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ABSTRACT

Computer-aided diagnosis based on image color rendering promotes medical image analysis and doctor-patient
communication by highlighting important information of medical diagnosis. To overcome the limitations of the
color rendering method based on deep learning, such as poor model stability, poor rendering quality, fuzzy
boundaries and crossed color boundaries, we propose a novel hinge-cross-entropy generative adversarial network
(HCEGAN). The self-attention mechanism was added and improved to focus on the important information of the
image. And the hinge-cross-entropy loss function was used to stabilize the training process of GAN models. In
this study, we implement the HCEGAN model for image color rendering based on DIV2 K and COCO datasets,
and evaluate the results using SSIM and PSNR. The experimental results show that the proposed HCEGAN
automatically re-renders images, significantly improves the quality of color rendering and greatly improves the
stability of prior GAN models.
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1 Introduction

The Internet of Things (IoT) is getting more popular and has a high level of interest in both
practitioners and academicians in the age of wireless communication due to its diverse applications.
And the significant increase in the number of individuals with chronic ailments has dictated an urgent
need for an innovative model for healthcare systems [1–3]. So IoT based on deep neural network model
has been applied in medical treatment in recent years. The Internet of Medical Things (IoMT) based
on computer-aided diagnosis is gradually developing faster and more efficiently [4–7]. Image color
rendering based on deep learning can render the grayscale image into a color image to highlight the
deep information and help readers to quickly understand the depth of information contained in the
image [8–11]. With the rapid development of computer graphics, computer vision and related software
and hardware technologies, the method of rendering existing images and enhancing details by using
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high-quality image data has attracted extensive research attention, and has been gradually applied to
medical image processing and analysis in IoMT [12–14].

At present, the traditional color rendering method needs manual intervention and requires
high reference image. The color rendering method based on deep learning uses the neural network
model and the corresponding high-quality image dataset to train the model, and the image can be
automatically rendered according to the model without being affected by human factors or other
factors.

Image color rendering based on deep learning is generally divided into color rendering based on
convolutional neural network and color rendering based on generative adversarial network [15,16].
Iizuka et al. [17] used a fusion layer in a convolutional neural network to combine low-dimensional
features and global features of an image to generate the image color. Zhang et al. [18] designed
an appropriate loss function to deal with multi-mode uncertainty in color rendering and maintain
diversity of colors. Sangkloy et al. [19] combined a method based on graffiti with deep learning
and trained images with color lines in a neural network. He et al. [20] selectively migrated reference
image colors that were consistent with a target image in semantic structure and content to the target
image, otherwise learn the color from large-scale data. Xiao et al. [21] proposed a depth sample-based
image rendering method using a dense coded pyramid [22–25].

However, when extracting grayscale image features, the aforementioned method adopts upsam-
pling to make the image size consistent, resulting in a loss of image information. Therefore, the network
structure thus constructed cannot effectively extract and recognize complex features of the image.
Hence, the rendering effect is relatively limited. Goodfellow et al. [26] proposed a generative adversarial
network (GAN). GAN model based on unsupervised learning can approximate arbitrary distribution,
so it has a wide range of applications in the field of image generation. But it is subject to the well-
known disappearing and exploding gradient problem due to the instability of the model, resulting in a
deterioration of image rendering performance. On this basis, Mirza et al. [27] proposed a conditional
generative adversarial network (CGAN), which is conditional on additional information, such as class
tags or data from other modes, to enter the discriminant and generator as an additional input layer for
adjustment. Isola et al. [28] improved a CGAN to transform image styles, for example, from grayscale
to color images, from day to night images, from lines to shaded images. The proposed pix2pix model
has a powerful image conversion function, and can learn a mapping relationship between a gray and
color image to achieve color rendering.

