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ABSTRACT

Liquefaction is one of the most destructive phenomena caused by earthquakes, which has been studied in the
issues of potential, triggering and hazard analysis. The strain energy approach is a common method to investigate
liquefaction potential. In this study, two Artificial Neural Network (ANN) models were developed to estimate the
liquefaction resistance of sandy soil based on the capacity strain energy concept (W ) by using laboratory test
data. A large database was collected from the literature. One group of the dataset was utilized for validating the
process in order to prevent overtraining the presented model. To investigate the complex influence of fine content
(FC) on liquefaction resistance, according to previous studies, the second database was arranged by samples with
FC of less than 28% and was used to train the second ANN model. Then, two presented ANN models in this
study, in addition to four extra available models, were applied to an additional 20 new samples for comparing their
results to show the capability and accuracy of the presented models herein. Furthermore, a parametric sensitivity
analysis was performed through Monte Carlo Simulation (MCS) to evaluate the effects of parameters and their
uncertainties on the liquefaction resistance of soils. According to the results, the developed models provide a higher
accuracy prediction performance than the previously published models. The sensitivity analysis illustrated that the
uncertainties of grading parameters significantly affect the liquefaction resistance of soils.
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Nomenclature

uw Water pressure
σ ’c Effective confining pressure
FC% Fine content in percent
Cu Coefficient of uniformity
D50 Mean grain size (mm)
Cc coefficient of curvature
W liquefaction resistance of sandy soil based on capacity strain energy concept
ANN Artificial neural network
GP Genetic programming
LGP Linear genetic programming
MEP Multi expression programming
ANFIS Neuro-fuzzy interface system
MARS multivariate adaptive regression splines
MCS Monte Carlo simulation
FOSM first order second moment
PEM point estimation
CSR Cyclic stress ratio
CRR Cyclic strength ratio
E Unit energy
γ Shear strain amplitude
ν Standard deviation
δW Increment of energy/volume
NME Normalized maximum energy
Δu Excess pore water pressure
δ3 Lateral stress
τ Shear stress
Γ Shear strain amplitude
R2 Coefficient of determination
ydj Target output
yj Predicted output
di Individual sample points indexed with i
x0 Mean sample size
RMSE Root mean square error
MAE Mean absolute error
COV Coefficient of variation

1 Introduction

When saturated sand is subjected to an earthquake, because of the rapid vibrations, drainage is
prevented and the tendency towards volume reduction, causes the transfer of the effective overburden
stress to the pore water until excess pore water pressure becomes equal to the initial effective over-
burden stress; after which liquefaction happens. The most commonly reported liquefaction manifests
in saturated loose or medium sandy soil have been observed during the most massive earthquakes
worldwide. The 1964 magnitude 9.2 earthquake in Alaska and the magnitude 7.6 earthquake in Niigata
of the same year, prompted extensive research on this phenomenon. Soil liquefaction has also been
observed in recent earthquakes in China [1], Japan [2], Indonesia [3] and the USA [4,5].
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Three main methods have been employed in relevant studies. The first one is the stress-based
method, which was introduced by Seed et al. [6]. And other researchers performed research to develop
models using in-situ tests [7–9], laboratory tests [10,11] and numerical simulation [12–19]. Additionally,
the strain-based method was first introduced by Dobry et al. [12]. They assumed under cyclic loading
approximately 0.01% for threshold strain and initial water pressure (uw) increasing. After that, the
shear strain was compared with 0.01 according to Serikawa et al. [2] or 0.02 [3]. Next, water pressure
was estimated through experimental graphs. In the end, this water pressure was compared to confining
stress to predict the triggering of liquefaction. In other words, depending on the following condition,
liquefaction may or may not occur:

uw > σ v0 liquefaction occurs.

uw < σ v0 liquefaction does not occur.

where σ v0 is initial vertical effective stress.

The coupled numerical models, since 1975, have been presented [13–17] based on Biot’s theory
[18–20] which was the clarification of effective stress concept and coupled phases interaction between
solid porous materials and fluid. Recently, some numerical simulation was also performed by
researchers [21–28]. The fourth method includes strain energy-based methods developed by applying
seismic energy dissipated in the soil [21–30]. This method has been applied in three main procedures by
researchers which are using histories of site exploration liquefied [29–31], and laboratory test results
[23,27,29–40] and Arias intensity-based models [32,41]. To evaluate the potential of liquefaction in
energy concept method, the capacity strain energy (W ) value of the soil is required to be estimated to
compare with the energy transferred to the soil by the earthquake loads. Since the energy dissipated by
mechanisms (e.g., cohesion and frictional mechanisms) cannot be easily discerned from laboratory and
field data, the energy dissipated by frictional mechanisms is estimated by the total dissipated energy as
the frictional mechanisms are expected to be dominant growing interest in earthquake engineering.
In addition, the total amount of dissipated energy to the liquefaction point should be relatively
independent of the sequence for increasing the load. On the contrary, the viscous mechanisms of energy
dissipation can be considered for the low increase of strains where the rate of energy dissipated by this
mechanism is directly related to the sequence used. In order to enhance the conventional load, the
dissipated energy is expected to be greater than the liquefaction point, which is either independent or
increases due to the load sequence used.

