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ABSTRACT

The prognostics health management (PHM) from the systematic view is critical to the healthy continuous operation
of process manufacturing systems (PMS), with different kinds of dynamic interference events. This paper proposes
a three leveled digital twin model for the systematic PHM of PMSs. The unit-leveled digital twin model of each basic
device unit of PMSs is constructed based on edge computing, which can provide real-time monitoring and analysis
of the device status. The station-leveled digital twin models in the PMSs are designed to optimize and control the
process parameters, which are deployed for the manufacturing execution on the fog server. The shop-leveled digital
twin maintenance model is designed for production planning, which gives production instructions from the private
industrial cloud server. To cope with the dynamic disturbances of a PMS, a big data-driven framework is proposed to
control the three-level digital twin models, which contains indicator prediction, influence evaluation, and decision-
making. Finally, a case study with a real chemical fiber system is introduced to illustrate the effectiveness of the
digital twin model with edge-fog-cloud computing for the systematic PHM of PMSs. The result demonstrates that
the three-leveled digital twin model for the systematic PHM in PMSs works well in the system’s respects.
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1 Introduction

Process manufacturing system (PMS) is a manufacturing system (MS) to conduct the transforma-
tion of materials’ physical status and chemical reaction, which is featured by continuous, dynamic, and
complicated process recipes [1]. In PMSs, the system efficiency and stability are widely influenced by
dynamic disturbances [2], including equipment faults, shortage of materials, rush jobs, environmental
influence, etc. To maintain the continuous running of the PMS, prognostics health management
(PHM) overcomes the disturbances from dynamic events in advance is a critical issue [3,4]. Different
from the PHM of individual equipment, the PHM of PMSs should be considered from the view of
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system science to keep the continuous, dynamic, and complicated production. Therefore, it is an urgent
need to form a new model of comprehensively systematic solution of PHM in PMSs.

In PHM of PMSs, turbulent and uncertain dynamic events in the production process emerging to
be challenging, which can be categorized into three types:

(a) Frequently occurred dynamic disturbance events

Frequently occurring dynamic disturbance events will seriously affect the PHM of PMSs.
Dynamic disturbance events of manufacturing systems (MS) include resource-related dynamic events,
job-related dynamic events, and environment-related dynamic events. Resource-related dynamic events
contain fault of equipment used in production and fault of jigs [5]. For the system-leveled PHM, it
is necessary to apply a variety of failure prediction methods to deal with multi-part faults. This is
a challenge for current empirical knowledge by skilled workers. These faults will directly affect the
early replacement and maintenance of equipment parts. Typical job-related dynamic events include
rush jobs, job cancellations, delays in processing, poor quality of jobs, and delays in material arrival.
Though these events occur less frequently than equipment faults, the uncertainty of their occurrence
will directly affect the generation of strategies. At present, there is no better method to effectively
predict such dynamic events. Environment-related dynamic events contain temperature and humidity
changes, airflow changes, and transportation equipment vibrations. These dynamic events occur every
few days on average. Due to differences in equipment distribution areas in the workshop, the analysis
by some simple environmental parameters is insufficient. Moreover, the prediction results of various
dynamic events will directly affect the analysis and decision-making of PHM. So, it is urgent to
effectively predict dynamic events.

(b) The impact evaluation of dynamic disturbance events

Due to the difference in the scope and degree of influence of different dynamic events on the
system, it is difficult to comprehensively evaluate the impact. The difference in the impact range is
manifested in the different dynamic events at different times and locations. From the perspective of
system-leveled PHM, measures are taken to prepare spare parts or adjust the production plan, which
is relatively different. The difference in the degree of impact is reflected by the same dynamic event on
the system at different stages. For example, the early failure of the bearing may have minimal impact
on a single device. But a serious failure of the bearing will cause the equipment to be damaged. This, in
turn, affects the downstream production process of the equipment. Early failure of a single device can
make maintenance decisions before the end of the remaining useful life. Once it affects downstream
production, it will inevitably generate more demand for production regulation. In addition, because
PHM is oriented to the entire PMS, evaluating the impact is a system-leveled PHM analysis process to
better optimize decision-making. Therefore, it is urgent to effectively evaluate the impact of dynamic
events in PMSs.

