗m

.

Where 0 ≤ κ l
ďik

, κu
ďik

, δl
ďik

, δu
ďik

≤ 1 and 0 ≤
(
κu

ďik

)2

+
(
δu

ďik

)2

≤ 1 for all i, k. The decision-makers give

their judgment in the form of IVPFHSNs Θk for each alternative. The stepwise algorithm is based on
established operators given such as follows:

Step-1: Obtain a decision matrix in IVPFHSNs for each alternative according to the expert’s
opinion.(
I

(z)

ďik

)
n×m

=
([

κ l
ďik

, κu
ďik

]
,
[
δl

ďik
, δu

ďik

])
n∗m
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

([
κ l

ď11
, κu

ď11

]
,
[
δl

ď11
, δu

ď11

])
([

κ l
ď21

, κu
ď21

]
,
[
δl

ď21
, δu

ď21

])
([

κ l
ď12

, κu
ď12

]
,
[
δl

ď12
, δu

ď12

])
([

κ l
ď22

, κu
ď22

]
,
[
δl

ď22
, δu

ď22

]) · · ·
([

κ l
ď1m

, κu
ď1m

]
,
[
δl

ď1m
, δu

ď1m

])
([

κ l
ď2n

, κu
ď2n

]
,
[
δl

ď2m
, δu

ď2m

])
...

. . .
...([

κ l
ďn1

, κu
ďn1

]
,
[
δl

ďn1
, δu

ďn1

]) ([
κ l

ďn2
, κu

ďn2

]
,
[
δl

ďn2
, δu

ďn2

])
· · ·

([
κ l

ďnm
, κu

ďnm

]
,
[
δl

ďnm
, δu

ďnm

])

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Step-2: Convert the cost type attributes to benefit type using the normalization rule and establish
the normalized decision matrices.

Fďik
=

⎧⎪⎨
⎪⎩
F c

ďij
=
([

δl
ďik

, δu
ďik

]
,
[
κ l

ďik
, κu

ďik

])
n×m

cost type parameter

Fďij
=
([

κ l
ďik

, κu
ďik

]
,
[
δl

ďik
, δu

ďik

])
n×m

benefit type parameter

Step-3: Calculate the aggregated values for each alternative using developed IVPFHSWA and
IVPFHSWG.

Step-4: Calculate the score values for each alternative.

Step-5: Examine the ranking of the alternatives.

4.2 Numerical Example
It is an intelligent transformation of fossil waste energy, such as natural gas first converted

into hydrogen. In inference, despite the overdevelopment of fossil fuels and the potential for global
warming, the most important renewable energy sources will originate from the description of financial
or environmental reasons. The recently formed hydrogen fuel is different in weight and volume from the
commonly used hydrogen fuel in power performance. This hydrogen, irrelevant to its energy capacity,
is the most prominent feature. The energy content per kilogram of hydrogen is 120 MJ. The advantage
of methanol is an extraordinary six times [38]. Hydrogen has a bit of volumetric energy compactness
associated with its particular gravimetric density. The compactness of hydrogen is determined by its
accumulation state. A stable thickness of up to 700 bar is not a large enough property for hydrocarbons
like gasoline and diesel. Only liquid hydrogen can affect a reasonable amount, still less than a quarter
of the amount of gasoline. Therefore, hydrogen containers for motor tenders will conquer more than
previously used fluid hydrocarbon containers [39]. Cryogenic storage containers are also considered
cryogenic storage containers. The dewar is a double-walled super-insulated container. Its vehicles fluid
oxygen, nitrogen, hydrogen, helium, and argon, temperatures <110 K/163°C.

The most significant features (parameters) to deliberate when electing a materiality dashboard
DM. The assortment method initiates with a preliminary screening of the material used for the
dashboard and is captivated by the validation configuration in-built into the application. Throughout
the airing progression, potentially proper materials are acknowledged. Defining the ingredients
that can be used by the preliminary MS of the dashboard fashioning is serious. Then select
from four material assessment abilities: I

1 = Ti–6Al–4V, I
2 = SS301–FH, I

3 = 70Cu–30Zn,
and I

4 = Inconel 718. The aspect of material assortment is specified as follows: L = {d1 =
Specific gravity = attaining data around the meditation of resolutions of numerous materials, d2 =
Toughness index, d3 = Yield stress, d4 = Easily accessible}. The corresponding subattributes of the
considered parameters, Specific gravity = attaining data around the meditation of resolutions of
numerous materials = d1 ={d11 = assess corporal variations, d12 = govern the degree of regularity
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among tasters}, Toughness index = d2 = {d21 = CharpyV − Notch Impact Energy, d22 = Plane Strain
Fracture Toughness}, Yield stress = d3 = {d31 = Yield stress}, Easily accessible = d4 = {d41 = Easily
accessible}. Let L′ = d1 × d2 × d3× d4 be a set of sub-attributes

L
′ = d1 × d2 × d3 × d4 = {d11, d12} × {d21, d22} × {d31} × {d41}

=
{
(d11, d21, d31d41) , (d11, d22, d31, d41) ,
(d12, d21, d31, d41) , (d12, d22, d31, d41)

}
, L

′ =
{

ď1, ď2, ď3, ď4

}
be a set of all sub-attributes with

weights (0.3, 0.1, 0.2, 0.4)T . Let {u1, u2, u3, u4} be a set of four experts with weights (0.1, 0.2, 0.4, 0.3)T .
To judge the optimal alternative, experts deliver their preferences in IVPFHSNs.

4.2.1 By IVPFHSWA Operator

Step-1: Decision-maker’s opinion on IVPFHSNs is given in Tables 1–4.