Based on laboratory test results six input parameters including effective confining pressure (σ ’c)
kPa, initial relative density (Dr)%, FC%, coefficient of uniformity (Cu), mean grain size (D50) (mm)
and coefficient of curvature (Cc), have been identified and confirmed as the most influential factors
in modeling liquefaction to estimate liquefaction resistance of sandy soil based on capacity strain
energy concept [23,27,29–40]. Clearly, permeability of the soil is considered implicitly in soil properties
parameters of Dr, Cu, D50 and Cc.

These studies, except Cabalar et al. [37], extracted Cc in their final correlation due to its limited
range values in the datasets and hence, its limited effect. Furthermore, they included all ranges of the
parameters in their models without special consideration to their value.

Further, Maurer et al. [42] analyzed 7,000 case histories from Canterbury Earthquakes in
2010–2011 and concluded when soils contain a high value of FC, assessment of liquefaction is less
reliable. Zhang et al. via laboratory tests showed that liquefaction potential is closely related to FC
[38]. Liu et al. [43] performed some experimental tests on marine sediments and proposed a critical
value for FC to evaluate liquefaction resistance. Additionally, Tao [44] defined the limit value of 28%
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for estimating the liquefaction resistance, and through laboratory test results showed liquefaction
resistance becomes more dependent on Dr when FC is higher than 28%, rather than FC value. While,
in all presented models there has not been consideration to different effect of FC in different range.

Regarding the evaluation of liquefaction strength by applying the strain energy approach, several
models have been developed using artificial neural network (ANN) [35], genetic programming (GP)
[45,46], multi expression programming (MEP) [46], neuro-fuzzy Interface system (ANFIS) [37], and
multivariate adaptive regression splines (MARS) [38]. Although the importance of the validating phase
has been indicated by many researchers [47–49], in all studies, data division was performed randomly
in two groups of testing and training phases, without considering the statistical characteristics of the
data. Also, no validating phase has been performed in order to avoid overtraining of the models.

Due to the uncertainty of geotechnical problems, particularly, liquefaction phenomena, some
studies, such as Bayesian methods, have been performed to develop probabilistic forms and reliability
analysis to evaluate the potential of liquefaction [50–56]. Furthermore, artificial intelligence [57–63]
and Monte Carlo simulation (MCS) which is a classic approach to assess risk in quantitative analysis,
has recently been used in engineering and sciences [64–71] and also in the evaluation of liquefaction
potential [72–74]. Jha et al. [73] presented the probability of liquefaction due to factor of safety using
FOSM method, an advanced first-order second-moment (FOSM), Hasofer–Lind reliability method,
a point estimation (PEM), and an MCS method. They presented a new combined method using both
FOSM and PEM to find the cyclic stress ratio (CSR) and cyclic strength ratio (CRR) statistically. They
showed that the factor of safety measured by the combined method is similar to the PEM and MCS
methods. They also indicated FOSM, PEM, and MCS methods present nearly the same probabilities
of liquefaction by considering input variability. Using the jointly distributed random variables method
and using the data from triaxial test results, Johari et al. [74] presented a reliability assessment of
liquefaction and compared the results with the Monte Carlo simulation. The results exhibited close
probability density functions of the safety factor applying both methods.

In this study, to investigate the complex effect of FC on liquefaction resistance of soil in terms
of the unit energy, two datasets were arranged. The first dataset was collected from the literature
as the largest and likely most complete dataset employed by researchers covering a large range of
parameters. Due to the complicated influence of FC on W and the spares attention to this parameter
in developing earlier models, in the second database, according to Tao [44] only samples with FC values
less than 28% were selected. Two new ANN models were developed based on these two datasets. A
multilayer perceptron network with a backpropagation algorithm was constructed and the samples
were divided into three groups, including a validation set to avoid overtraining. These sample groups
were formed with similar statistics certificates, and avoided random division, according to Tables 1–4
and Tables 6–9 to enhance the accuracy and capability of trained networks.