(c) The optimal coping strategy of dynamic disturbance events

The optimal coping strategy should be regulated timely to cope with the change of material in real-
time in a PMS. However, the real-time optimization of production maintenance strategy remains to be
a challenge since the big solution space and complicated constraints. The big solution space is mainly
manifested in the greater computation time for all equipment fault predictions and evaluations. The
predictions and evaluations in a PMS require massive amounts of data and customized models, which
makes the PMS-leveled PHM time-consumed. The complicated constraints contain continuity of the
PMS, multiple sub-processes, and time differences between different sub-processes. Continuity means
that process production usually does not stop, which puts forward higher real-time requirements for
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restraining the impact. The PHM of multiple sub-processes needs to be uniformly scheduled according
to the time difference to make them cooperate with each other. In summary, it is urgent to establish a
PHM solution that can efficiently deal with the optimal coping strategy in PMS.

The digital twin is a novel mapping system between virtual space and physical space, which utilizes
data to simulate the behavior in the real world [6]. It contains the function of virtual and actual
interactive feedback, data fusion analysis, and decision-making interaction optimization, which is
expected to become a new model for PHM. The advantages of using digital twin in PHM for PMS are
described as follows:

• The digital twin provides an algorithm container for dynamic event prediction. Multi-source
data collected by various sensors build analysis models for different needs in the digital twin
space, which generate a library of various algorithms. It greatly increases the demand for
forecasting different dynamic disturbance events.

• The digital twin responds to different impact evaluation needs and provides differentiated
virtual spaces in different scenarios. Because digital twins can be built on devices based on
different sizes and different functions. The differentiated virtual space can be analyzed in terms
of breadth or depth to realize the evaluation of the different scope and degree of the impact on
the system.

• The digital twin can provide an edge-fog-cloud fusion simulation environment. The synergistic
effect of different levels of digital twins can cope with the difficulties of calculation time and
complex constraints. It facilitates real-time decision-making of PHM in PMS.

In conclusion, the PHM of PMS based on the digital twin is forward-looking, dynamic, control-
lable, and of great significance. Facing the three difficulties of PHM in PMS, this paper proposes a new
model of PHM in PMS based on digital twin, which is applied in a chemical fiber production system.

The subsequent section provides a detailed literature review and draws some conclusions. The
proposed digital twin model for PHM on PMS is introduced in Section 3. Section 4 presents a big
data-driven digital twin model for the PHM of PMSs process. Section 5 describes an example of
maintenance for a chemical fiber production system, which verifies the effectiveness of the proposed
new PHM model.

2 Literature Review of PHM

At present, the research and application of predictive maintenance for PMS are still in their
infancy. Most predictive maintenance methods come from the equipment fault diagnosis, fault
prediction, and maintenance of the discrete equipment manufacturing industry. Given the difficulties
in the maintenance of process industry equipment and the trend of digital twin-based PHM, a review
is made from three aspects: fault prediction, fault impact, and system maintenance.

(1) traditional PHM methods

(a) failure prediction methods of equipment

The failure prediction methods of equipment can be divided into three categories: The method
based on reliability statistical probability, the method based on physical models, the data-driven
method. (1) The method based on reliability statistical probability uses the statistical characteristics
of historical failure information to predict faults. For example, Zhou et al. [7] proposed a recursive
method of mixed hazard rate based on life attenuation factor and hazard rate increase factor, which
relies on a reliability-centered sequential predictive model. Li et al. [8] proposed a new reliability
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predictive maintenance optimization model, which planned the optimal promotion measures for the
system under consideration of the given required parameters. Shimada et al. [9] proposed a method
of using practical data to extract characteristic indicators from the cumulative failure probability
distribution to determine the priority order of equipment maintenance. (2) The method based on the
physical model uses the internal working mechanism of the equipment to establish a mathematical
model that reflects the physical law of equipment performance degradation. It can obtain prediction
results by setting boundary conditions and system input parameters to solve mathematical models.
For example, Boshnakov et al. [10] proposed a physical model-based diagnosis and prediction method
for the state of metallurgical equipment. Iung et al. [11] proposed an effective degradation model
that comprehensively considers operating conditions, health monitoring, and maintenance behaviors,
which is based on the discrete state and cumulative continuous state of the equipment degradation
level. Lei et al. [12] proposed a weighted minimum quantitative error health index, which realized the
fusion of interactive information from multiple features, and correlated with the degradation process
of the equipment. It uses maximum likelihood estimation to initialize the model parameters, and then
uses the particle filter method to predict the remaining service life of the equipment [13]. (3) The
method based on data-driven is to collect condition monitoring data from operating equipment, with-
out establishing an accurate mathematical model of equipment failure evolution of life degradation.
For example, Liao et al. [14] used a data-driven method to evaluate the health status of equipment
and predict the performance degradation process, which determines the maintenance threshold and
maintenance cycle of equipment. Daily et al. [15] used big data analysis methods to achieve predictive
maintenance of complex equipment. Verhagen et al. [16] used big data analysis to determine the
operating factors that have an impact on the failure rate. Baptsta et al. [17] used the ARMA model
to predict the fault time of components and systems, and take maintenance measures. Convolutional
Neural Network (CNN) has been widely applied in the research of smart fault classification [18,19],
but the learning rate is a challenge to recognize the fault equipment. Wen et al. [20,21] proposed
a novel learning rate scheduler based on reinforcement learning for convolutional neural network
(RL-CNN) and promote it with automatic learning rate scheduler (AutoLR-CNN) method for fault
detection. Several results show that these proposed methods achieved state-of-the-art performance in
fault classification.