Although the GAN-based image color rendering method can automatically render images, it has
certain problems such as blurred boundaries and unclear details. Moreover, unstable GAN models
lead to low rendering quality [29]. Therefore, Arjovsky et al. [30] used Wasserstein distance to replace
the original JS divergence to stabilize the training of GANs, whereas Gulrajani et al. [31] added
penalty terms to make the training of GANs more stable. Mao et al. [32] used the least square loss
function to solve the problem of gradient disappearance and enhance the stability of the model.
However, the stability of these GAN models and the effectiveness of the color rendering method still
need to be improved. Therefore, this paper proposes a hinge-cross-entropy GAN (HCEGAN) for
automatic image rendering. First, a new hinge-cross-entropy loss function is proposed to stabilize the
GAN training. Second, an improved self-attention module is added to the GAN model to improve
color rendering quality more quickly and effectively. Finally, by adding a Skip Connection, a network
structure based on U-Net, as a generator for the GAN model, we adopt the 70 × 70 PatchGAN based
on image conversion as a discriminator. Experimental results show that the HCEGAN has a more
significant rendering effect compared with the pix2pix model.
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2 Related Works
2.1 Hinge Loss

The hinge loss allows the distance between incorrectly classified samples and correctly classified
samples to be sufficiently far. Unless the difference between a threshold Δ, and an incorrect classifi-
cation error is considered to be 0, a calculation error is accumulated [33]. The loss function does not
simply require the highest score in the right category, but rather a certain amount. Even a calculation
classified as a loss may be correct, because it is possible that a correct category score will fail to exceed
a certain threshold Δ.

Suppose we classify some input xi, whose label is yi, and predict xi through a function f (xi, W).
Threshold Δ generally takes a value of 1. The output is s. Then, we predict the input xi as the jth type.
Therefore, the output is sj = f (xi, W)j. Let Li represent the loss of each class, the loss of a sample is
the sum of the losses of all classes. Then the calculation of the loss function of the output xi is shown
in Fig. 1.

Li =
∑
j′=yi

max
(
0, sj − syi + Δ

)
. (1)

Figure 1: Hinge loss

Hinge loss is often used in binary classification problems. For output y = ±1, threshold Δ takes
the value of 1. Then, we predict the hinge loss of ŷ as

l (y) = max
(
0, 1 − y · ŷ

)
. (2)

When ŷ ≥ 1 or ŷ ≤ −1, the classification result can be determined by the classifier, the loss
value l(y) at this time is 0. When the predicted value ŷ ∈ (−1, 1), the classifier is uncertain as to the
classification result and the loss value l(y) �= 0. Obviously, the loss is greatest when ŷ = 0.

2.2 Cross-Entropy Loss
Cross-entropy is used to measure the difference between two probability distributions in informa-

tion theory. The cross-entropy loss function is not only simple and effective, but can also avoid the
reduction in learning rate caused by the mean square error loss function in gradient decline using the
sigmoid function [34]. Assuming that the probability of an event is p, the amount of information I is
expressed as

I(p) = −log(p). (3)
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Entropy represents the measurement of the uncertainty of random variables. Under the discrete
condition, entropy of information can be expressed as

H(p) = Ex∼P [I(p)] = −Ex∼P [log(p)] = −
n∑

i=1

pilog(pi). (4)

In the discrete condition, if there are two probability distributions Q and P for the same random
variable x, we can use KL divergence to measure the difference between these two distributions.

DKL(P ‖ Q) = Ex∼P

[
log

P
Q

]
= Ex∼P [log(p) − log(q)] =

n∑
i=1

pilog(pi) −
n∑

i=1

pilog(qi). (5)

The discrete distribution is the same, hence, the KL divergence is zero. Therefore, the cross-entropy
is expressed as the sum of entropy and KL divergence.

H(P, Q) = H(P) + DKL(P ‖ Q) = −Ex∼P[log(p)] + Ex∼P[log(p) − log(q)]

= −Ex∼P [log(q)] = −
n∑

i=1

pilog(qi). (6)

Then, in the case of binary classification, the cross-entropy loss of batch samples is

loss = − 1
m

n∑
i=1

m∑
j=1

pijlog(qij). (7)

At present, the cross-entropy loss is mainly used to classify the problem, combined with the
Sigmoid or Softmax activation function. The advantage of cross-entropy loss is that the learning
speed is fast when the model effect is poor, and slow when the model effect is good. However,
because the cross-entropy loss combined with the Sigmoid or Softmax activation function adopts the
inter-class competition mechanism, the features learned are scattered and multiple features cannot
be distinguished. Therefore, the activation function can only be continuously optimized to better
strengthen the model.