Table 1: Statistics of the entire input variables applied for the first ANN model

Variables σ c (kPa) Dr (%) FC (%) Cu D50 (mm) Cc

Minimum 40 5.44 0 1.5 0.03 0.53
Maximum 400 71.5 100 28.1 0.46 10.89
Mean 103.3 36.2 18.7 4.2 0.21 1.52
Average 220 15.01 50 14.8 0.25 5.71
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Table 2: Statistics of the entire input variables applied for the training phase of the first ANN model

Variables σ ’c (Kpa) Dr (%) FC (%) Cu D50 (mm) Cc

Minimum 40 5.44 0 1.52 0.03 0.53
Maximum 400 50.2 100 28.12 0.46 10.89
Mean 103.23 39.3 18.62 4.2 0.21 1.48
Average 220 20.5 50 14.82 0.25 5.71

Table 3: Statistics of the entire input variables applied for the validating phase of the first ANN model

Variables σ ’c (kPa) Dr (%) FC (%) Cu D50 (mm) Cc

Minimum 40.1 7.6 0 1.5 0.03 0.7
Maximum 400 48.8 100 28.1 0.5 10. 9
Mean 105.4 34.01 18.1 3.8 0.2 1.5
Average 220.6 25.5 50 14.8 0.25 5.8

Table 4: Statistics of the entire input variables applied for the testing phase of the first ANN model

Variables σ ’c (kPa) Dr (%) FC (%) Cu D50 (mm) Cc

Minimum 40.1 5.5 0 1.5 0.03 0.7
Maximum 400 48.8 100 28.1 0.5 10. 9
Mean 101.4 33.01 19.2 4.2 0.2 1.5
Average 220.6 25 50 14.8 0.25 5.8

Table 5: Correlation coefficient of the first ANN model

Training Testing Validating All

0.94 0.93 0.91 0.95

Table 6: Statistics of all input variables applied for the second ANN model

Variables σ ’c (kPa) Dr (%) FC (%) Cu D50 (mm) Cc

Minimum 40 5.44 0 1.5 0.13 0.7
Maximum 400 71.5 26 28.1 0.5 10.9
Mean 106.3 38.7 7.8 3.7 0.25 1.7
Average 220 41.19 13 14.8 0.3 5.8
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Table 7: Statistics of all input variables applied for the training phase of the second ANN model

Variables σ ’c (kPa) Dr (%) FC (%) Cu D50 (mm) Cc

Minimum 41.1 12.8 0 1.5 0.13 0.7
Maximum 400 48.2 26 28.1 0.5 10. 9
Mean 103.2 12.8 7.8 4.2 0.2 1.5
Average 220.6 30.5 13 14.8 0.25 5.8

Table 8: Statistics of the entire input variables applied for the validation phase of the second ANN
model

Variables σ ’c (kPa) Dr (%) FC (%) Cu D50 (mm) Cc

Minimum 41.1 7.6 0 1.5 0.03 0.7
Maximum 400 48.2 26 28.1 0.46 10. 9
Mean 105.5 34.01 7.9 3.7 0.25 1.5
Average 220.6 27.9 13 14.8 0.25 5.8

Table 9: Statistics of all input variables applied for the testing phase of the second ANN model

Variables σ ’c (kPa) Dr (%) FC (%) Cu D50 (mm) Cc

Minimum 41.1 5.79 0 1.5 0.13 0.7
Maximum 400 62.3 26 28.1 0.5 10. 9
Mean 104.8 57.9 8.1 4.1 0.2 1.8
Average 220.6 34.05 13 14.8 0.3 5.8

This study investigates the effects of all parameters, including CC while also paying special
consideration to the influence of FC in different range according to its critical value in seismic soil
liquefaction assessment. To achieve this goal, two different ANN models, one using the entire dataset
and the other using the samples with FC value of less than critical value, were developed to compare
their predictions for validating and choosing the best one. In development of the models the validation
phase was also performed to eliminate overtraining of the models. The data division was performed
considering statistics characteristics of the variables instead of performing randomly to increase the
accuracy of the trained models. Furthermore, to the best of the author’s knowledge, there has been
no previous due attention to the uncertainties of parameters to predict W , which was the motivation
behind performing the sensitivity analysis via MCS simulation to investigate the effect of uncertainty
and the mean value of parameters on liquefaction resistance. Because of the numerous samples
required by MCS and the relative data scarcity, in this study, the MC simulation was performed based
on an ANN model developed in this study.

2 Methods Based on Laboratory test Results

Figueroa et al. [75] developed two equations to evaluate unit energy (E) in a cyclic triaxial test.
Alkhatib [76] introduced ER to measure liquefaction resistance. ER is a ratio of the energy computed
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by area under the stress-strain hysteresis loop to the initial effective confining stress, and through
conducting laboratory cyclic triaxial tests. The presented model is as below.

