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ABSTRACT

The purpose of this paper is to present the class of atomic basis functions (ABFs) which are of exponential type and
are denoted by EFupn(x, ω). While ABFs of the algebraic type are already represented in the numerical modeling
of various problems in mathematical physics and computational mechanics, ABFs of the exponential type have not
yet been sufficiently researched. These functions, unlike the ABFs of the algebraic type Fupn(x), contain the tension
parameter ω, which gives them additional approximation properties. Exponential monomials up to the nth degree
can be described exactly by the linear combination of the functions EFupn(x, ω). The function EFupn for n = 0
is called the “mother” ABF of the exponential type, i.e., EFup0(x, ω) ≡ Eup(x, ω). In other words, the functions
EFupn(x, ω) are elements of the linear vector space EUPn and retain all the properties of their “mother” function
Eup(x, ω). Thus, this paper, in terms of its content and purpose, can be understood as a sequel of the article by
Brajčić Kurbaša et al., which shows the basic properties and application of the basis function Eup (x, ω). This paper
presents, in an analogous way, the development and application of the exponential basis functions EFupn(x, ω).
Here, for the first time, expressions for calculating the values of the functions EFupn(x, ω) and their derivatives are
given in a form suitable for application in numerical analyses, which is shown in the verification examples of the
approximations of known functions.

KEYWORDS
Exponential atomic basis functions; Fourier transform; compact support; tension parameter

1 Introduction

Numerical methods are indispensable for the successful simulation of physical and engineering
problems. Many different numerical approaches and methods have been proposed in recent decades.
The classical methods are the finite element method (FEM), the finite difference method (FDM), the
finite volume method (FVM), the boundary element method (BEM), and the discrete element method
(DEM) [1–3]. In addition to traditional mesh-based methods, there are many others, such as various
meshless methods [4–6].
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The choice of the basis functions plays a key role in all numerical methods. The idea of choosing
basis functions that correspond to the class of solutions of the problems we are solving has long
been accepted, but, in practice, rarely implemented. Polynomials are fundamental to modeling and
numerical methods. They provide canonical local approximations to smooth functions and are used
extensively in geometric design. Polynomials not only provide very accurate approximations of smooth
functions but also guarantee convergence for any continuous function on a compact interval.

Whereas classical polynomials have dominated in the field of numerical analysis, spline-based
basis functions [7] play a crucial role in the field of computational geometry. The true popularity
of spline functions for numerical analysis was achieved by the introduction of the concept of
isogeometric analysis (Hughes et al. [8] and Cottrell et al. [9]). B-splines play an important role in many
areas of applied mathematics, computer science, and engineering. Typical applications arise in the
approximation of functions and data, automated design and manufacturing, computer graphics, and
numerical simulations. This diversity of areas and techniques involved makes B-splines an extremely
interesting research topic, which has attracted a growing number of scientists in universities and
industry.

In addition to spline functions, relatively lesser-known atomic basis functions have been used
in recent times [10–13]. Atomic basis functions can be placed between classical polynomials and
spline functions. However, in practice, their use as basis functions is closer to splines or wavelets (see
Beylkin et al. [14]). Rvachev et al. [10], in their pioneering work, called these basis functions “atomic”
because they span the vector spaces of all three fundamental functions in mathematics: algebraic,
exponential, and trigonometric polynomials. The authors of this article have worked intensively on the
development and application of ABFs of algebraic type in solving problems of structural mechanics
and have therefore demonstrated their significant potential compared to conventional procedures with
finite elements. Gotovac [12] systematized the existing knowledge regarding atomic basis functions
of algebraic type and transformed them into a numerically appropriate form, especially Fup basis
functions as a typical member of the atomic class of basis functions. Gotovac et al. [15] showed the
basic possibilities of using atomic functions in structural mechanics and numerical analysis. The work
in [16] gives a generalization of atomic functions to the multivariable case. The use of Fup basis
functions, which are atomic functions of the algebraic type, has been shown to solve the problem
of signal processing [17], the initial value problem [18], the boundary value problems using the Fup
Collocation Method [19], the boundary-initial value problems [20], elasto-plastic analysis of prismatic
bars subjected to torsion [21], and modeling of groundwater flow and transport problems [22].
Gotovac et al. [23] presented a true multiresolution approach based on the Adaptive Fup Collocation
Method (AFCM). Kamber et al. [24] set the foundation for an efficient adaptive spatial procedure by
developing a one-dimensional hierarchical Fup (HF) basis functions. The works in [25,26] gave a brief
analysis of the current publications regarding ABFs, from the first publications to current ones.