3 Hinge-Cross-Entropy GAN
3.1 Hinge-Cross-Entropy Loss

The loss function in deep learning is mainly used to evaluate the degree to which the predicted
sample is different from the real sample. In general, the better the loss function, the better the model
performance. The original GAN model scales the output of the discriminator neural network to
probability [0, 1] by the Sigmoid function, and measures the cross-entropy loss of probability. In
order to minimize JS (Jensen-Shannon) difference between model distribution and target distribution,
the minimax game of the GAN model is realized. Many scholars use regularizer or loss function to
minimize the difference between model distribution and target distribution, and ensure the stability
of the GAN model. As can be seen from the analysis of the two loss functions in Section 2, the
hinge loss function is able to keep the distance between the incorrectly classified samples and the
correctly classified samples sufficiently far beyond a certain threshold so that the unclassified error
value remains 0. In the cross-entropy loss function, the closer the predicted output is to the real sample,
the smaller the loss function is, and the closer the predicted function is to 1. In this case, the variation
trend of the function is completely in line with the actual needs. Therefore, the greater the difference
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between the predicted output and the real sample, the greater the loss value, that is, the greater the
penalty to the current model, according to a non-linear increase similar to exponential growth.

This situation is mainly determined by the log function, which influences the model to tend to
make the predicted output closer to the real sample. Further, the hinge loss optimization to enforce
the requirements of remaining within less than a certain distance will cease optimization, whereas
the cross-entropy loss is always optimized. Hence, in general, the cross-entropy loss is better than
hinge loss. However, the cross-entropy loss is good at learning information between classes. Because it
adopts the inter-class competition mechanism, the model will try to learn different types of features.
And only consider the accuracy of the prediction probability of the correct samples, while ignoring the
differences of other wrong samples. So the learned features are scattered, and the effect generated by
the generator is suboptimal. Based on the advantages and disadvantages of hinge and cross-entropy
loss, we propose a hinge-cross-entropy loss function.

First, we define the loss function based on the pix2pix network model as follows:⎧⎪⎪⎨
⎪⎪⎩

G∗ = argminGmaxDLcGAN(G, D) + λLL1(G),

LcGAN(G, D) = Ex,y(logD(x, y)) + Ex(log(1 − D(x, G(x)))),

LL1(G) = Ex,y(‖ y − G(x)1 ‖)
(8)

where, x is the input image, y is the expected output, G is the generator, and D is the discriminator.
In addition to the generating adversarial loss of CGAN model, the pix2pix model also adds a L1
regularization loss times a certain parameter to improve the training of the model. And λ is this
parameter.

Meanwhile, the hinged version of adversarial loss in GAN model is defined. We set the generated
image as G(z). Then, the loss functions of the generator and discriminator are, respectively:{

LD = −E(x,y)∼Pdata
[min(0, −1 + D(x, y))] − Ez∼Pz ,y∼Pdata

[min(0, −1 − D(G(z), y))],

LG = −Ez∼Pz ,y∼Pdata
D(G(z), y),

(9)

On this basis, the hinge-cross-entropy loss function is defined as follows:{
LD = Ex,y[log(max(0, 1 − D(x, y)))] + Ey,z[log(max(0, 1 + D(G(z), y)))],

LG = Ex,y(logD(x, y)) + Ex[log(1 − D(x, G(x)))] + λEx,y(‖ y − G(x)1 ‖).
(10)

The loss function of the generator is the cross-entropy loss function adding L1 loss, which is the
same as the loss function of the generator of the pix2pix model. The loss function of the discriminant
is in the form of the cross-entropy loss function after the real or generated image is processed by the
hinge loss function. In this paper, the binary cross-entropy loss (BCE Loss) function is used, which
is a special case of the cross-entropy loss function used for binary classification problems. The exact
definition of the function is the same. Because this is a binary classification task, there are only two
possibilities, plus or minus, and the sum of probabilities is 1, so we only have to predict one probability.
In practical applications, a sigmoid function should be added to the layer of BCE Loss to normalize
the data first before binary cross entropy loss can be used for calculation. The hinge-cross-entropy loss
function also does not need to optimize the activation function to improve its problems such as large
computation and small feature discrimination due to the large number of classification datasets.
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3.2 Improved Self-Attention Module
The function of the attention mechanism in computer vision is to enable a neural network model to

learn to ignore irrelevant information and focus on the important information [35]. Usually, relevant
features are used to learn the weight distribution. Then, the learned weight is applied to the features to
extract relevant knowledge further. The weight can be applied to the original image, or to the spatial
scale, channel scale, etc. The self-attention mechanism is a concept learned from natural language
processing (NLP). Other tasks in the direction of computer vision have also achieved good results.