Extensive research has been performed at Case Western Reserve University on energy-based
evaluation of liquefaction [31,38–41,75,77–79]. In all procedures, Wu which is the area of the stress-
strain hysteresis loops up to the initial liquefaction point was used to define liquefaction resistance.
Parameter of δW was introduced first time by Figueroa et al. [31,75,77]. They conducted 27 torsional
shear tests on a Reid Bedford sand sample at different shear strain amplitudes and confining pressures
and developed a model.

Liang et al. [13,41] conducted 74 liquefaction torsional shear tests on Reid Bedford sand, Lower
San Fernando Dam (LSFD) silty sand, and Lapis Luster Dried sand (LSI-30) through random
loading. From the test results, they performed a regression analysis and presented an equation to
estimate δW .

Kusky [78] developed two equations according to 27 strain-controlled torsional triaxial tests,
which were conducted on samples of Reid Bedford.

Rokoff [79] conducted some cyclic torsional shear tests on Nevada sand to investigate the influence
of particle size distribution on δW . The regression was limited to special soil properties and geology
related to the samples of Nevada region, which contains Cu and Cc as below:

log10 (δW) = 3.6746 + 0.004877σ
′
c + 0.01039Dr + 0.21802Cu − 2.1444Cc

R2 = 0.8195
(1)

Cu = D60

D10

(2)

Cc = D2
30

D10D60

(3)

In addition, Figueroa et al. [40] confirmed that Cu and Cc affect δW more than σ
′
c and Dr. Wallin

[80] presented three equations for Nevada sand, LSFD silty sand, and Reid Bedford sand through
statistical analysis of tests results which were conducted by other researchers [39,75].

Baziar et al. [35] collected a large dataset from performed shear, cyclic triaxial, and torsional shear
laboratory test results, which contained 284 samples from the literature. They developed two Artificial
neural network (ANN) models to obtain a correlation between input parameters and Log (W ).
The first developed ANN model contained six input parameters (σ ’c, Dr%, FC%, Cu, D50, Cc) while
the second model was developed by eliminating the parameter Cc. They subsequently demonstrated
that FC has the highest effect on W by carrying out a sensitivity analysis. By adding a new
dataset to Baziar et al. [35] with the same parameters and applying multigene Genetic Programming,
Baziar et al. [45] developed an equation to measure W and then used case histories earthquake data
plus laboratory test data to validate and present the accuracy of their model. They concluded that
the value of W has a complicated relationship with FC. Alavi et al. [46] presented three equations to
estimate Log (W ) through applying MEP, GP, and MEP and with the same database and parameters
as Baziar et al. [35], as mentioned in the appandix and Table A1. In addition, they conducted sensitivity
analysis and confirmed that W is more affected by Dr and σ ’cthan other parameters. Zhang et al. [38]
collected 302 samples for their database, which contained six cyclic simple shear, 18 centrifuges, six
cyclic simple shear, and 217 cyclic tests. They developed a MARS model with the same five input
parameters with Cavallaro et al. [10] to evaluate Log (W ). They validated their model using 22
centrifuge test results conducted by Dief [81].
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3 Methodology
3.1 Artificial Neural Network

Artificial Neural Network (ANN) is defined as brain model systems, which are collections
of mathematical models containing cells (here called neurons) interconnected by links. The goal of
ANN is to utilize a training process to learn a nonlinear multiplex relation between parameters to
approximate a target (output). Training is the process of calculating weights, which indicates the
strength of the links between neurons. There are several neural network types proposed, but feed
forward neural networks are the most capable and commonly applied type. Among all classes of
neural network topologies, Hornik et al. [82] demonstrated multilayer perceptrons (MLP), which
are supervised networks, with the best capacity and ability to approximate any function with high
accuracy. These include three types of layers: an input layer which distributes the input data and
contains one neuron for each input variable, one or more hidden layers which perform non-linear
transformations, additions, and multiplications; and an output layer for estimated final results, which
contains a number of neurons equal number of targets meant to be approximated by the ANN model.
The backpropagation algorithm is one of the most commonly used algorithms for training ANN’s.
Here, connection weights are updated by estimating error and distributing it through the layers of
neurons. It contains two steps that are iterated to obtain a pre-specified tolerance range of the output.
In the first step, the network generates an output, and in the second step, the estimated error at the
output layer is distributed to the hidden layers and then to the input layer to modify the weights. Each
neuron’s error is calculated by:

Ej = ydj − yj (4)

Further, the overall neurons’ output is estimated by:

E = 1
2

∑
j

(
ydj − yj

)2
(5)

The correlation coefficient (R) is the most common and capable tool to test the performance on
networks given by:

R =
∑N

i=1 (xi − x0) (di − d0)√∑N

i=1(xi − x0)2
∑N

i=1(di − d0)2

(6)

Network samples are commonly separated into two subsets randomly; the first one is the training
set to train the network by adjusting the weights of the network, and the second one is the testing
set. Testing samples are not used in the training step and are applied to assess the performance of the
trained network. A new sample set, called validation set, should be selected to prevent overtraining
the network which occurs when the accuracy and the correlation coefficient increase, but the accuracy
and the correlation coefficient of the validation samples set decreases. When overfitting starts, training
should be stopped.