However, the reliably statistical probability method requires numerous experiments and a long
time data records, which are not suitable for multiple parts, expensive prices, and poor anti-interference
systems. The method based on the physical model requires that the assumed operating conditions are
strictly consistent with the actual operating conditions. However, the actual working conditions often
change, leading to inconsistencies in the prediction model during the useful life. Most data-driven
models do not take the actual physical characteristics and differences of electromechanical equipment
into account. It is difficult to adapt to the different problems of equipment failures if the PHM of
different systems adopts undifferentiated data processing and analysis. In summary, the above three
failure prediction methods all have their drawbacks.

(b) fault impact evaluation methods

Fault impact evaluation is also regarded as fault risk assessment, which is mainly divided into
three categories: Failure mode and impact analysis, Fault tree analysis (FTA), and Markov analysis.
(1) Failure mode and impact analysis are to use the top-down sequence to establish the relationship
among the object, failure mode, and consequences of the failure. Afterward, the risk assessment is
carried out based on the expert assessment results. In this method, the Risk Priority Number (RPN)
quantifies the degree of risk of different failure modes. For example, Yang et al. [22] established an
if-then rule base and SOD three-parameter evaluation method to evaluate the equipment failure risk.
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Gargama et al. [23] combined data envelopment analysis and failure mode impact to reduce the impact
of subjective factors in the evaluation process. Mandal et al. [24] proposed a method of merging similar
failure modes according to the similarity of the degree of danger, and adopt the same failure mode
impact analysis for the merged group with a high degree of danger. (2) FTA uses graphical modeling
methods to perform logical reasoning analysis to determine the cause of the failure with the frequency
of occurrence. For example, Pande et al. [25] obtained the minimum segmentation set of the fault tree
to perform the fault risk assessment. Garrick [26] used Monte Carlo simulation method to calculate
the unreliability of the system, which was combined with the fault tree to carry out the fault risk
assessment [26]. (3) Markov analysis expresses the maintenance status of the system through a series
of random variables and the relationship between them. For example, Su et al. [27] introduced the
economics of the full life cycle of a multi-state system into reliability calculations to find the lowest
cost in the maintenance cycle. Soro et al. considered the impact of minimal repair, imperfect repair, and
perfect repair on system performance, and propose a corresponding preventive maintenance Markov
model. It evaluates the dynamic performance of a multi-stage degraded repairable system through the
calculation of availability and productivity [28]. Ruiz-castro [29] applied the Markov counting process
to analyze the performance of the system undergoing irregular inspections, which realizes the risk
assessment of the system.

However, there are still shortcomings in the above risk evaluation methods, such as time-
consuming analysis of failure modes and effects, insufficient analysis of the importance of parameters,
etc. Fault tree analysis uses a dual reliability model to judge the state of the analysis object. However,
for a complex system with multiple states, it is necessary to repeatedly build a tree, which prolongs
the calculation time. And as the number of components and the complexity between components
continues to increase, the failure of complex systems often has complex dynamic characteristics related
to time and sequence. When using the Markov model for risk assessment, most assume that the
probability of state change is fixed, and it is necessary to acknowledge the various probabilities of state
change. The accuracy of the system for missing information is not high enough, so it is not suitable
for medium and long-term assessment of system risks.

(c) impact evaluation strategies

The methods for dealing with the impact of interference events on equipment are divided into
active maintenance methods and reactive maintenance methods, according to the non-occurrence of
interference and the occurrence of interference. Active maintenance can tolerate interference events
to a certain extent by extracting predictive knowledge from historical data. It can be divided into
methods of semi-online methods [30,31], near-online methods [32], and forward-looking methods [33].
Reactive maintenance is defined by Kerr in the literature as “real-time and continuous adjustment of
the schedule to keep it consistent with ongoing and unexpected events” [34]. Han et al. [35] proposed
a single-machine and parallel-machine online scheduling algorithm based on mathematical program-
ming, which can propose optimization methods in a short time without pre-collecting information, and
provide maintenance solutions. In recent years, Metaheuristic algorithms have attracted the attention
of researchers. But it is easy to fall into local optimum when searching for the optimal solution.
Fan et al. [36] proposed a grey wolf optimizer (GWO) to lead to locally optimal situations. Besides,
he put forward a logistic opposition-based learning (LOBL) mechanism and self-adaptive updating
methods, which further improve the optimization solution [37].