The basic structure of self-attention module is shown in Fig. 2. It can be seen that the self-attention
module is divided into three branches by a 1×1 convolution: f , g and h. First, the dot product is used
to calculate the similarity between f and g to get the weight. Second, a softmax function is used to
normalize these weights. Finally, the weighted sum of weights and corresponding h is calculated to
get the final attention value. However, this weight parameter needs to be initialized to 0, which first
depends on the local original x, then gradually increases the non-local weight, and finally applies
self-attention to the generator and discriminator. If the initial weight is set to 0 and the weight is
gradually increased through model optimization, the generator will learn slowly, leading to slow
iteration. Therefore, we need to adjust the learning method, especially the initialization matrix, to
speed up the learning speed of the attention mechanism.

Figure 2: Self-attention module

In this paper, we adjust the initial weight to a diagonal matrix, and assume that the values on the
diagonal of the diagonal matrix conform to the standard normal distribution with a mean of 0 and a
variance of 1, such as the diagonal matrix A of size 3 × 3:

A =
⎡
⎣−0.2657 0.0000 0.0000

0.0000 0.6014 0.0000
0.0000 0.0000 0.3083

⎤
⎦ (11)

The calculation steps of self-attention mechanism are as follows. First, we aim to transform the
feature map of the previous hidden layer x ∈ RC×N into the feature space f , g and calculate attention,
where f (x) = Wf x, g(x) = Wgx. Each element βji in the attention map represents how much the model
pays attention to the ith pixel when synthesizing the jth pixel, where sij = f (xi)

Tg(xj).

βj,i = exp(sij)∑N

i=1 exp(sij)
(12)
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Then, we use βji as the weight of attention to calculate the output o = (o1, o2, . . . , oj, . . . , oN) ∈
RC×N, where, oj = ∑N

i=1 βj,ih(xi), h(xi) = Whxi. Wf , Wg, and Wh are the weight matrices learned after a

1 × 1 convolution. Here, C = C
8

, Wf ∈ RC×C, Wg ∈ RC×C, Wh ∈ RC×C.

Finally, we multiply the output of the attention layer by a scale parameter γ and add it back to
the input feature map.

yi = γ oi + xi (13)

3.3 Hinge-Cross-Entropy GAN
In this paper, we construct the generator of hinge-cross-entropy GAN based on U-Net structure,

coding-decoding structure and Skip Connection, as shown in Fig. 3. The orange module is the
improved self-attention module, and the blue module is the convolution layer, which contains 8 con-
volution layers and 8 deconvolution layers. Lines represent Skip Connection. The U-Net structure is a
symmetric U-shaped structure of compression path and expansion path. The parameter transfer and
error feedback of deep neural network can be strengthened by adding Skip Connection. In addition,
in order to solve the problem of remote dependence and strengthen long-distance information, an
improved self-attention module is added in the encoder, namely, in front of each convolutional layer,
respectively, in order to effectively select feature information. The input of neural network is many
vectors of different sizes, and there are certain relationships among them. However, the relationship
between these inputs can not be fully developed in the actual training, resulting in poor results. The self-
attention mechanism can establish correlations between multiple related inputs, allowing the network
model to notice correlations between different parts of the entire input.

Figure 3: Proposed generator structure

The discriminator of hinge-cross-entropy GAN uses 70 × 70 PatchGAN, which contains 4
convolution layers, each of which uses the unit form of conversion-regularization-Leakyrelu activation
function. Instead of measuring the whole image with a single value, PatchGAN used an N ∗ N
matrix to evaluate the whole image, so that more areas could be focused on. The input/output size
is 256×256, the step size is 2, the fill pixel is 1, the activation function is LeakyReLU, and BatchNorm
is used. The whole GAN model adopts minimax game, generate color image as close as possible to
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the expected image, deceive the discriminator. Grayscale image and generated image are input into the
discriminator at the same time. The discriminator tries to distinguish the generated image and see the
difference between the generated image and the expected image. During model learning and training,
generator and discriminator are trained alternately. After the training is complete, the generator is used
to generate the desired color image.