Table 1: Decision matrix for I1 in the form of IVPFHSN

ď1 ď2 ď3 ď4

U 1 ([0.4, 0.5] , [0.2, 0.5]) ([0.7, 0.8] , [0.5, 0.6]) ([0.4, 0.6] , [0.2, 0.5]) ([0.2, 0.4] , [0.2, 0.6])
U 2 ([0.2, 0.7] , [0.2, 0.6]) ([0.1, 0.6] , [0.4, 0.5]) ([0.2, 0.3] , [0.4, 0.8]) ([0.2, 0.5] , [0.4, 0.7])
U 3 ([0.3, 0.5] , [0.1, 0.4]) ([0.4, 0.6] , [0.2, 0.7]) ([0.4, 0.7] , [0.3, 0.7]) ([0.5, 0.7] , [0.2, 0.4])
U 4 ([0.4, 0.6] , [0.3, 0.7]) ([0.4, 0.5] , [0.3, 0.7]) ([0.3, 0.6] , [0.3, 0.5]) ([0.3, 0.6] , [0.3, 0.5])

Table 2: Decision matrix for I2 in the form of IVPFHSN

ď1 ď2 ď3 ď4

U 1 ([0.3, 0.6] , [0.5, 0.6]) ([0.2, 0.7] , [0.5, 0.7]) ([0.2, 0.7] , [0.4, 0.5]) ([0.6, 0.7] , [0.5, 0.8])
U 2 ([0.3, 0.5] , [0.5, 0.8]) ([0.1, 0.4] , [0.4, 0.5]) ([0.1, 0.5] , [0.3, 0.7]) ([0.4, 0.5] , [0.3, 0.6])
U 3 ([0.2, 0.6] , [0.1, 0.4]) ([0.1, 0.2] , [0.2, 0.9]) ([0.4, 0.7] , [0.3, 0.8]) ([0.5, 0.8] , [0.2, 0.6])
U 4 ([0.2, 0.3] , [0.3, 0.8]) ([0.3, 0.5] , [0.2, 0.8]) ([0.3, 0.7] , [0.2, 0.6]) ([0.1, 0.7] , [0.3, 0.6])

Table 3: Decision matrix for I3 in the form of IVPFHSN

ď1 ď2 ď3 ď4

U 1 ([0.3, 0.4] , [0.2, 0.7]) ([0.3, 0.4] , [0.4, 0.6]) ([0.5, 0.6] , [0.4, 0.5]) ([0.3, 0.4] , [0.3, 0.6])
U 2 ([0.4, 0.6] , [0.3, 0.7]) ([0.3, 0.5] , [0.2, 0.3]) ([0.3, 0.5] , [0.5, 0.8]) ([0.2, 0.6] , [0.2, 0.4])
U 3 ([0.2, 0.4] , [0.3, 0.4]) ([0.3, 0.5] , [0.3, 0.7]) ([0.3, 0.7] , [0.3, 0.8]) ([0.1, 0.3] , [0.5, 0.6])
U 4 ([0.3, 0.7] , [0.3, 0.7]) ([0.3, 0.5] , [0.2, 0.4]) ([0.2, 0.5] , [0.3, 0.6]) ([0.3, 0.4] , [0.3, 0.7])
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Table 4: Decision matrix for I4 in the form of IVPFHSN

ď1 ď2 ď3 ď4

U 1 ([0.3, 0.5] , [0.2, 0.6]) ([0.2, 0.6] , [0.4, 0.7]) ([0.2, 0.5] , [0.3, 0.6]) ([0.5, 0.7] , [0.6, 0.8])
U 2 ([0.2, 0.7] , [0.3, 0.8]) ([0.1, 0.5] , [0.4, 0.7]) ([0.5, 0.7] , [0.4, 0.5]) ([0.2, 0.5] , [0.3, 0.4])
U 3 ([0.2, 0.5] , [0.1, 0.6]) ([0.2, 0.5] , [0.1, 0.5]) ([0.2, 0.4] , [0.2, 0.7]) ([0.3, 0.5] , [0.1, 0.5])
U 4 ([0.2, 0.4] , [0.5, 0.8]) ([0.2, 0.5] , [0.5, 0.8]) ([0.2, 0.7] , [0.3, 0.6]) ([0.2, 0.5] , [0.4, 0.5])

Step-2: There is no need to normalize because all parameters are the same type.

Step-3: Compute the aggregated values employing the developed IVPFHSWA operator for each
alternative.

Θ1 =
⎛
⎝
√√√√1 −

4∏
j=1

(
4∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
4∏

j=1

(
4∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠

Θ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.98, 0.97] [0.99, 0.87]
[0.96, 0.89] [0.95, 0.87]

}0.3 {
[0.93, 0.90] [0.99, 0.91]
[0.93, 0.84] [0.95, 0.92]

}0.1

{
[0.98, 0.96] [0.99, 0.98]
[0.93, 0.76] [0.97, 0.95]

}0.2 {
[0.99, 0.98] [0.99, 0.94]
[0.89, 0.76] [0.97, 0.87]

}0.4

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{

[0.93, 0.85] [0.90, 0.72]
[0.69, 0.39] [0.89, 0.69]

}0.3 {
[0.95, 0.93] [0.87, 0.83]
[0.87, 0.52] [0.89, 0.69]

}0.1

{
[0.93, 0.85] [0.96, 0.83]
[0.87, 0.62] [0.81, 0.69]

}0.2 {
[0.95, 0.85] [0.93, 0.83]
[0.69, 0.52] [0.81, 0.69]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ1 =
(√

1 − ([0.88, 0.65]0.3 [0.81, 0.63]0.1 [0.87, 0.68]0.2 [0.85, 0.61]0.4),(
[0.51, 0.16]0.3 [0.64, 0.28]0.1 [0.63, 0.30]0.2 [0.49, 0.25]0.4)

)

Θ1 =
(√

1 − ([0.8788, 0.9624] [0.9548, 0.9791] [0.9258, 0.9725] [0.8206, 0.9371]),
([0.5771, 0.8171] [0.8805, 0.9563] [0.7860, 0.9117] [0.5743, 0.7517])

)

Θ1 = (√1 − [0.6374, 0.8587], [0.2294, 0.5355]
)

Θ1 = (√[0.3626, 0.1413], [0.2294, 0.5355]
)

�1 = [0.3759, 0.6022], [0.2294, 0.5355].