In the mentioned works, the advantage of atomic basis functions of algebraic type, which
significantly improve the quality of numerical solutions in relation to classical basis functions, for
example, splines and wavelets, is confirmed. The numerical results thus obtained were the motivation
for the development of ABF of the exponential type which are wider than algebraic space, moreover
algebraic ABFs space is contained in exponential ABFs space.

The numerical modeling of different physical and engineering problems characterized by large
local gradients and singularities often presents a challenge in terms of choosing a numerical approach
and basis functions. Classic examples of such are the advection–dispersion equation and the heat
conduction equation, which describe the transfer of mass and energy, respectively; beams and plates
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on a flexible foundation; and special problems of loss of stability. For the simulation of such physical
problems, exponential basis functions would be a good choice. Improving the quality of numerical
analyzes of problems whose solutions have an exponential form is the main motivation of this paper.

The atomic functions of the exponential type have been developed only at the basic level. In
[12], the previous knowledge about ABF of the exponential type was presented, which was later
expanded and upgraded in [27]. Reference [28], partly resulted from [27], showed the basic properties
and application of the maternal basis function Eup(x, ω), by which the whole class of atomic functions
of the exponential type EFupn(x, ω) is generated and given in this article as natural sequel of the [28]
to complete “the story” of the ABFs of the exponential type.

The content of this work is focused on the mathematical background, approximation properties,
and applications of exponential basis functions EFupn(x, ω). There are no articles in the literature
that deal with these basis functions. So, this paper is intended to provide novel information for
scientists and engineers who are interested in applying the state-of-the-art atomic exponential basis
functions to solve real-life problems. The paper presents expressions for the necessary mathematical
operations of the ABFs EFupn(x, ω) in a simpler, more understandable and more user-friendly way.
New expressions have been derived, especially the expression for calculating the value of the function
and the desired number of derivatives at an arbitrary point of the basis function support, which is the
original contribution of this paper and, most importantly, the rules (elements) for their practical use.

The following section of the article refers to the description of the ABF class of the algebraic type.
The procedure used to generate the class of functions Fupn(x) and the determination of their derivatives
are presented, and the basic properties are given in a new and original way, and that is starting from
the well-known Fourier transform and the convolution theorem in a way suitable for defining and
deriving the ABFs of the exponential type EFupn(x, ω), shown in Section 3. The implementation of
ABF EFupn(x, ω) in the numerical approximations of the given functions is shown in Section 4. Finally,
the conclusions are given in Section 5.

2 ABFs of the Algebraic Type: Fupn (x)

Atomic Basis Functions (ABFs) are infinitely derivable finite solutions of functional differential
equations of the type:

Ly (x) = λ
∑M

k=1
Cky(ax − bk), (1)

where L is a linear differential operator with constant coefficients, λ is a scalar quantity other than
zero, Ck are the solution coefficients, a > 0 is the support length parameter of the finite function, and
bk are the coefficients that determine the displacements of the finite basis functions [10–12,15].

The type of finite function y(x) from the class of atomic basis functions is determined by choosing
the operator L in Eq. (1). Thus, we distinguish the atomic basis functions of the algebraic, exponential,
and trigonometric types.