Although proactive maintenance can reduce the probability of system interruption, it cannot
cope with the impact of sudden changes such as production changes or process route changes. Due
to the frequent dynamic interference events caused by mass customization production, the reactive
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maintenance capabilities are far from enough. Wang, et al. proposed a novel resilient scheduling
paradigm in flexible scheduling [38], which can be understood as flexible operation and maintenance:
Recover the loss of system performance caused by large-scale dynamic events by adjusting the
processing sequence. However, due to the particularity of the process industry, the flexible operation
and maintenance focus on the recovery operation after the disturbance event occurs. It needs to be
able to make the recovery time shorter and the recovery performance better. Therefore, it is necessary
to explore new methods of PHM in PMS from a new perspective.

(2) digital-twin-based PHM methods

In recent years, some scholars have tried the application of digital twin in PHM. Luo et al. [39]
proposed a hybrid approach driven by digital twin, which is used in cutting tool life prediction with
DT model-based and DT data-driven hybrid. However, it is used only in RUL prediction without
considering the systematic PHM. Li et al. [40] used the concept of dynamic Bayesian networks to build
a health monitoring model for the diagnosis and prognosis of each individual aircraft in digital twin.
Though it emphasizes the variability of the parameters of each individual in the system, it does not
highlight the correlation of the various components in the system. Michael Grieves and John Vickers
give some overview examples from the perspective that digital twins should solve the connectivity
barriers of information islands in complex systems, the difficulties of understanding the physical world
and the construction of virtual models, and a large number of states [41]. But examples of PHM in
PMSs are not given. Tao et al. [42] proposed a five-dimension digital twin model making effective use
of the interaction mechanism and fused data of digital twin. But the application object of the example
is conducted on a small scale, which cannot fully represent the PHM in PMS.

Through the above current research on the application of digital twin technology in PHM, it can
be found that PHM based on digital twin has advantages and can deal with the problem of narrow
coverage of traditional PHM. There are still two main problems. First, the application object with
digital twin is relatively small, and it usually does not involve the continuous production workshop at
the system level. Second, the application objects often do not analyze the interaction between various
parts, and the operation and maintenance are relatively isolated. Therefore, it is imperative to establish
an all-around digital twin system of PMSs that can integrate fault prediction, impact assessment, and
equipment maintenance functions.

3 DTPHM-PMS: Digital Twin Model for PHM on PMS

In PMSs, impact ranges of dynamic disturbance events can be divided into system-level impact,
regional-level impact, and unit-level impact. To cope with the dynamic disturbances with impacts in
different scales, this section designs a three-layered hierarchical digital twin model to optimize the
PMS, as shown in Fig. 1. The three layers are unit-level digital twin PHM based on edge computing,
station-level digital twin PHM based on fog computing, shop-level digital twin PHM based on cloud
computing.

3.1 The Unit-Level Digital Twin Maintenance Model Based on Edge Computing
The unit-level digital twin operation and maintenance models (ULDT) are created to deal with the

unit-level impact events, which include an exception, breakdown, shutdown of equipment, etc. Owing
to the continuous production demand in PMSs, the unit level impact should be processed timely. The
ULDTs are embedded in edge computing devices near the equipment to deal with the events in real-
time. This section constructs the data model and operation process of ULDTs as follows:



CMES, 2023, vol.135, no.1 605

Figure 1: Structure of DTPHM-PMS

The data in ULDT contains equipment-related data, job-related data, and environment-related
data.

• Equipment-related data includes speed, current, voltage, vibration acceleration, displacement,
movement, etc.

• Job-related data mainly comes from dynamic data in the MES system, including material
quantity, flow rate, density, pressure, etc.

• Environment-related data can be temperature, humidity, wind speed, air pressure and so on.

The operation processes of the ULDT can be divided into these steps: data collection, data
preprocessing, status monitoring, and fault prediction.

• Data collection uses sensors to collect rotation speed, current, voltage, vibration, displacement,
movement, and other signals of the equipment.
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• Data preprocessing refers to the process of reviewing, filtering, and sorting the collected
data before analysis, including data cleaning, data integration, data transformation, and data
specification.