Θ2 =
⎛
⎝
√√√√1 −

4∏
j=1

(
4∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
4∏

j=1

(
4∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠
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Θ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.64, 0.91]0.1 [0.71, 0.91]0.2

[0.64, 0.96]0.4 [0.91, 0.96]0.3

}0.3 {
[0.51, 0.96]0.1 [0.84, 0.99]0.2

[0.96, 0.99]0.4 [0.75, 0.91]0.3

}0.1

{
[0.51, 0.96]0.1 [0.75, 0.99]0.2

[0.51, 0.84]0.4 [0.51, 0.91]0.3

}0.2 {
[0.51, 0.64]0.1 [0.75, 0.84]0.2

[0.36, 0.75]0.4 [0.51, 0.99]0.3

}0.4

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{

[0.5, 0.6]0.1 [0.5, 0.8]0.2

[0.1, 0.4]0.4 [0.3, 0.8]0.3

}0.3 {
[0.5, 0.7]0.1 [0.4, 0.5]0.2

[0.2, 0.9]0.4 [0.2, 0.8]0.3

}0.1

{
[0.4, 0.5]0.1 [0.3, 0.7]0.2

[0.3, 0.8]0.4 [0.2, 0.6]0.3

}0.2 {
[0.5, 0.8]0.1 [0.3, 0.6]0.2

[0.2, 0.6]0.4 [0.3, 0.6]0.3

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.99, 0.96] [0.98, 0.93]
[0.98, 0.84] [0.95, 0.87]

}0.3 {
[0.93, 0.90] [0.99, 0.91]
[0.93, 0.84] [0.95, 0.92]

}0.1

{
[0.98, 0.96] [0.99, 0.98]
[0.93, 0.76] [0.97, 0.87]

}0.2 {
[0.99, 0.98] [0.99, 0.94]
[0.89, 0.76] [0.97, 0.87]

}0.4

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{

[0.93, 0.85] [0.90, 0.72]
[0.69, 0.39] [0.89, 0.69]

}0.3 {
[0.95, 0.93] [0.87, 0.83]
[0.87, 0.52] [0.89, 0.69]

}0.1

{
[0.93, 0.85] [0.96, 0.83]
[0.87, 0.62] [0.81, 0.69]

}0.2 {
[0.95, 0.85] [0.93, 0.83]
[0.69, 0.52] [0.81, 0.69]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ2 =
(√

1 − ([0.90, 0.65]0.3 [0.81, 0.63]0.1 [0.87, 0.68]0.2 [0.85, 0.61]0.4),(
[0.51, 0.16]0.3 [0.64, 0.28]0.1 [0.63, 0.30]0.2 [0.49, 0.25]0.4)

)

Θ2 =
(√

1 − ([0.8788, 0.9689] [0.9548, 0.9791] [0.9258, 0.9725] [0.8206, 0.9371]),
([0.5771, 0.8171] [0.8805, 0.9563] [0.7860, 0.9117] [0.5743, 0.7517])

)

Θ2 = (√1 − [0.6374, 0.8645], (0.2294, 0.5355)
)

Θ2 = (√[0.3626, 0.1355], [0.2294, 0.5355]
)

�2 = [0.3681, 0.6022], [0.2294, 0.5355].

Θ3 =
⎛
⎝
√√√√1 −

4∏
j=1

(
4∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
4∏

j=1

(
4∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠

Θ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.84, 0.91]0.1 [0.64, 0.84]0.2

[0.84, 0.96]0.4 [0.51, 0.91]0.3

}0.3 {
[0.84, 0.91]0.1 [0.75, 0.91]0.2

[0.75, 0.91]0.4 [0.75, 0.91]0.3

}0.1

{
[0.64, 0.75]0.1 [0.75, 0.91]0.2

[0.51, 0.91]0.4 [0.75, 0.96]0.3

}0.2 {
[0.84, 0.91]0.1 [0.64, 0.96]0.2

[0.91, 0.99]0.4 [0.84, 0.91]0.3

}0.4

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{

[0.2, 0.7]0.1 [0.3, 0.7]0.2

[0.3, 0.4]0.4 [0.3, 0.7]0.3

}0.3 {
[0.4, 0.6]0.1 [0.2, 0.3]0.2

[0.3, 0.7]0.4 [0.2, 0.4]0.3

}0.1

{
[0.4, 0.5]0.1 [0.5, 0.8]0.2

[0.3, 0.8]0.4 [0.3, 0.6]0.3

}0.2 {
[0.3, 0.6]0.1 [0.2, 0.4]0.2

[0.5, 0.6]0.4 [0.3, 0.7]0.3

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Θ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.99, 0.98] [0.96, 0.91]
[0.98, 0.93] [0.97, 0.82]

}0.3 {
[0.99, 0.98] [0.98, 0.94]
[0.96, 0.89] [0.97, 0.92]