The functions Fupn(x) are finite ABFs of the algebraic type from the class C∞ with a compact
support, and they are also elements of the universal vector space UPn. The index n denotes the highest
degree of a polynomial that can be accurately represented in the form of a linear combination of basis
functions obtained by moving the function Fupn(x) for the characteristic segment �xn = 2−n. For
n = 0, it holds that:

Fup0(x) ≡ up(x). (2)
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The functions Fupn(x) retain all the good properties of the “maternal” function up(x) [10–12,15],
while for the development of a given function, a much smaller number than that of the basis functions
obtained by moving the function up(x) is required. For a sufficiently high n function Fupn(x) has a very
small support length, so any function Fupk(x), k < n, including the function up(x), can be expressed
using the function Fupn(x).

Unlike in references [10,11] which define ABFs from Eq. (1), the authors of this paper determine
ABFs from their known Fourier transform (FT), and then from their known FT determine everything
necessary for their use (e.g., derivatives, integrals, moments, etc.). Namely, we can say that in the
“frequency domain” the construction of ABFs becomes more transparent.

The FT of the function Fup0(x), according to Eq. (2), corresponds exactly to the FT of the function
up(x) from [15,28], i.e.,

F0(t) =
∏∞

j=1

sin (t · 2−j)

t · 2−j
. (3)

The Fourier transform of the function Fupn(x) is given by the expression [15,28]:

Fn(t) =
(

sin
(
t · 2−n−1

)
t · 2−n−1

)n+1 ∏∞

j=n+2

sin (t · 2−j)

t · 2−j
. (4)

Thus, according to Eq. (4), the functions Fupn(x) can be written in integral form:

Fupn(x) = 1
2π

∫ ∞

−∞
e−itx · Fn(t)dt. (5)

From the known FT, as is shown similarly for the function up(x) in [28], the functions Fupn(x) can
also be generated using the convolution theorem. In Eq. (4), it is seen that the FTs Fn(t) of the basis
functions Fupn(x) are equal to the product of the nth degree B-spline FT compressed on the support
of length (n + 1)2−n and the function up(x) FT from Eq. (3) compressed on a support of length 2−n.
Thus, the functions Fupn(x) can be written using the convolution theorem in the form:

Fupn(x) = Bn(2nx) ∗ up (2n+1x). (6)

According to Eq. (6), the support of the function Fupn(x) is an interval composed of n+2 segments
of length 2−n, which are called characteristic segments, that is,

supp Fupn(x) = [− (n + 2) · 2−n−1, (n + 2) · 2−n−1
]

. (7)

The functional differential equations of the basis functions Fupn(x) are of the following form
[12,15]:

Fup′
n (x) = 2

∑n+2

k=0

(
Ck

n − Ck−2
n

) · Fupn

(
2x − k

2n
+ n + 2

2n+1

)
, (8)

where Ck
n are binomial coefficients.
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Solving the functional differential Eq. (8), or Eqs. (4) and (5), is not numerically convenient for
calculating the values of the function Fupn(x). Practically, the most convenient possibility to construct
the functions Fupn(x) is in the form of a linear combination of functions up(x) mutually shifted for
the characteristic segment 2−n, i.e.,

Fupn(x) =
∑∞

k=0
Ck(n) · up

(
x − 1 − k

2n
+ n + 2

2n+1

)
. (9)

The “zeroth” coefficient follows from Eq. (9) and is

C0 = 2C2
n+1 = 2n(n+1)/2. (10)

The other coefficients are obtained in the form Ck (n) = C0 (n) · C ′
k (n) ,, where the auxiliary

coefficients C ′
k(n) are calculated by the recursive formula [15]:

C ′
0 (n) = 1, for k = 0; for k > 0:

C ′
k(n) = (−1)kCk

n+1 − ∑min{k;2n+1−1}
j=1 C ′

k−j (n) · δj+1.
(11)

The coefficients from Eq. (11) for n ≤ 6 and k ≤ 9 are given in Table 1.