• Status monitoring is considered to achieve the purpose of judging the health of the equipment
by monitoring various parameters during the operation of the device.

• Fault prediction can be defined as predicting the failure of equipment components in advance
and accurately judging the type of failure.

3.2 The Station-Level Digital Twin Maintenance Model Based on Fog Computing
The station-level digital twin operation and maintenance models (STLDT) are built to dispose of

the impact of dynamic disturbances on the regional level. The STLDTs are deployed in fog computing
servers to make control and adjustment effective on the regional level, since the STLDT communicates
with several edge-computing agents. During the operation of STLDT, the edge-computing agents
for PHM of equipment and regulation of production process are cooperated to adjust equipment,
materials, environmental factors, and operators to cope with dynamic disturbances. For example, when
a fault of equipment is predicted to occur in the future on an edge device, the message is sent to
the regional computing server by fog networks. The regional server is possible to reduce the speed
of the next batch of production equipment and the flow rate of materials. The production time of
the original product can be increased in other production lines. For possible faults of equipment,
corresponding spare parts and maintenance operators shall be added in advance. These control and
adjustment should be arranged before the end of current production, which has little impact on the
overall process.

3.3 The Shop-Level Digital Twin Maintenance Model Based on Cloud Computing
The shop-level digital twin operation and maintenance model (SHLDT) is constructed to deal

with the dynamic events with system-level impact. This SHLDT optimizes the manufacturing systems
by reconfiguring the whole system from both the production line structure adjustment and production
sequencing optimization. Production line structure adjustment refers to adjusting the equipment in
different regions with capacity demand and repairing or replacing parts according to the forecasting
result. It can leave enough time to change the production plan in advance. Production sequencing
optimization is considered to rearrange the remaining production plans on the basis of the adjusted
production line structure. Cloud computing can provide computing services, allocate resources,
and arrange sequences for multiple shop-level impact assessments and multiple unit-level faults
predictions. For example, when part of the production line shuts down, or the product type needs to
be changed, the SHLDT is supposed to make decisions to activate the backup production line to share
the pressure caused by the sudden increase in production tasks. Then, the SHLDT re-optimizes the
remaining production tasks based on the adjusted production line structure to minimize the impact of
disturbance on system-level production. The SHLDT communicates with the fog-computing agents to
integrate different stations to form a whole group to achieve the optimization of whole manufacturing
systems. Hence, the SHLDT is deployed in cloud computing servers on the system level.

4 Big Data-Driven Operation Method of DTPHM-PMS

Big data technology is the core of the construction and operation of digital twin model, which
supports the skeleton of the DTPHM-PMS. With the continuous operation of PMS, equipment,
sensors, and system platforms produce numerous manufacturing process data [43]. By integrating
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multi-source data and using multiple algorithms to quickly analyze requirements, big data technology
can accurately predict disturbing events. It can help people to understand the objective laws and make
scientific decisions. Big data technology provides a systematic solution to deal with the impact of
dynamic events. It finds an appropriate optimization scheme to reduce the loss of manufacturing
systems and improve overall efficiency. The logical framework of DTSPM driven by big data is shown
in Fig. 2. It includes three parts, indicator prediction, influence evaluation, and intelligent decision-
making.

Figure 2: The process of big data-driven DTPHM-PMS
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4.1 Big Data-Driven Indicator Prediction
Big data-driven indicator prediction is conducive to accurate prediction of dynamic disturbance

events that may occur during process production. This section contains data collection, feature
extraction, dimensional modeling, and result prediction. As described in 3.1, data collection uses a
variety of sensors at edge devices to collect equipment status, material quantity, and environmental
parameters during the production process. Feature extraction is to extract the common parts from
integrated data of abnormal objects that are different from normal objects through empirical or
intelligent methods. Sometimes according to the complexity of the actual object, the extracted features
need to be fused. Dimensional modeling designs algorithms to extract characteristics of the equipment
degradation process. Result prediction is to use the established model to predict unknown abnormal
conditions and possible disturbances of the object. For example, at the edge device, data on the
operation of equipment for at least one year is usually collected. Combining mechanical structure,
mechanics, or dynamics models, and compared data forms, the specific part of abnormal equipment
data can be extracted to form a feature set. Then, statistical methods, expert systems, artificial
intelligence, and other methods can be used to build models that can predict the developing trend of
equipment fault. Finally, the current equipment status data is imported into the model to obtain the
prediction result. In addition, through long-term data collection and result feedback, the prediction
model can be adjusted. The first loop is formed to achieve the continuous optimization of the dynamic
disturbance events prediction.