}0.1

{
[0.97, 0.96] [0.98, 0.94]
[0.96, 0.76] [0.99, 0.92]

}0.2 {
[0.99, 0.98] [0.99, 0.91]
[0.99, 0.96] [0.97, 0.95]

}0.4

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{

[0.96, 0.85] [0.93, 0.79]
[0.69, 0.62] [0.89, 0.69]

}0.3 {
[0.95, 0.91] 0.79, 0.72]
[0.86, 0.62] [0.76, 0.62]

}0.1

{
[0.93, 0.91] [0.96, 0.87]
[0.91, 0.62] [0.86, 0.69]

}0.2 {
[0.95, 0.88] [0.83, 0.72]
[0.81, 0.76] [0.89, 0.69]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ3 =
(√

1 − ([0.90, 0.68]0.3 [0.90, 0.75]0.1 [0.90, 0.63]0.2 [0.94, 0.81]0.4),(
[0.55, 0.29]0.3 [0.49, 0.25]0.1 [0.69, 0.34]0.2 [0.57, 0.33]0.4)

)

Θ3 =
(√

1 − ([0.8907, 0.9689] [0.9716, 0.9895] [0.9117, 0.9791] [0.9192, 0.9755]),
([0.6898, 0.8358] [0.8705, 0.9311] [0.8059, 0.9285] [0.6418, 0.7986])

)

Θ3 = (√1 − [0.7252, 0.9157], (0.3183, 0.4637)
)

Θ3 = (√[0.7252, 0.9157], (0.3183, 0.4637)
)

�3 = [0.2903, 0.5242], [0.3183, 0.4637].

Θ4 =
⎛
⎝
√√√√1 −

4∏
j=1

(
4∏

i=1

(
1 −
[
κ l

ďij
, κu

ďij

]2
)ωi
)νj

,
4∏

j=1

(
4∏

i=1

([
δl

ďij
, δu

ďij

])ωi

)νj
⎞
⎠

Θ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.75, 0.91]0.1 [0.51, 0.84]0.2

[0.75, 0.96]0.4 [0.51, 0.75]0.3

}0.3 {
[0.51, 0.96]0.1 [0.51, 0.84]0.2

[0.51, 0.75]0.4 [0.75, 0.96]0.3

}0.1

{
[0.75, 0.96]0.1 [0.75, 0.99]0.2

[0.84, 0.96]0.4 [0.75, 0.91]0.3

}0.2 {
[0.84, 0.96]0.1 [0.36, 0.75]0.2

[0.51, 0.96]0.4 [0.75, 0.96]0.3

}0.4

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{

[0.2, 0.6]0.1 [0.2, 0.6]0.2

[0.3, 0.6]0.4 [0.6, 0.8]0.3

}0.3 {
[0.3, 0.8]0.1 [0.1, 0.5]0.2

[0.4, 0.5]0.4 [0.3, 0.4]0.3

}0.1

{
[0.1, 0.6]0.1 [0.2, 0.5]0.2

[0.2, 0.7]0.4 [0.1, 0.5]0.3

}0.2 {
[0.5, 0.8]0.1 [0.2, 0.5]0.2

[0.3, 0.6]0.4 [0.4, 0.5]0.3

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.99, 0.97] [0.96, 0.87]
[0.98, 0.89] [0.92, 0.82]

}0.3 {
[0.99, 0.93] [0.96, 0.87]
[0.89, 0.76] [0.99, 0.92]

}0.1

{
[0.99, 0.97] [0.99, 0.94]
[0.98, 0.93] [0.97, 0.92]

}0.2 {
[0.99, 0.98] [0.94, 0.81]
[0.98, 0.76] [0.99, 0.92]

}0.4

⎞
⎟⎟⎠,

⎛
⎜⎜⎝
{

[0.95, 0.85] [0.90, 0.72]
[0.81, 0.62] [0.93, 0.86]

}0.3 {
[0.98, 0.89] [0.87, 0.63]
[0.76, 0.69] [0.76, 0.69]

}0.1

{
[0.95, 0.79] [0.87, 0.72]
[0.87, 0.52] [0.81, 0.50]

}0.2 {
[0.98, 0.93] [0.87, 0.72]
[0.81, 0.62] [0.81, 0.76]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Θ4 =
(√

1 − ([0.86, 0.61]0.3 [0.84, 0.56]0.1 [0.93, 0.78]0.2 [0.90, 0.55]0.4),(
[0.64, 0.33]0.3 [0.49, 0.27]0.1 [0.58, 0.15]0.2 [0.56, 0.31]0.4)

)

Θ4 =
(√

1 − ([0.8622, 0.9558] [0.9437, 0.9827] [0.9515, 0.9856] [0.7873, 0.9587]),
([0.7170, 0.8747] [0.8773, 0.9311] [0.6842, 0.8968] [0.6259, 0.7930])

)

Θ4 = (√1 − [0.6095, 0.8875], [0.2694, 0.5792]
)

Θ4 = (√[0.3905, 0.1125], [0.2694, 0.5792]
)

�4 = [0.3354, 0.6249], [0.2694, 0.5792].

Step-4: Using score function S =
(

κl
ďij

)2
+
(

κu
ďij

)2
−
(

δl
ďij

)2
−
(

δu
ďij

)2

2
for the IVPFSSS to calculate the score

values for all alternatives. S (Θ1) = 0.0599, S (Θ2) = 0.0578, S (Θ3) = 0.0266, and S (Θ4) = −0.0382.

Step-5: From the above calculation, we get S (Θ1) > S (Θ2) > S (Θ3) > S (Θ4), which shows that
I

1 is the best alternative. So, I1
> I

2
> I

3
> I

4.