Table 1: Coefficients C ′
k(n) for n ≤ 6 and k ≤ 9

C ′
kn C ′

0 C ′
1 C ′

2 C ′
3 C ′

4 C ′
5 C ′

6 C ′
7 C ′

8 C ′
9

n

0 1 0 0 0 0 0 0 0 0 0
1 1 −1 1 −1 1 −1 1 −1 1 −1
2 1 −2 2 −2 3 −4 4 −4 5 −6
3 1 −3 4 −4 5 −7 8 −8 10 −14
4 1 −4 7 −8 9 −12 15 −16 18 −24
5 1 −5 11 −15 17 −21 27 −31 34 −42
6 1 −6 16 −26 32 −38 48 −58 65 −76

The derivatives of the function Fupn(x) are obtained by a linear combination of the derivatives of
the shifted functions up(x) using the coefficients from Eq. (11), i.e.,

Fup(m)

n (x) =
∑∞

k=0
Ck(n) · up(m)

(
x − 1 − k

2n
+ n + 2

2n+1

)
, (12)

where m is the order of derivation, and n is the order of the basis function. Fig. 1 shows the function
Fup2(x) and its first three derivatives. The third, and all further derivatives, of the function Fup2(x)

correspond in parts to the compressed function up(x).

The integrals of the function Fupn(x) are also obtained by a linear combination of the integrals of
the shifted functions up(x) using the coefficients from Eq. (11):∫ x

−∞
Fupn (x) dx =

∑∞

k=0
Ck

∫ x

−∞
up

(
x − 1 − k

2n
+ n + 2

2n+1

)
dx. (13)
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Figure 1: Function Fup2(x) and it is first three derivatives

3 ABFs of the Exponential Type: EFupn (x, ω)

The functions EFupn(x, ω) are finite functions of class C∞ with compact support, and are the
elements of linear vector space EUPn [12,27,28], and retain all the properties of their “maternal” basis
function Eup(x, ω). The index ‘n’ denotes the largest degree of an exponential monomial that can be
represented exactly in the form of a linear combination of mutually shifted functions EFupn(x, ω) on
a characteristic segment of length �xn = 2−n.

3.1 Generating the Fourier Transform of the Function EFupn(x, ω)
The Fourier transform of the atomic basis function EFupn(x, ω) is constructed by a similar

procedure applied to the function Fupn(x) using the so-called “fragmentation process” of the FT as
shown below.

The first from the ABF class of the exponential type EFupn(x, ω) for n = 0 is precisely the
“maternal” basis function Eup(x, ω), i.e.,

EFup0 (x, ω) = Eup (x, ω). (14)
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Thus, according to Eq. (14), the Fourier transform of the function EFup0(x, ω) is determined by
the expression from [28]:

F0(t) =
∏∞

j=1

ω

2sh(ω/2)

sh(ω/2 + i · t/2j)

ω/2 + i · t/2j
. (15)

Writing Eq. (15) in an extended form, applying the basic trigonometric relations, and fragmenting
the expression thus obtained (omitting the term ch (α/2)), after arranging the expression, we obtain
the Fourier transform of the finite function EFup1(x, ω) of the form:

F1(t) =
(

ω

2sh(ω/2)

sh(ω/2 + i · t/4)

ω/2 + i · t/4
ω

4sh(ω/4)

sh(ω/4 + i · t/4)

ω/4 + i · t/4

)
·
∏∞

j=3

ω

2sh(ω/2)

sh(ω/2 + i · t/2j)

ω/2 + i · t/2j
.