4.2 Big Data-Driven Influence Evaluation
Influence evaluation is to estimate the degree of damage from dynamic disturbance events to the

system. This section includes correlation analysis and impact degree judgment of dynamic disturbance
events in PMSs. The correlation analysis refers to the correlation modeling of the prediction results
on each edge device. Logical relationships among various dynamic disturbance events like causal,
progressive, and parallel can be determined based on the prediction results. This process involves
multiple devices, materials, and environmental factors. So, the analysis needs to be performed on a
regional fog computing server or the cloud server. The impact degree judgment is considered by using
correlation analysis results to calculate and classify the impact of disturbance events. According to the
magnitude of the impact, the impact of disturbance can be divided into unit-level impact, regional-
level impact, and system-level impact. Different levels of impact clarify the degree of damage to the
system by different dynamic events, providing support for subsequent decision-making.

4.3 Big Data-Driven Decision-Making
Big data-driven decision-making optimizes the control strategy of the PMSs to prevent the

influence of disturbance events. This section contains command sending and receiving, global analysis,
and differentiated adjustment. Command sending and receiving means that the cloud server receives
pending instructions from multiple fog servers and sends the decision instructions back. Since the
instructions need to be analyzed before being sent back to fog servers, which can only regulate the
equipment in a regional area. Therefore, a global analysis of the system needs to be performed on
the cloud server. Global analysis is to sort the different evaluation results sent by fog servers or
a cloud server itself to conduct a top-down analysis with system-level operation and maintenance
requirements. These analysis goals can be minimizing costs, delays, or adjustment steps. The differen-
tiated adjustment refers to the adjustment of production process parameters, part of the production
line structure, and remaining production plans based on system-level, regional-level, and unit-level
impacts. The above process can form loop II and loop III. For example, the cloud server receives
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unstable voltage signals collected from multiple voltage detection edge devices monitored by the fog
server, and will gradually take the following measures. Firstly, the cloud server determines that the
power supplies unit for this production line is about to be overhauled. Then, the cloud server design
makes a plan to shut down the current production line and arrange backup production line equipment
to adjust the remaining production plan. Finally, the cloud server sends the shutdown instruction to
the fog server of the production line. At the same time, the instructions for preparing the remaining
production tasks of the batch in advance are sent to the backup production line fog server. Hence, the
big data-driven decision-making based on cloud computing for PMS is realized.

5 Case Study

Chemical fiber production is a typical process-type production, in which the direct spinning of
polyester fiber is the most widely used method for chemical fiber production. The process flow of direct
spinning of polyester fiber mainly includes polyester melting, pressure spinning, cooling and bundling,
silk winding, and silk texturing, which are shown in Fig. 3. Chemical fiber raw materials are usually
solid particles, which fed into the smelting furnace. The melting furnace heats up and pressurizes raw
materials, which change from solid to thick liquid. Through the pipeline, the liquid chemical fiber fluid
is diverted to each metering pump, which forms the initial spinning position with a spinning box. Each
spinning box is placed with 10 to 15 spinnerets, which can turn the molten chemical fiber solution into
ultra fine silk. The ultra fine silk is cooled and oiled on the bundling hook, where the original chemical
fiber formed. The chemical will turn into silk cakes on the high-speed winding machine. Finally, the
silk cakes will enter the texturing process or directly enter the warehouse.

Figure 3: Polyester fiber direct spinning process

The proposed framework is a systematic generic operation policy focusing on minimizing the
impact of dynamic disturbance events on the system. Usually, the framework of PHM based on
digital twin should be customized according to every specific PMS. Therefore, a case study about
chemical fiber winding shop is conducted to demonstrate the effectiveness of the proposed framework
of PHM in PMS based on digital twin. Part of the framework based on edge-fog-cloud proposed in
this paper has been currently trialed in a chemical fiber factory in Zhejiang Province. The chemical
fiber winding process is a relatively fixed flow process, as shown in Fig. 4. The chemical fiber winds
through multiple parts and uses multiple jigs. Suffered from several kinds of dynamic events such as
multiple machine faults, disturbance from the environment, the PMS has to re-optimize the PHM
method to avoid the delay of delivery time and unstable system operation. The chemical fiber winding
machine is the key equipment in the winding shop, with complex structures and many parts. Moreover,
for the unchangeable winding process, when a dynamic disturbance event occurs, it is likely to cause
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the winding machine to stop. Besides, it is easy to affect the cooling of the upper spinneret and the
punctual storage of the lower part. However, not all components on the winding machine participate
in production at the same time. Moreover, jigs involved in the chemical fiber winding process run
intermittently. In face of uncertain interference, it is possible to redistribute the replacement parts of
the winding machine and jigs without stopping the machine. For the parts that need to shut down
the winding machine for replacement, the sponge winding machine position can be set for temporary
production when the winding machine fails. So as to deliver overflow production tasks on time as
much as possible.