4.2.2 By IVPFHSWG Operator

Step-1 and Step-2 are similar to Section 4.2.1.

Step-3: Compute the aggregated values employing the developed IVPFHSWG operator for each
alternative.

Θ1 =
⎛
⎝ 4∏

j=1

(
4∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
4∏

j=1

(
4∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠

Θ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{

[0.4, 0.5]0.1 [0.2, 0.7]0.2

[0.3, 0.5]0.4 [0.4, 0.6]0.3

}0.3 {
[0.7, 0.8]0.1 [0.1, 0.6]0.2

[0.4, 0.6]0.4 [0.4, 0.5]0.3

}0.1

{
[0.4, 0.6]0.1 [0.2, 0.3]0.2

[0.4, 0.7]0.4 [0.3, 0.6]0.3

}0.2 {
[0.2, 0.4]0.1 [0.2, 0.5]0.2

[0.5, 0.7]0.4 [0.3, 0.6]0.3

}0.4

⎞
⎟⎟⎠,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.75, 0.84]0.1 [0.64, 0.96]0.2

[0.84, 0.99]0.4 [0.51, 0.91]0.3

}0.3 {
[0.64, 0.75]0.1 [0.75, 0.84]0.2

[0.51, 0.96]0.4 [0.51, 0.91]0.3

}0.1

{
[0.75, 0.96]0.1 [0.36, 0.84]0.2

[0.51, 0.91]0.4 [0.75, 0.91]0.3

}0.2 {
[0.64, 0.96]0.1 [0.51, 0.84]0.2

[0.84, 0.91]0.4 [0.75, 0.91]0.3

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{

[0.93, 0.91] [0.93, 0.72]
[0.76, 0.62] [0.86, 0.76]

}0.3 {
[0.98, 0.96] [0.90, 0.63]
[0.81, 0.69] [0.81, 0.76]

}0.1

{
[0.95, 0.91] [0.79, 0.72]
[0.87, 0.69] [0.86, 0.69]

}0.2 {
[0.91, 0.85] [0.87, 0.72]
[0.87, 0.76] [0.86, 0.69]

}0.4

⎞
⎟⎟⎠,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.98, 0.97] [0.99, 0.91]
[0.98, 0.76] [0.97, 0.82]

}0.3 {
[0.97, 0.96] [0.97, 0.94]
[0.81, 0.69] [0.81, 0.76]

}0.1

{
[0.99, 0.97] [0.96, 0.81]
[0.96, 0.76] [0.97, 0.92]

}0.2 {
[0.99, 0.96] [0.96, 0.87]
[0.96, 0.93] [0.97, 0.89]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Θ1 =

⎛
⎜⎜⎜⎝
(

[0.56, 0.31]0.3 [0.58, 0.32]0.1

[0.56, 0.31]0.2 [0.59, 0.32]0.4

)
,√

1 −
(

[0.92, 0.55]0.3 [0.62, 0.47]0.1

[0.88, 0.55]0.2 [0.88, 0.69]0.4

)
⎞
⎟⎟⎟⎠

Θ1 =
(

([0.7037, 0.8403] [0.8923, 0.9469] [0.7911, 0.9747] [0.6339, 0.8097]) ,√
1 − ([0.8358, 0.9753] [0.9273, 0.9533] [0.8873, 0.9747] [0.8620, 0.9501])

)

Θ1 = [0.3149, 0.6279] ,
√

1 − [0.5928, 0.8610]

Θ1 = [0.3149, 0.6279] ,
√

[0.4072, 0.139]

�1 = [0.3149, 0.6279], [0.3728, 0.6381].

Θ2 =
⎛
⎝ 4∏

j=1

(
4∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
4∏

j=1

(
4∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠

Θ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{

[0.2, 0.5]0.1 [0.7, 0.8]0.2

[0.2, 0.5]0.4 [0.2, 0.6]0.3

}0.3 {
[0.2, 0.6]0.1 [0.1, 0.6]0.2

[0.4, 0.8]0.4 [0.4, 0.7]0.3

}0.1

{
[0.1, 0.4]0.1 [0.4, 0.6]0.2

[0.3, 0.7]0.4 [0.2, 0.4]0.3

}0.2 {
[0.3, 0.7]0.1 [0.4, 0.5]0.2

[0.3, 0.5]0.4 [0.3, 0.5]0.3

}0.4

⎞
⎟⎟⎠,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.75, 0.84]0.1 [0.64, 0.75]0.2

[0.64, 0.84]0.4 [0.84, 0.96]0.3

}0.3 {
[0.51, 0.96]0.1 [0.75, 0.84]0.2

[0.91, 0.96]0.4 [0.75, 0.96]0.3

}0.1

{
[0.75, 0.91]0.1 [0.51, 0.96]0.2

[0.51, 0.84]0.4 [0.75, 0.91]0.3

}0.2 {
[0.64, 0.84]0.1 [0.51, 0.91]0.2

[0.64, 0.91]0.4 [0.64, 0.91]0.3

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{

[0.93, 0.85] [0.96, 0.93]
[0.76, 0.52] [0.86, 0.62]

}0.3 {
[0.95, 0.85] [0.90, 0.63]
[0.91, 0.69] [0.89, 0.76]

}0.1

{
[0.91, 0.79] [0.90, 0.83]
[0.87, 0.62] [0.76, 0.62]

}0.2 {
[0.96, 0.89] [0.87, 0.83]
[0.76, 0.62] [0.81, 0.69]

}0.4

⎞
⎟⎟⎠,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.98, 0.97] [0.94, 0.91]
[0.93, 0.84] [0.79, 0.95]