(16)

The expression in parentheses from Eq. (16) represents the FT of the corresponding exponential
spline, while the product from Eq. (16) is the FT of the function Eup(x, ω) from Eq. (15), condensed on

the support
[
−1

4
,

1
4

]
(see Fig. 2b). Continuing the presented procedure and generalizing it, we obtain

the class of Fourier transforms of the exponential functions EFupn(x, ω) in the form:

Fn(t) =
∏n+1

j=1

ω

2jsh(ω/2j)
· sh(ω/2j + i · t/2n+1)

ω/2j + i · t/2n+1
·
∏∞

k=n+2

ω

2sh(ω/2)
· sh(ω/2 + i · t/2k)

ω/2 + i · t/2k
. (17)

Thus, analogously to the ABF Fupn(x), according to Eq. (17), the function EFupn(x, ω) can be
written using the convolution theorem in the following form:

EFupn (x, ω) = [
ϕ0

0 (x, ω) ∗ . . . ∗ ϕn
0 (x, ω)

] ∗ 2n+1Eup(2n+1 · x, ω), (18)

where

ϕ
j
0 (x, ω) = 2j−1 · ω

sh(ω/2n−j+1)
e2jωx, j = 0, . . . , n (19)

are the zero-degree exponential splines ϕ
j
0 (x, ω) normalized to the support supp ϕ

j
0 (x, ω) =

[−2−(n+1), 2−(n+1)]. The convolution of splines ϕ
j
0 (x, ω) in square brackets in Eq. (18) represents the

corresponding exponential spline of nth degree fn (x, ω); thus, Eq. (18) can also be written in the form:

EFupn (x, ω) = fn (x, ω) ∗ 2n+1 Eup(2n+1 · x, ω). (20)

When the parameter ω weighs zero, the exponential ABF turns into an algebraic ABF, so Eqs. (17)
and (20) become Eqs. (4) and (6), respectively.

Fig. 2 shows a graphical interpretation of Eq. (18) (or Eq. (20)), i.e., the procedure for generating
the function EFupn(x, ω), n = 0, 1, 2 using the convolution theorem. For example, the function

EFup2(x, ω) represents the convolution of four functions normalized to the support
[
−1

8
,

1
8

]
: three

zero-degree exponential splines and the condensed Eup(x, ω) function, as shown in Fig. 2c, i.e.,

EFup2(x, ω) = ω · eωx

2 · sh
(ω

8

) *
ω · e2ωx

sh
(ω

4

) *
2 · ω · e4ωx

sh
(ω

2

) * 8 · Eup (8x, ω).
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(a)

(b)

(c)

Figure 2: Generating the exponential functions EFupn (x, ω) for: (a) n = 0; (b) n = 1; (c) n = 2
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According to Eq. (18), the support of the function EFupn(x, ω) is an interval composed of (n + 2)

segments of length 2−n. The characteristic points are the boundary points of the characteristic segment.

The inverse Fourier transform, i.e., the function EFupn(x, ω), having satisfied the Paley–Wiener
normalization condition, can be expressed in the form:

EFupn(x, ω) = 1
2π

∫ ∞

−∞
e−itxFn(t)dt. (21)

By developing Eq. (21) in the Fourier series, the “original” of the function EFupn(x, ω) can be
determined at arbitrary points. However, as for the algebraic ABFs Fupn(x), the most favorable
possibility of constructing the EFupn(x, ω) functions is in the form of a linear combination of shifted
Eup(x, ω) functions, as shown below.

Fig. 3 shows the function EFup2 (x, ω) for different values of the parameter ω. Similar to the
“maternal” function Eup (x, ω), the function is tilted to the left for negative values of the parameter
ω, while for positive ones it is tilted to the right. In the limitary case when ω → 0, the exponential
function EFup2 (x, ω) is identically equal to the algebraic function Fup2 (x).