Figure 4: Chemical fiber winding production and its disturbances

There are three components in the customized PHM framework, named comprehensive and
accurate prediction, dynamic association evaluation, and system control and decision-making. The
specific implementation processes of applying these three components to the PHM of chemical fiber
PMS are described as follows.

5.1 Comprehensive and Accurate Prediction of Chemical Fiber Winding Process
The comprehensive and accurate prediction of dynamic events in the chemical fiber winding

workshop includes 4 steps: (1) multi-source data collection. (2) health indicator extraction. (3) data
modeling. (4) dynamic event prediction, as shown in Fig. 5. For example, when faults of the winder
bearings need to be predicted, multi-source data comes from equipment data, material data, and
data from MES and ERP systems are collected. These data are conditionally filtered according to
different objects to form multi-source data sets for different needs at edge devices, such as vibration
data acquisition analyzer and electrical signal analyzer. Then, feature extraction formulas are set
up to combine with the actual data set for fault feature mining. After several iterations, the fault
features adapted to the characteristics of the winding machine are obtained. On the edge device side,
the IFCNN method [44] in the internal algorithm library classifies the characteristic data features
of different time periods according to the CNN framework and the improved confusion matrix.
Meanwhile, the collected data continues to accumulate, which forms historical data for a certain
period of time. The improved LSTM method in the internal algorithm library is used to model the
trend of multiple feature indicators. Through the predicted model, it is obvious that the equipment
deterioration trend and possible failures in the future can be obtained.
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Figure 5: Dynamic disturbance event prediction process

The DTPHM of the winder needs to collect vibration data during its operation. Fig. 6 shows the
fixed position of the vibration acceleration sensors on the winder and pressure roll. In order to clearly
illustrate the relationship between the whole and each part, winding workshop, winding machine,
rotor, winder, and bearings are shown in the figure. According to the working condition data in the
MES system, the vibration data is dynamically collected and integrated. Through the RUL prediction
method, the RUL curves of three bearings in the winder shown in Fig. 7 can be obtained, which cannot
be achieved by the manual inspection of the fiber factory. Interventions are set up for some of the
equipment that are predicted to fail to maintain continuous operation, resulting in the bearing fault
diagnosis results shown in Fig. 8. Through the 6-month test at the edge of the digital twin-based PHM,
it is found that the fault detection rate of the winder is higher than 80%, as shown in Table 1.

Figure 6: Winding shop, winding machine, and fixed positions of the vibration accelerometer sensors
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Figure 7: RUL prediction results for three bearings of the winder

Figure 8: Fault diagnosis results of standard bearings of the winder

Table 1: Comparative results of DTPHM-PMS and manual methods in bearing diagnosis

Methods of comparison Bearing fault of the winder Bearing fault of the pressure roll

Manual diagnosis 56% 70%
Diagnosis of DTPHM-PMS 80% 84%

5.2 Dynamic Association Evaluation of Chemical Fiber Winding Process
If the dynamic event prediction at an edge device is oriented to the specific equipment, the

correlation evaluation is oriented to the chemical fiber production process. The dynamic event
association evaluation of the chemical fiber production process, as shown in Fig. 9, is mainly divided
into two steps: (1) the correlation analysis of the predicted dynamic events at edge devices. (2) The
level degree judgment of the disturbance. The chemical fiber silk is drafted and shaped by a hot roller,
and then wounded into a yarn package, which will be sent to the warehouse by a forklift. When it is
predicted that the winder bearing is about to fail, it will affect the operation of the upstream hot
roller, which is a station-level effect. For example, the prediction result of multiple vibration data
acquisition analyzers and electrical signal analyzers of a winding production line are transmitted
to the fog computing server through the station-level network. In the fog computing server, the
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regression analysis method combines the forecast trends of each component of multiple winders and
their respective production performance to obtain the estimated production capacity of each winder.
It can indirectly estimate the loss of capacity due to the shutdown of each winding machine in the
production line.