}0.3 {
[0.99, 0.93] [0.96, 0.94]
[0.98, 0.96] [0.99, 0.92]

}0.1

{
[0.99, 0.97] [0.99, 0.87]
[0.93, 0.51] [0.97, 0.92]

}0.2 {
[0.98, 0.96] [0.98, 0.87]
[0.96, 0.84] [0.97, 0.87]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ2 =

⎛
⎜⎜⎜⎝
(

[0.58, 0.25]0.3 [0.69, 0.28]0.1

[0.54, 0.25]0.2 [0.51, 0.32]0.4

)
,√

1 −
(

[0.68, 0.70]0.3 [0.92, 0.77]0.1

[0.88, 0.39]0.2 [0.89, 0.61]0.4

)
⎞
⎟⎟⎟⎠

Θ2 =
(

([0.6597, 0.8492] [0.8804, 0.9635] [0.7578, 0.8840] [0.6339, 0.7639]) ,√
1 − ([0.8985, 0.8907] [0.9742, 0.9917] [0.8283, 0.9747] [0.8206, 0.9544])

)

Θ2 = [0.2409, 0.5525] ,
√

1 − [0.5949, 0.8217]
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Θ2 = [0.2409, 0.5525] ,
√

[0.4051, 0.1783]

�2 = [0.2409, 0.5525], [0.4222, 0.6365].

Θ3 =
⎛
⎝ 4∏

j=1

(
4∏

i=1

([
κ l

ďij
, κu

ďij

])ωi

)νj

,

√√√√1 −
4∏

j=1

(
4∏

i=1

(
1 −
[
δl

ďij
, δu

ďij

]2
)ωi
)νj
⎞
⎠

Θ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{

[0.3, 0.4]0.1 [0.4, 0.6]0.2

[0.2, 0.4]0.4 [0.3, 0.7]0.3

}0.3 {
[0.3, 0.4]0.1 [0.3, 0.5]0.2

[0.3, 0.5]0.4 [0.3, 0.5]0.3

}0.1

{
[0.5, 0.6]0.1 [0.3, 0.5]0.2

[0.3, 0.7]0.4 [0.2, 0.5]0.3

}0.2 {
[0.3, 0.4]0.1 [0.2, 0.6]0.2

[0.1, 0.3]0.4 [0.3, 0.4]0.3

}0.4

⎞
⎟⎟⎠,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.51, 0.96]0.1 [0.51, 0.91]0.2

[0.84, 0.91]0.4 [0.51, 0.91]0.3

}0.3 {
[0.64, 0.91]0.1 [0.91, 0.96]0.2

[0.51, 0.91]0.4 [0.84, 0.96]0.3

}0.1

{
[0.75, 0.84]0.1 [0.36, 0.75]0.2

[0.36, 0.91]0.4 [0.64, 0.91]0.3

}0.2 {
[0.64, 0.91]0.1 [0.84, 0.96]0.2

[0.64, 0.75]0.4 [0.51, 0.91]0.3

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{

[0.91, 0.89] [0.90, 0.83]
[0.69, 0.52] [0.89, 0.69]

}0.3 {
[0.91, 0.89] [0.87, 0.79]
[0.76, 0.62] [0.81, 0.69]

}0.1

{
[0.95, 0.93] [0.87, 0.79]
[0.87, 0.62] [0.81, 0.62]

}0.2 {
[0.91, 0.89] [0.90, 0.72]
[0.62, 0.39] [0.76, 0.69]

}0.4

⎞
⎟⎟⎠,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.99, 0.93] [0.98, 0.87]
[0.96, 0.93] [0.97, 0.82]

}0.3 {
[0.99, 0.96] [0.99, 0.98]
[0.96, 0.76] [0.99, 0.95]

}0.1

{
[0.98, 0.97] [0.94, 0.81]
[0.96, 0.66] [0.97, 0.87]

}0.2 {
[0.99, 0.96] [0.99, 0.96]
[0.89, 0.84] [0.97, 0.82]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ3 =

⎛
⎜⎜⎜⎝
(

[0.50, 0.26]0.3 [0.49, 0.30]0.1

[0.58, 0.28]0.2 [0.38, 0.17]0.4

)
,√

1 −
(

[0.90, 0.62]0.3 [0.93, 0.68]0.1

[0.86, 0.45]0.2 [0.85, 0.63]0.4

)
⎞
⎟⎟⎟⎠

Θ3 =
(

([0.6676, 0.8122] [0.8866, 0.9311] [0.7752, 0.8968] [0.4922, 0.6791]) ,√
1 − ([0.8663, 0.9689] [0.9622, 0.9928] [0.8524, 0.9703] [0.8312, 0.9371])

)

�3 = [0.2258, 0.4605], [0.3541, 0.6398].

Θ4 =
⎛
⎝ 4∏

j=1

(
4∏

i=1

([
κ l

ij, κ
u
ij

])ωi

)νj

,

√√√√1 −
4∏

j=1

(
4∏

i=1

(
1 − [δl

ij, δu
ij

]2)ωi

)νj
⎞
⎠
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Θ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{

[0.3, 0.5]0.1 [0.2, 0.7]0.2

[0.2, 0.5]0.4 [0.2, 0.4]0.3

}0.3 {
[0.2, 0.6]0.1 [0.1, 0.5]0.2

[0.2, 0.5]0.4 [0.2, 0.5]0.3

}0.1

{
[0.2, 0.5]0.1 [0.5, 0.7]0.2

[0.2, 0.4]0.4 [0.2, 0.7]0.3

}0.2 {
[0.5, 0.7]0.1 [0.2, 0.5]0.2

[0.3, 0.5]0.4 [0.2, 0.5]0.3

}0.4

⎞
⎟⎟⎠,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.64, 0.96]0.1 [0.36, 0.91]0.2