3.2 Monte Carlo Simulation and Uncertainties
The Monte Carlo method was introduced first during research on the atomic bomb in the

beginning of the 1940s. The main idea is using random samples of inputs or parameters to discover
the response of a complex process or system through observing the fraction of numbers. It involves
three main steps:
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1. Generating random input samples called scenarios.

2. Simulating each scenario to explore the response.

3. Evaluating outputs of all simulations to estimate statistics certificates and properties such as
minimum and maximum values, mean value, and distribution function for each variable.

Conservative values of loads and soil properties cannot be reliably assumed due to inaccuracy
in measurements and models, as well as the inherent variability in the systems under consideration.
In geotechnical soil properties, these uncertainties are categorized into two groups: aleatory and
epistemic [83]. Aleatory uncertainties are defined as natural randomness such as spatial variability
of soil properties and are related to inherent randomness, which cannot be reduced by adding
new data and information. Epistemic uncertainties on the other hand, are caused by a shortage of
data, information, and measurement procedures or model error as well as non-standard equipment,
laboratory instruments, and random testing effects [84]. Reliability approaches provide a formal way to
deal with uncertainties and quantify them. Monte Carlo Simulation (MCS) conducts risk assessment
by providing a probability distribution for any variables due to their uncertainties to estimate the
possible outcomes of an uncertain phenomenon.

3.3 MCS Based ANNs Response Surface for Sensitivity Analysis
The main idea of the response surface method is a computational calculation reduction. In the

classic form, the surface was approximated through an equivalent function such as polynomial form
[85], which is not capable of modeling high nonlinear phenomena [86] such as liquefaction. Thus, in
this study, the response surface which belongs to the ANN trained model is applied. The procedure of
MCS-based ANNs response surface for sensitivity analysis is described in the flowchart of Fig. 1.

A multi-layer perceptron with back propagation analysis network is 

constructed with one hidden layer 

Assigning variables’ dominant and distribution function type 

Collecting and arranging the dataset 

Perform Monte Carlo simulation (MCS) using the artificial neural 

network (ANN) model to perform sensitivity analysis 

Figure 1: Flowchart of the procedure proposed for performing sensitivity analysis
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4 Models Presented in this Study
4.1 Databases and ANN Models

In this study, two different databases were arranged to train two ANN models to investigate the
complex influence of FC on liquefaction resistance. According to previous research [23,27,29–34,36–
39,41], six parameters of σ

′
c (kPa), Dr (%), FC(%), Cu, D50 (mm), and Cc were assigned as the inputs

to create ANN models to calculate Log (W ) as a target. The first dataset includes 284 experiments
created by Baziar et al. [45], including 217 cyclic triaxial laboratory test results [87], six laboratory cyclic
simple shear experiments [87] and 61 cyclic torsional laboratory tests [39,86] in addition to 22 samples
added from Verification of Liquefaction Analyses by Centrifuge Studies (VELACS) [44,79,88], 48
cyclic trixial laboratory test results [89], 20 laboratory test results from Dief [81] and 27 cyclic torsional
laboratory test results [44]. Overall, the main dataset was created, including these 403 samples, and
divided into three groups according to the statistical factors. Of all, approximately 15% of the samples
(60 samples) were considered for the testing phase, the same sample numbers for the validating phase,
and an extra 283 samples for the training of the model. Despite the random division, the division
of samples was performed while considering statistical factors of samples to achieve more accurate
models compared to simple random allocation. Therefore, all three groups provided with similar
statistical properties, as reported in Tables 1–4. For example, in the first dataset, the mean value of FC
in the entire dataset, training group, validating group, and testing group were 18.7, 18.62, 18.1 and 19.2,
respectively. The same construction ANN of MLP with one hidden layer with the previous research [35]
were applied to focus and demonstrate the positive influence of FC value consideration and applying
the validating phase as well as data division according to statistical factors. The characteristics of the
first ANN model are presented in Table 5 with an R values higher than 90%, which defines the high
accuracy of the ANN model to predict the target of log W .