Figure 9: Dynamic event association evaluation process

Because the hardware performance of fog servers is better than edge devices and avoids the
situation of all data being communicated between the cloud and the edge, the efficiency of fog
computing is higher than edge computing and cloud computing. Table 2 shows the comparison of the
response time of edge computing, fog computing, and cloud computing in evaluation. This comparison
is 30 times averaged from the evaluation of the impact of each component failure on the winding
machine of L1#1 and L1#2. It can be seen that the time is too long when all the evaluation calculations
are run on the edge device. When all calculations are implemented in the cloud, the evaluation
efficiency will be affected due to a large amount of data transmission. Therefore, the impact assessment
of fog computing is more efficient.

Table 2: Comparison of the response time of edge, fog, and cloud computing in evaluation

Comparison of computing methods Winding machine L1#1 Winding machine L1#2

Edge computing 50.14 s 48.31 s
Fog computing 2.08 s 2.12 s
Cloud computing 15.11 s 14.86 s

5.3 System Control and Decision-Making of Chemical Fiber Winding Process
The system control and decision-making of the chemical fiber winding process are realized

through command sending and receiving, global analysis, and differentiated adjustment, as shown in
Fig. 10. The prediction results and evaluation results are periodically issued by the edge device and the
fog server. The control and adjustment instructions are issued in a timely manner based on the results
of the cloud server’s analysis. After the cloud server receives the evaluation results from each fog server,
it conducts a global analysis according to the goals of minimum cost and shortest delay. Afterwards,
a hierarchical control mechanism for the winding shop is established, which are reorganization of
system structure, partial adjustment of functions, and modification of marginal entities. Since the
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chemical fiber production process is usually not changed, the system structure reorganization is usually
achieved by changing the production plan. In the same way, the partial adjustment of functions is
mainly realized by modifying the parameters in the chemical fiber production process. Edge entity
modification usually refers to the maintenance of production equipment. For example, if it is predicted
that the winder bearing is about to fail at a certain time in the future, the operating parameters of the
winding machine need to be modified. Such as reducing the rotate speed and producing spare fiber
silk products. Before the end of the predicted remaining useful life, the faulty equipment will be shut
down, the faulty bearings will be replaced, and the spare winding machine and spare hot roll equipment
will be activated to take over the original production task. When an emergency order is inserted, the
remaining production plan needs to be revised and a spare production line is arranged to share the
sudden increase in production tasks. After a rough estimate, the system control and decision-making
strategy reduces the cost of chemical fiber production by 5%.

Figure 10: Control and decision-making of chemical fiber winding shop
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6 Conclusion

Aiming to reduce the impact of dynamic interference on manufacturing systems, this paper
proposed a new predictive operation and maintenance model for process manufacturing systems.
Starting from frequently occurred, hard-evaluated and unsuppressed dynamic disturbance events, a
new model of PHM based on a digital twin was proposed, which consists of the unit-level digital twin
maintenance model based on edge computing, station-level digital twin maintenance model based
on fog computing, shop-level digital twin maintenance model based on cloud computing. Then, a big
data-driven PHM implementation process was designed. A case study for the maintenance of chemical
fiber enterprise equipment was conducted to demonstrate the effectiveness of the proposed digital twin
PHM paradigm.

The main contributions of this paper are summarized as follows:

(1) A three-leveled digital twin model is constructed of PHM for PMSs, which are unit-level
digital twin PHM based on edge computing, station-level digital twin PHM based on fog
computing, shop-level digital twin PHM based on cloud computing. The proposed three-layer
digital twin model combines edge computing, fog computing, and cloud computing to form a
systematic PHM of PMSs.

(2) Big data-driven operation method is proposed for DTPHM-PMS, which are indicator
prediction, influence evaluation, and intelligent decision-making. The proposed method is
capable of dynamic disturbance event prediction, disturbance impact estimation, and control
strategy optimization.

(3) The proposed three-leveled digital twin model has been tried and applied in a process man-
ufacturing system exemplified by chemical fiber production, which has played an exemplary
role in the PHM of PMSs.

There are some limitations with the current work, which will be considered in future work. The
first limitation is that the current work focuses on a process industry which takes chemical fiber as
an example. This model is still lacking in research and validation in PHM of discrete manufacturing
shops. In the future, we will consider interoperability in different particular production systems, such
as wafer manufacturing systems, and welding production systems. Secondly, the method proposed in
this paper also needs in-depth research on model variability, such as different types of PMSs operating
in different regions, PHM in cases of a wide range of regions, and a large temperature change range
will inevitably involve more changes. The third is that the proposed PHM model based on digital
twins needs to be more routinely tried in the enterprise information system. In the future, we will take
a system perspective to manufacturing systems with a comprehensive domain model.
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