Figure 3: Function EFup2(x, ω) for different values of the parameter −10 ≤ ω ≤ 10

3.2 Functional Differential Equation of the Function EFupn(x,ω)
Analogous to the algebraic ABF Fupn(x), the functional differential equation of the function

EFupn(x, ω) is determined from the Fourier transform (17), which can also be written as follows:

Fn(t) = ω

2n+1sh(ω/2n+1)
· sh(ω/2n+1 + i · t/2n+1)

ω/2n+1 + i · t/2n+1
·
∏n+1

k=2

ch(ω/2k + i · t/2n+2)

ch(ω/2k)
· Fn

(
t
2

)
. (22)
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If Eq. (22) is written in the form of exponential functions and multiplied by (ω + it), arranging
the members of the left and right sides gives the functional differential equation of the function
EFupn(x, ω) of the form:

EFup′
n(x, ω) − ω · EFupn(x, ω) =

∑2n+1

i=1
αi · EFupn(2x + βi, ω), (23)

where the coefficients are

βi = ±
{

j · 2−2s for n = 2s
(2j + 1) · 2−2s for n = 2s − 1

; j = 1, 2, . . . , 2s (24)

and

αi = 2ω

eω − 1

[
An

i (ω) − An
n+2−i(−ω)

]
, (25)

where

An
i (ω) =

{
0 for i > n
eω/2n · An−1

i−1 (ω) + An−1
i (ω) for i ≤ n

; A0
0(ω) = e−ω/2. (26)

In particular, when the value of the parameter ω = 0, Eqs. (23)–(26) become equivalent to Eq. (8).

3.3 The Values of the Function EFupn(x, ω) in Characteristic Points
The values of the functions EFupn(x, ω) at arbitrary discrete points x can be determined by

Convolution (20) as a solution of the following integral:

EFupn(x, ω) = 2n+1

∫ ∞

−∞
fn(x − t, ω) · Eup(2n+1t, ω)dt, (27)

where fn(x, ω) is the corresponding exponential spline defined as the result of the convolution of zero-
degree exponential splines, i.e.,

fn (x, ω) = ϕ0
0 (x, ω) ∗ . . . ∗ ϕn

0 (x, ω) , (28)

while ϕ
j
0 (x, ω) are determined by Eq. (19).

However, calculating the integral (27) at arbitrary points x is not a simple or numerically favorable
procedure, and therefore solving the integral (27) is used only to determine the values of the basis
functions EFupn(xk, ω) at the characteristic points xk.

Fig. 4 shows the graphical interpretation of the integral (27) for the basis function EFup2(x, ω) at

the characteristic points xk = −1
4

, 0,
1
4

.

For example, the value of the function EFup2(x, ω) at the point xk = −1/4, according to Eq. (27),
corresponds to the solution of the following integral:

EFup2 (xk, ω) = 8 ·
∫ xk+3/8

−1/8

f2 (xk − t) · Eup (8t, ω) dt, (29)

which, when written in exponential form and using the appropriate substitutions after arranging, has
the final form:

EFup2

(
−1

4
, ω

)
= e−3ω/4 · (e3ω/4 + 3 · eω/2 + 3 · eω/4 + 3)

3 · (eω/4 + 1) · (eω/2 + eω/4 + 1)
· λ0(ω), (30)



CMES, 2023, vol.135, no.1 75

where λ0(ω) is the value of the “maternal” function Eup (x, ω) at the local origin, i.e., the point x = 0,
see [28].

Figure 4: The values of the function EFup2(x, ω) at the characteristic points xk = −1
4

, 0,
1
4

using the

convolution theorem

The values at other characteristic points of the function EFup2 (x, ω) are determined by an
analogous procedure:

EFup2 (0, ω) = e−ω/4 · (
3 · eω + 6 · e3·ω/4 + 8 · eω/2 + 6 · eω/4 + 3

)
3 · (eω/2 + eω/4 + 1)

· λ0 (ω) ,

EFup2

(
1
4

, ω
)

= e3·ω/4 · (
3 · e3·ω/4 + 3 · eω/2 + 3 · eω/4 + 1

)
3 · (eω/4 + 1) · (eω/2 + eω/4 + 1)

· λ0 (ω) , (31)

or the values of the basis functions EFupn(x, ω) at the characteristic points in general.