Tao [44] studied the effect of FC value on the liquefaction resistance by considering the void ratio.
He demonstrated that Dr becomes more effective when the FC grows above 28%. He declared that
there is no clear correlation between the entire range of FC and liquefaction resistance. Therefore,
in this study, the second database was arranged by collecting just samples with FC value lower than
28% to train an ANN model and hence samples with FC higher than 28% were eliminated from the
dataset. Consequently, the second dataset contains 309 samples, which were divided into three parts,
considering to have similar statistics certificates to achieve a more capable and accurate model. Around
15% of samples (44 samples) were selected for testing, equal portion and numbers for validation, and
221 samples for training the model. The characteristics and statistical factors of the second database
are summarized in Tables 6–9. For example, the mean value of FC in all datasets (including training
group, validation group, and testing group) were 7.8, 7.9 and 8.1, respectively. Note that because of
deleting 94 samples included FC value of larger than 28%, the second dataset and its subsets would
provide different statistical factors than the first dataset. The characteristics of the second ANN model
are presented in Table 10. It can be seen that the value of R for all groups in dataset division (i.e., all
data, training data, validating data, and testing data) is greater than 90%, which indicates a high power
fitting model.

Table 10: Correlation coefficient of the second ANN model

Training Testing Validating All

0.95 0.94 0.92 0.95
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4.2 Comparison of the Predicted Value of W Using the ANN Models and Available Models
In this section, the results of the ANN models are compared to the other four well-established

models i.e., GP, LGP, MEP and MARS [38,46] to evaluate their capability. For more details about
these models, refer to the Appendix.

To achieve this goal, 20 laboratory test results from Dief [81], performed on Nevada sand and
Reid Bedford sand, considering the range of applied database are selected. Note that these 20 samples
were not used in the database to construct the two ANN models developed in this study. The results
predicted by these four models and two presented ANN models are presented in Table 11.

Table 11: Results predicted by two presented ANN models, four available models and measured values
of 20 samples

Test No. Log w LGP MEP GP Zhang ANN1
a ANN2

b

1 2.568 3.044 2.841 3.046 2.282 2.82 2.64
2 2.690 3.090 2.880 3.067 2.306 2.87 2.85
3 2.771 3.115 2.887 3.085 2.308 2.91 2.96
4 2.778 3.130 2.905 3.089 2.281 2.89 2.95
5 2.895 3.138 2.901 3.098 2.282 2.95 2.88
6 2.971 3.184 2.941 3.119 2.309 3.11 3.03
7 2.968 3.191 2.937 3.128 2.304 3.12 3.05
8 3.035 3.222 2.965 3.140 2.337 3.1 3.1
9 3.148 3.211 2.948 3.141 2.360 2.98 3.05
10 3.241 3.235 2.975 3.147 2.400 3.06 3.04
11 2.740 3.347 3.093 3.188 2.385 2.69 2.79
12 2.851 3.378 3.111 3.199 2.419 2.73 2.82
13 2.940 3.435 3.154 3.224 2.416 2.87 2.88
14 2.948 3.471 3.174 3.236 2.390 2.873 2.98
15 3.035 3.472 3.180 3.239 2.388 2.97 3.02
16 3.111 3.524 3.211 3.257 2.418 2.97 3.05
17 3.049 3.544 3.229 3.268 2.400 3.02 2.99
18 3.207 3.593 3.259 3.286 2.425 3.12 3.18
19 3.064 3.610 3.275 3.296 2.429 3.15 3.13
20 3.225 3.671 3.313 3.318 2.402 3.23 3.16
Notes: a) ANN1 is the ANN model constructed on the first dataset (the first ANN model). b) ANN2 is the ANN model constructed on the
second dataset (the second ANN model).

To compare the capability and accuracy of all six models, three criteria of root mean square error
(RMSE), mean absolute error (MAE), and R2 are estimated and summarized in Table 12. As can be
seen, two ANN models show higher agreement and less error between predicted and measured results
in comparison with other available models.
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Fig. 2 illustrates that all predicted values through ANN models are close to the measured values
for log (W ). Two ANN models developed in this study predict log (W ) with high accuracy, as presented
in Table 12. The first and second ANN models predicted log (W ) with R2 of 0.77 and 0.83, respectively
that are higher than the value of extra four models. In addition, the first ANN with RMSE and MAE
values of 0.13 and 0.11, respectively, and the second ANN (referred to as ANN28 herein) with RMSE
and MAE values of 0.1 and 0.09, respectively, demonstrate the highest precision.