[0.64, 0.99]0.4 [0.36, 0.75]0.3

}0.3 {
[0.51, 0.84]0.1 [0.51, 0.84]0.2

[0.75, 0.99]0.4 [0.36, 0.75]0.3

}0.1

{
[0.84, 0.91]0.1 [0.75, 0.84]0.2

[0.51, 0.96]0.4 [0.64, 0.91]0.3

}0.2 {
[0.36, 0.64]0.1 [0.84, 0.91]0.2

[0.75, 0.99]0.4 [0.75, 0.84]0.3

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎝
{

[0.93, 0.88] [0.93, 0.72]
[0.76, 0.52] [0.76, 0.62]

}0.3 {
[0.95, 0.85] [0.87, 0.63]
[0.76, 0.52] [0.81, 0.62]

}0.1

{
[0.93, 0.85] [0.93, 0.87]
[0.69, 0.52] [0.89, 0.62]

}0.2 {
[0.96, 0.93] [0.87, 0.72]
[0.76, 0.62] [0.81, 0.62]

}0.4

⎞
⎟⎟⎠,

√√√√√√√1 −

⎛
⎜⎜⎝
{

[0.99, 0.93] [0.98, 0.87]
[0.96, 0.93] [0.97, 0.82]

}0.3 {
[0.99, 0.96] [0.99, 0.98]
[0.96, 0.76] [0.99, 0.95]

}0.1

{
[0.98, 0.97] [0.94, 0.81]
[0.96, 0.66] [0.97, 0.87]

}0.2 {
[0.99, 0.96] [0.99, 0.96]
[0.89, 0.84] [0.97, 0.82]

}0.4

⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Θ4 =

⎛
⎜⎜⎜⎝
(

[0.49, 0.20]0.3 [0.51, 0.17]0.1

[0.53, 0.24]0.2 [0.51, 0.26]0.4

)
,√

1 −
(

[0.74, 0.62]0.3 [0.93, 0.68]0.1

[0.86, 0.45]0.2 [0.85, 0.63]0.4

)
⎞
⎟⎟⎟⎠

Θ4 =
(

([0.6170, 0.8073] [0.8376, 0.9348] [0.7517, 0.8807] [0.5834, 0.7639]) ,√
1 − ([0.8663, 0.9136] [0.9625, 0.9928] [0.8523, 0.9702] [0.8312, 0.9371])

)

Θ4 = [0.2266, 0.5077] ,
√

1 − [0.5907, 0.8546]

Θ4 = [0.2266, 0.5077] ,
√

[0.4093, 0.1454]

Θ4 = [0.2266, 0.5077], [0.3813, 0.6398].

Step-4: Use the score function S = (κl)
2+(κu)

2−(δl)
2−(δu)

2

2
interval-valued for the Pythagorean fuzzy

soft set to calculate the score values for all alternatives such as S (Θ1) = 0.0752, S (Θ2) = 0.0654,
S (Θ3) = 0.0241, and S (Θ4) = 0.0114.

Step-5: From the above calculation, we get the ranking of alternatives S (Θ1) > S (Θ2) > S (Θ3) >

S (Θ4). Which shows that I1 is the best alternative. So, I1
> I

2
> I

3
> I

4 .

Subsequently, the material assessment wonders at the theoretical level through the depiction phase
of the strategy; there is more possibility to the extent of the correctness of the specific materials. Face-
centered cube materials are typically used at minor temperatures −163°C and I

1 = Ti–6Al–4V ratings
first. This is steadfast in employing initial investigations and real-world maneuvers. Austenitic steels
are still classically used in melted nitrogen or hydrogen storing vessels [40].
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5 Comparative Studies

A comparison among the projected model and prevalent approaches is planned to validate the
efficacy of the offered technique in the subsequent section.

5.1 Supremacy of the Planned Technique
The intended method is proficient and realistic; in the IVPFHSS setting, we construct an inventive

MCGDM model on the IVPFHSWA and PFHSEWG operators. Our planned model is more talented
than prevalent techniques and can produce the most subtle implications in MCGDM difficulties. The
cooperative model is multipurpose and conversant, adjusting to evolving instability, commitment, and
output. Different models have particular ranking processes, so there is a straight modification among
the rankings of the anticipated methods conferring to their expectations. This systematic study and
assessment determined that the outcomes attained from prevailing procedures are irregularly equated
to hybrid structures. Also, due to some favorable situations, many mixed IVFS, IVIFS, IVPFS, IVIFSS,
and IVPFSS grow into special in IVPFHSS. It is easy to syndicate insufficient and ambiguous data in
DM procedures. Imprecise and anxious facts are mixed in the DM procedure. Hence, our scheduled
method will be more proficient, crucial, superior, and better than numerous mixed FS structures.
Table 5 below presents the projected technique and the characteristic analysis of some existing models.