4 Experiments

The DIV2 K dataset covers a wide range of contexts, including people, handmade objects and
cities and villages, for example based on single-image super-resolution benchmarking. The dataset
participating in the NTIRE 2017 Challenge drives the state-of-the-art technology in terms of single-
image super-resolution. There are 800 training sets and 100 testing sets in the DIV2 K dataset. The
COCO2017 dataset is an advanced version of the Microsoft COCO dataset funded by Microsoft
in 2014. Among them, the COCO competition was one of the most concerned and authoritative
competitions in the field of computer vision at that time. The COCO datasets include six categories:
fish, ladybug, orange, lion, dog and bird. There are 500 training sets and 100 testing sets for each
category of the COCO dataset.

When DIV2 K dataset was used to verify the validity of the model, the experimental envi-
ronment used was Windows 10, with a 64-bit operating system, an Intel(R) Core(TM) I7–9750H
CPU @2.5 GHz on a notebook computer, as well as Python 3.7, Pytorch1.2, and CUDA 10.0. When
the COCO dataset was used, the experimental environment used was Windows 10, with a 64-bit
operating system, an Intel(R) Core(TM) I9–10900x CPU @3.70 GHz on a desktop computer, as well
as Python 3.7, Pytorch1.7, and CUDA 10.2. In experiments, the same parameters were used for all
models under the PyTorch framework, the iteration was 200, the optimizer was Adam, and the learning
rate was 0.0002. In order to reflect the color rendering quality of different models, the experiment
adopts PSNR and SSIM to evaluate the rendered images.

4.1 Qualitative Comparison
Effect of self-attention module To verify the effectiveness of the self-attention module, the added

module was compared with the original pix2pix model, and the results on the DIV2 K dataset were
shown in Figs. 4b, 4c. By comparing the rendering results of the original color image, the pix2pix
model and the model with self-attention module, it can be seen that the pix2pix model has a large
error in rendering due to the instability of GAN model, resulting in color pollution in the upper left
corner of Fig. 4b. However, the model with self-attention module restores the real color of the image in
both structure and color, and the overall tone is more harmonious. After the self-attention module is
added, the self-attention mechanism can learn important features and suppress non-important features
to achieve fast learning of image information. The results are shown in Table 1. After adding the
self-attention module, SSIM and PSNR in the DIV2 K dataset were increased by 0.35% and 1.2 dB,
respectively. In the COCO dataset, SSIM and PSNR were almost all improved. Therefore, after the self-
attention module is added to the model, the module can improve the model’s attention to important
information by using the inherent information of features for attention interaction, thus significantly
improving the rendering quality. Therefore, adding self-attention module into the model is effective
and improves the rendering effect of the model.
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(a) Original image (b) pix2pix (c) pix2pix+SA (d) Ours(SA+hinge+BCE) (e) SA+hinge+MSE

Figure 4: Qualitative comparison

Table 1: Verification of the effectiveness of the improved self-attention module

(a) PSNR value after rendering each datasets (dB)

Model/Dataset DIV2 K Lion Bird Orange Dog Fish Ladybird

pix2pix 19.642 22.278 20.516 16.225 21.958 17.599 17.230
pix2pix+SA 20.852 22.242 20.250 16.462 21.897 17.631 17.069

(b) SSIM value after rendering each datasets (%)

Model/Dataset DIV2 K Lion Bird Orange Dog Fish Ladybird

pix2pix 80.029 87.736 81.733 66.919 86.095 73.329 75.308
pix2pix+SA 80.383 88.489 80.584 67.232 85.993 73.485 75.591
Note: Bold font is the best value for each column.