Table 12: Summary of comparison between two presented ANN models and four additional models

Model’s name LGP MEP GP Zhang ANN ANN28

R2 0.63 0.58 0.66 0.61 0.77 0.83
RMSE 0.4 0.18 0.26 0.62 0.13 0.10
MAE 0.37 0.16 0.23 0.6 0.11 0.09

Figure 2: Capacity energy predicted by ANN models vs. measured values of laboratory tests

Based on the illustrated figures and Table 12, the two presented ANN models are the most accurate
and capable models for predicting log (W ) and between them, the second model, which contains a
dataset with a limited FC value of less than 28%, indicates more accuracy. Note that the ANN28 model
was developed based on fewer samples due to eliminating samples with FC values larger than 28%.

4.3 Sensitivity Analysis
As mentioned in Section 4, most geotechnical parameters, soil properties, and applied loads are

uncertain. To deal with these uncertainties, reliability methods have been used to quantify and capture
these uncertainties. In this study, MC simulation was applied to perform sensitivity analysis and
investigate the influence of parameters and their uncertainties by changing their mean values and
coefficient of variations (COV) or standard deviation (ν). Monte Carlo simulation requires a large
number of samples to present a reliable response. Providing such a large number of samples is costly
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and time-consuming. Therefore, to overcome this shortage, the second ANN model was applied to
provide a response surface for MCS to be able to conduct sensitivity analysis. Phoon et al. [84]
suggested a mean COV of 19% for sand with Dr ranging from 11% to 36%; Therefore, in this study to
evaluate this parameter’s effect on log (W ), it was supposed to have a mean COV equal to 20% with
minimum and maximum value of 10% and 30%, respectively. Subsequently, σ

′
c was suggested to have

COV equal to 10% [90] to inspect the effect of its uncertainty, where the maximum and minimum COV
values were assumed to be 5% and 15%.

Furthermore, given the fact that with a small value of ν, the distribution function supposition
error is insignificant, normal distribution was assigned to all variables [90,91]. All statistical properties
of parameters are summarized in Tables 13 and 14. It should be mentioned that during parametric
sensitivity analysis of each variable, the other five variables fixed in their mean value and mean COV
value, without changing, then analysis was conducted.

Table 13: Statistics of the first ANN model’s variables

Variable σc Dr FC Cu D50 Cc

Mean value 220 36.2 50 14.8 0.25 5.7
Minimum 40 5.44 0 1.5 0.03 0.5
Maximum 400 71.5 100 28.1 0.46 10. 9
Mean value COV 0.1 0.2 0.2 0.2 0.2 0.2
Variation of COV 0.05–0.15 0.1–0.3 0.1–0.3 0.1–0.3 0.1–0.3 0.1–0.3

Table 14: Statistics of the second ANN model’s variables

Variable σc Dr FC Cu D50 Cc

Mean value 220 38.7 13 14.82 0.295 5.815
Minimum 40 5.44 0 1.52 0.13 0.74
Maximum 400 71.5 26 28.12 0.46 10.89
Mean value COV 0.1 0.2 0.2 0.2 0.2 0.2
Variation of COV 0.05–0.15 0.1–0.3 0.1–0.3 0.1–0.3 0.1–0.3 0.1–0.3

Additionally, in order to conduct a sensitivity analysis through MC simulation, a definition of
correlation coefficient (ρ) is required. By considering the independency of all six input parameters, ρ

among all parameters is supposed to be 0. The value of 2.9 was chosen for reliability analysis to assess
the cumulative probability density function. As can be observed in Fig. 3, the probability of log (W )
larger than 2.9 is illustrated as a function of the parameters and their uncertainties.
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Figure 3: The parameters vs. probability of logarithm of capacity energy greater than 2.9

By considering Fig. 3, which plots parameters vs. probability of if log (W ) be higher than 2.9, can
be seen, there is a slight increase (i.e., 15%) in log (W ) > 2.9 is observed for σ ’c from 44 to 250 and
then, it grows dramatically to 75% at σ ’c beyond 250. Upon increasing COV from 5% to 10% and then
15%, probability grows two times by 1.5%. The probability rises slightly from 4% to 60% in the range
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of Dr from 5.44 onwards. It experiences an impressive rise to 60% as Dr increases to 71.5% also, by
growing uncertainty as COV from 0.1 to 0.2, and then 0.3 in the critical range of Dr between 35%
to 70%, the probability shows two increases of 3%. During the growth of the FC value until 28%,
the probability shows slight growth from 21% to approximately 24.5% and it experiences a negligible
increase while the COV changes. Furthermore, the probability of log (W ) > 2.9 illustrates a falling
range from 100% to 0% during the range of Cu in this study. Next to that, by increasing COV from 0.1
to 0.2, and subsequently 0.3 in the critical values between 13 to 16, the probability augments around
7% every time. There was a steady climb of around 19% in the probability in the range of the D50 in
this study. In addition, by increasing any 0.1 in COV, from 0.1 to 0.2 and then 0.3, the probability rises
negligibly less than 1% for log (W ) > 2.9. Whereas, by any 10% increase in COV of Cc results show
around 2.5% growth in the probability in a sense that the probability goes up around 58% in the range
of Cc from 0.74 to 10.89.