Table 5: Feature analysis of different models with a proposed model

Fuzzy information Aggregated
attributes
information

Aggregated
sub-attributes
information of any
attribute

Aggregated
information in
intervals form

IVFS [2] � × × �
IVIFWA [41] � × × �
IVIFWG [42] � × × �
IVPFWA [14] � × × �
IVPFWG [15] � × × �
IFSWA [20] � � × ×
IFSWG [20] � � × ×
IVIFSWA [22] � � × �
IVIFSWG [22] � � × �
PFSWA [24] � � × ×
PFSWG [24] � � × ×
PFSIWA [25] � � × ×
PFSIWG [25] � � × ×
IVPFSWA [29] � � × �
IVPFSWG [29] � � × �
IFHSWA [36] � � � ×
IFHSWG [36] � � � ×
PFHSWA [43] � � � ×
PFHSWG [43] � � � ×
PFHSIWA [44] � � � ×

(Continued)
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Table 5 (continued)

Fuzzy information Aggregated
attributes
information

Aggregated
sub-attributes
information of any
attribute

Aggregated
information in
intervals form

PFHSIWG [44] � � � ×
Proposed
IVPFHSWA

� � � �

Proposed
IVPFHSWG

� � � �

5.2 Comparative Analysis
To prove the usefulness of the planned technique, we equate the attained consequences with some

prevailing approaches under the setting of IVPFS, IVIFSS, and IVPFSS. A summary of outcomes is
specified in Table 6. Wang et al. [41] developed IVIFWA, and Xu et al. [42] presented that IVIFWG
operators cannot compute the parametrized values of the alternatives. Furthermore, if any expert
considers the MD and NMD whose sum exceeds 1, the AOs mentioned above fail to accommodate the
scenario. Zulqarnain et al. [22] established AOs for IVIFSS that cannot accommodate the decision-
maker’s selection when the sum of upper MD and NMD of the parameters surpasses one. Peng et al.’s
[14] interval-valued Pythagorean fuzzy weighted average operator and Rahman et al. [15] interval-
valued Pythagorean fuzzy weighted geometric operator cannot handle the parametrized values of the
alternatives. Zulqarnain et al. [29] established the interval-valued Pythagorean fuzzy soft weighted
average and interval-valued Pythagorean fuzzy soft weighted geometric operators to deal with the
parameterized values of alternatives. But, these AOs fail to handle the scenario if any parameter
contains a different sub-parameter. Furthermore, if any parameter has any other sub-parameter, the
IVPFHSS reduces to the interval-valued Pythagorean fuzzy soft set. Suppose the sum of upper values
of MD and NMD is less or equal to 1. Then, IVPFHSS is reduced to IVIFHSS. Thus, IVPFHSS is
the most generalized form of interval-valued Pythagorean fuzzy set and IVPFSS. Hence, based on the
details mentioned above, the anticipated operators in this paper are more influential, consistent, and
prosperous.

Table 6: Comparison of proposed operators with some existing operators

Authors AO I
1

I
2

I
3

I
4 Alternatives

ranking
Optimal
choice

Wang et al. [41] IVIFWA 0.4573 0.3509 0.3681 0.2146 I
1
> I

3
>

I
2
> I

4
I

1

Xu et al. [42] IVIFWG 0.3952 0.3104 0.2914 0.2753 I
1
> I

2
>

I
3
> I

4
I

1

Peng et al. [14] IVPFWA 0.0251 0.0154 0.0198 0.0247 I
1
> I

4
>

I
3
> I

2
I

1

(Continued)
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Table 6 (continued)

Authors AO I
1

I
2

I
3

I
4 Alternatives

ranking
Optimal
choice

Rahman et al. [15] IVPFWG 0.0856 0.0475 0.0786 0.0302 I
1
> I

3
>

I
2
> I

4
I

1

Zulqarnain et al. [22] IVIFSWA 0.0723 0.0530 0.0584 0.0235 I
1
> I

3
>

I
2
> I

4
I

1

Zulqarnain et al. [22] IVIFSWG 0.7234 0.2365 0.5840 0.6525 I
1
> I

4
>

I
3
> I

2
I

1

Zulqarnain et al. [29] IVPFSWA 0.0834 0.0377 0.0121 0.0141 I
1
> I

2
>

I
4
> I

3
I

1

Zulqarnain et al. [29] IVPFSWG 0.0754 0.0524 0.0251 0.0114 I
1
> I

2
>

I
3
> I

4
I

1

Proposed IVPFHSWA 0.0599 0.0578 0.0266 −0.0382 I
1
> I

2
>

I
3
> I

4
I

1

Proposed IVPFHSWG 0.0752 0.0654 0.0242 0.0114 I
1
> I

2
>

I
3
> I

4
I

1

The graphical demonstration of Table 6 is given in the following Fig. 1.
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0.3

0.4

0.5
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0.7

0.8

Alternative 1 Alternative 2 Alternative 3 Alternative 4

Figure 1: Comparative analysis of the proposed approach with existing models

6 Conclusion

In manufacturing, the refined solidity of manipulation is neutral; authentic materials and fab-
rication encompass wide-ranging materials. Mathematical demonstration in industrial inventiveness
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formations exploits all assets while merging design intentions under financial, superior, and safety lim-
itations. Inquiries must be restricted for best judgment, consulting to decision requirements. In genuine
DM, the valuation of alternative facts conveyed by the professional is consistently inaccurate, irregular,
and impulsive, so IVPFHSNs can be used to comport this uncertain data. The principal objective of
this work is to prolong the Pythagorean fuzzy hypersoft sets to interval-valued Pythagorean fuzzy
hypersoft sets. Firstly, we introduce the operational laws for the interval-valued Pythagorean fuzzy
hypersoft setting. Considering the developed operational laws, we presented the IVPFHSWA and
IVPFHSWG operators for IVPFHSS with their desired properties. Also, a DM method has been
planned to address MCGDM complications based on the validated operators. To state the stoutness
of the developed methodology, we deliver a comprehensive mathematical illustration for MS in
manufacturing engineering. A comprehensive analysis of some existing procedures is described to
ensure the practicality of the developed approach. Lastly, based on the consequences achieved, it is
determined that the method proposed in this study is the most practical and operative way to explain
the problem of MCGDM.
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