Effect of hinge-cross-entropy loss To verify the effectiveness of the hinge-cross-entropy loss
function, we added the hinge-cross-entropy loss to the pix2pix model and compared it with the original
pix2pix model by adding the mean-square error (MSE) loss. The results on the DIV2 K dataset are
shown in Figs. 4d, 4e. Comparing the rendering results of the original color image with the hinge-
cross-entropy loss function and the mean square error loss function, it may be observed that the hinge-
cross-entropy loss function has a better rendering result on the details of an image such as steps and
roofs, and there is no color pollution. This is because the hinge-cross-entropy loss function inherits
the advantages of the hing loss function and the cross-entropy loss function. This puts the distance
between misclassified samples and correctly classified samples far beyond a certain threshold. And
when the optimization of the hinge loss function is forced to keep within a certain distance, the cross-
entropy loss always keeps the optimal state.
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Similarly, we used PSNR and SSIM to evaluate the rendered images. The experimental results are
shown in Table 2. Hinge stands for hinge loss function, BCE stands for cross-entropy loss function,
and MSE stands for mean square error loss function. After adding the hinge-cross-entropy loss
function, PSNR and SSIM improved by 1.61 dB and 1.57% in the DIV2 K dataset, respectively. In
the six categories of the COCO dataset, PSNR increased by 0.51, 0.64, 0.33, 0.69, 0.56, 0.24 dB, and
SSIM increased by 2.24%, 2.74%, 2.04%, 2.00%, 3.7%, 1.63%, respectively. This is because the partial
derivative value of the MSE loss function will be very small when the output probability value is close
to 0 or 1, which may cause the partial derivative value to almost disappear at the beginning of training
of the model. As a result, the learning rate of the model is very slow at the beginning, and the use
of cross-entropy as the loss function will not lead to such a situation. Therefore, compared to the
effect without the hinged loss function and with the added the MSE loss function, the model using the
hinge-cross-entropy loss function has a significant improvement in rendering quality.

Table 2: Verification of the effectiveness of hinge-cross-entropy loss

(a) PSNR value after rendering each datasets (dB)

Model/Dataset DIV2 K Lion Bird Orange Dog Fish Ladybird

pix2pix 19.642 22.278 20.516 16.225 21.958 17.599 17.230
Ours(SA+Hinge+BCE) 21.254 22.792 21.159 16.558 22.5 51 18.162 17.468
SA+Hinge+MSE 20.643 22.478 20.369 16.461 21.996 17.635 17.354

(b) SSIM value after rendering each datasets (%)

Model/Dataset DIV2 K Lion Bird Orange Dog Fish Ladybird

pix2pix 80.029 87.736 81.733 66.919 86.095 73.329 75.308

Ours(SA+Hinge+BCE) 81.599 89.981 84.471 68.959 88.096 77.029 76.937
SA+Hinge+MSE 79.716 88.481 80.401 67.109 85.996 73.277 75.208
Note: Bold font is the best value for each column.

4.2 Quantitative Comparison
Effect of improved self-attention module To verify the effectiveness of the improved self-attention

module, we added the self-attention module and the improved module to the pix2pix model and
compared it with the original pix2pix model. The experimental results are shown in Fig. 5, where
SA’ is the standard normal distribution in which the diagonal line conforms to the initial weight. The
mean is 0 and the variance is 1 in the diagonal matrix, and SA” is the uniform random number in the
diagonal matrix where the initial weight is 0–1. By comparing the results before and after adding
hinge loss, we can see that compared with other models, the rendered image obtained by adding
an improved self-attention module (pix2pix+SA’ and SA’+Hinge+BCE) is closer to the original
color image, with better rendering effect, clearer details and less rendering error. This is because
the improved self-attention mechanism reduces the dependence on external information and uses the
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inherent information of features as much as possible for attentional interaction. In addition, the self-
attention mechanism can effectively capture the feature dependence of long distance and extract the
important information of global context. In comparison, our proposed approach SA’+Hinge+BCE
has the best performance. Not only is the improved attention mechanism added, but the hinge-cross-
entropy loss function makes the gap between positive and negative samples large enough to produce
an image that more closely resembles the real color image.

(a) Original image (b) pix2pix (c) pix2pix+SA (d) pix2pix+SA’ (e) pix2pix+SA”

(f) Original image (g) pix2pix (h)

Ours(SA+hinge+BCE)

(i)

Ours(SA’+hinge+BCE)

(j)

Ours(SA”+hinge+BCE)