5 Summary

In this study, ANN was used to develop models to estimate the liquefaction resistance of sandy soil
based on the capacity strain energy concept and using laboratory test data. The validating phase was
performed, in addition to the testing and training phase, to avoid overtraining the model and increasing
the model’s capability. An extensive database was collected from literature, including triaxial, simple
shear, torsional, and centrifuge test results. ANNs are powerful tools for developing models that can
take into account the complexity and non-linearity of the liquefaction issue. To inspect the complicated
influence of FC on liquefaction resistance of soil, according to research results presented by Tao
[44], two ANN models were developed. The first model was developed using a complete dataset,
while the second one was based on the samples by FC less than 28%. The accuracy and capability
of the presented models were demonstrated by comparing their predicted values for log (W ) with four
other available well-known equations. To conduct this comparison, 20 liquefaction test results from
Nevada sand and Reid Bedford sand [41], which were independent of the two applied datasets for
training the models, were considered. Finally, to investigate the effect of uncertainty in geotechnical
parameters, a sensitivity analysis was performed using MCS based on the response surface provided
by the second presented ANN model, which showed higher accuracy. The results of sensitivity analysis
were illustrated through some graphs to indicate the correlation between the variables and their
uncertainties with the liquefaction resistance of the soil in order to capacity energy. The limitation
of the present study includes its application in the issue of strain energy, not in the other methods such
as stress-based or numerical methods.

6 Conclusions

In conclusion, this study has demonstrated:

1. Artificial neural network (ANN) is a powerful tool to assess liquefaction in soil with high non-
linearity. Adding validation phase and performing data division by considering the statistical
aspects, instead of random division, provides significant precision on the model.

2. The second ANN model (considering samples with FC less than 28%) is able to predict log (W )
with higher accuracy. As it includes a smaller number of samples in the dataset in comparison
with the first ANN model, it is evident that different FC values provide a different effect on
liquefaction resistance.

3. The parameter of Cc significantly affected W and should be considered to predict the W value.
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4. The uncertainty of parameters had a considerable impact on liquefaction resistance. As a
result, performing probabilistic frameworks and models are suggested by the authors instead
of deterministic models to consider and quantitate these uncertainties’ effects.
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Appendix

Alavi et al. [46] developed three equations using genetic programming (GP), linear genetic
programming (LGP), and multi expression programming (MEP) to evaluate the strength of soil
liquefaction according to the capacity energy as below:

GP model:

log W = 20(((
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LGP model:
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MEP model:
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The normalized variables used in these three equations are defined as below:

σ
′
c,n = σ

′
c /300 Dr,n = (Dr + 40) /150 FCn = (FC + 40) /150

Cu,n = Cu/6 D50,n = D50/0.5
(A4)

Zhang et al. [38] developed an equation using MARS as below:

log W = 3.28 + 2.11 ∗ BF1 + 0.057 ∗ BF2 + 0.0034 ∗ BF3 − 0.005 ∗ BF4 − 0.0074 ∗ BF5
+0.11 ∗ BF6 + 0.00034 ∗ BF7 + 0.00038 ∗ BF8 + 157.14 ∗ BF9 − 0.018 ∗ BF10
−0.02 ∗ BF11 − 0.098 ∗ BF12 − 0.33 ∗ BF12 − 156.13 ∗ BF14

(A5)

Table A1 presents all the coefficients required in Eq. (A5).

https://doi.org/10.1016/j.soildyn.2016.11.005
https://doi.org/10.1061/(ASCE)0733-9410(1993)119:8(1276)
https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(684)
https://doi.org/10.1139/t66-009


754 CMES, 2023, vol.135, no.1

Table A1: Coefficient of Eq. (A5)

BF Equation BF Equation

BF1 max (0, D50 − 0.12) BF8 max (0, Dr − 17) ∗ max (0, 35 − FC)

BF2 BF1 ∗ max (0, Dr − 69.2) BF9 BF1 ∗ max (0, Cu − 1.68)

BF3 max
(
0, σ

′
c − 100.5

)
BF10 max (0, FC − 20)

BF4 max
(
0, 100.5 − σ

′
c

)
BF11 max (0, 20 − FC)

BF5 max (0, 17 − Dr) BF12 max (0, Cu − 2.63)

BF6 BF1 ∗ max (0, Dr − 17) BF13 max (0, 2.63 − Cu)

BF7 max (0, Dr − 17) ∗ max (0, FC − 35) BF14 BF1 ∗ max (0, Cu − 1.66)
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