Figure 5: Quantitative comparison

The experimental results are shown in Table 3, and we can see that the rendering effect is better
when the diagonal matrix with the initial weight conforming to the standard normal distribution with
a mean of 0 and a variance of 1, namely SA’, is used. Compared with the original pix2pix model, the
proposed method SA’+ Hinge+BCE improved 1.82% in the DIV2 K dataset, and 1.76 dB in terms
of PSNR. In the six categories of COCO dataset, SSIM increased by 2.11%, 2.47%, 2.18%, 1.54%,
3.73%, 0.43%, and PSNR increased by 0.41, 0.67, 0.27, 0.64, 0.44, 0.29 dB, respectively. Therefore, the
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improved self-attention module and the hinge-cross-entropy loss function can enhance the stability
of the model and improve the rendering effect of the existing color rendering algorithm based on the
GAN model. Therefore, the improved self-attention module and hinge-cross-entropy loss function in
this paper are effective. It can enhance the stability of the model to different degrees and improve the
existing image rendering algorithm based on the GAN model.

Table 3: Verification of the effectiveness of the improved self-attention module

(a) PSNR value after rendering each datasets (dB)

Model/Dataset DIV2 K Lion Bird Orange Dog Fish Ladybird

pix2pix 19.642 22.278 20.516 16.225 21.958 17.599 17.230
pix2pix+SA 20.852 22.242 20.250 16.462 21.897 17.631 17.069
pix2pix+SA’ 21.030 21.679 20.501 16.489 21.887 17.502 17.219
pix2pix+SA” 20.926 22.247 20.529 16.358 21.897 17.666 17.072
Ours(SA+Hinge+BCE) 21.254 22.792 21.159 16.558 22.5 51 18.162 17.468
Ours(SA’+Hinge+BCE) 21.404 22.5 84 21.183 16.498 22.5 94 18.038 17.524
Ours(SA”+Hinge+BCE) 20.612 22.5 92 21.364 16.720 22.420 18.170 17.681

(b) SSIM value after rendering each datasets (%)

Model/Dataset DIV2 K Lion Bird Orange Dog Fish Ladybird

pix2pix 80.029 87.736 81.733 66.919 86.095 73.329 75.308
pix2pix+SA 80.383 88.489 80.584 67.232 85.993 73.485 75.591
pix2pix+SA’ 80.558 86.001 81.923 66.118 85.983 73.396 75.656
pix2pix+SA” 80.647 87.410 81.904 67.280 86.041 73.290 75.405
Ours(SA+Hinge+BCE) 81.599 89.981 84.471 68.959 88.096 77.029 76.937
Ours(SA’+Hinge+BCE) 81.849 89.844 84.201 69.102 87.635 77.058 75.738
Ours(SA”+Hinge+BCE) 80.923 90.018 84.786 69.131 87.858 76.755 77.034

Note: Bold font is the best value for each column.

Fig. 6 shows the effect of our HCEGAN compared with the original pix2pix model on the COCO
dataset. In order to improve the performance of the model, the current color rendering algorithm based
on deep learning inevitably accumulates modules, which leads to the deep level and high complexity
of the neural network. This paper realizes image color rendering based on GAN. Although the self-
attention module is added to the model in this paper, the complexity of the system does not change
much. At the same time, the addition of new loss function further strengthens the stability of the
model. Therefore, the model’s lightweight and high performance are the limitations at present, and
future work will also be carried out in this aspect.
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(a) Grayscale image (b) Original image (c) pix2pix (d) pix2pix+SA’ (e) Our method

Figure 6: Our results compared with other models

5 Conclusion

At present, image color rendering based on the generative adversarial network has helped the med-
ical industry to highlight and speed up the diagnosis of many diseases in the internet of medical things.
Color images are beneficial because they can better highlight deep information in an image. In order to
improve the existing GAN-based color model and render grayscale images, this paper introduces a new
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hinge-cross-entropy loss function and an improved self-attention module, and proposes a new hinge-
cross-entropy GAN. In this paper, we use the DIV2 K and COCO datasets to verify the effectiveness of
the proposed method and its superiority to prior approaches. The experimental results show that our
hinge-cross-entropy GAN model demonstrates a great improvement in rendering quality and effect.
Moreover, the stability of the model is greatly improved. However, the current GAN model has high
model complexity and difficulty in pre-training. It is difficult to realize a model lightweight on the
basis of ensuring algorithm efficiency. In the future, we will focus on achieving the high performance
of GAN models while reducing model complexity. At the same time, we plan to extend the method to
other tasks, such as style transfer and single image super-resolution.
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