As seen in Eqs. (30) and (31), the values of the functions EFupn(x, ω) at the characteristic points
xk have a “final” inscription in the form of the product of the corresponding exponential function and
the values of the function Eup(x, ω) at the point x = 0, i.e., λ0(ω) given in [28].

3.4 EFupn(x, ω) as a Linear Combination of Shifted Eup(x, ω) Functions
The values of the basis functions EFupn(x, ω) at arbitrary points can be determined, among other

methods, by developing Eq. (21) in the Fourier series. However, analogous to the algebraic ABF,
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the most favorable possibility of constructing the functions EFupn(x, ω) is in the form of a linear
combination of mutually shifted Eup (x, ω) basis functions:

EFupn(x, ω) =
∑∞

k=0
Ck (n) · Eup

(
x − 1 − k

2n
+ n + 2

2n+1
, ω

)
, (32)

where Ck (n) are the coefficients of the linear combination.

The “zeroth” coefficient C0 (n) is determined in [27] by the expression

C0 (n) =
∏n

i=1
(eω/2n−i+1 + 1)i. (33)

The other coefficients of the linear combination Ck(n), k = 1, . . . , n + 1 are unknown and are
determined as described below.

For example, for the basis function EFup2(x, ω), the linear combination (32) has the following
form (hereinafter, the functions Eup (x, ω) will be denoted by yω(x) for transparency):

EFup2 (x, ω) = C0 (2) ·yω

(
x − 1

2

)
+C1 (2) ·yω

(
x − 3

4

)
+C2 (2) ·yω (x − 1)+C3 (2) ·yω

(
x − 5

4

)
, (34)

or written in characteristic points:

EFup2

(
−1

4

)
= C0 (2) · yω

(
−3

4

)
;

EFup2 (0) = C0 (2) · yω

(
−1

2

)
+ C1 (2) · yω

(
−3

4

)
;

EFup2

(
1
4

)
= C0 (2) · yω

(
−1

4

)
+ C1 (2) · yω

(
−1

2

)
+ C2 (2) · yω

(
−3

4

)
;

EFup2

(
1
2

)
= C0 (2) · yω (0) + C1 (2) · yω

(
−1

4

)
+ C2 (2) · yω

(
−1

2

)
+ C3 (2) · yω

(
−3

4

)
= 0, (35)

where the values of the basis function EFup2 (x, ω) at the characteristic points are known and are
calculated as shown in Section 3.3.

The expression for the “zeroth” coefficient follows directly from the first equation in Eq. (35):

C0 (2) = EFup2(−1/4)

yω(−3/4)
. (36)

By including the values from (30) and yω(−3/4) from [28] in Eq. (36), we obtain

C0 (2) = (eω/4 + 1) · (eω/2 + 1)2, (37)

which corresponds to Eq. (33) for n = 2.

The “first” coefficient of the linear combination (34) follows from the second equation in Eq. (35)
in the form:

C1 (2) = EFup2(0) − C0(2) · yω(−1/2)

yω(−3/4)
. (38)

By including the coefficient C0 (2) and the other required values, we obtain

C1 (2) = −eω/4 · (eω/4 + 1) · (eω/2 + 1). (39)
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The expression for the “third” coefficient follows from the third equation in Eq. (35), and so on.
By generalizing the presented procedure, a general expression for the coefficients Ck (n) is obtained in
the form of a recursive formula:

Ck (n) =
EFupn

(
−n + 2

2n+1
+ k + 1

2n
, ω

)
− ∑k

i=1 Ci−1 (n) · Eup
(

−1 + k + 2 − i
2n

, ω
)

Eup (−1 + 2−n, ω)
, (40)

where the coefficients C0 (n) are determined by (33).

Thus, to determine the coefficients Ck(n), k = 0, . . . , n + 1 of the linear combination (32), it
is necessary to know the “zeroth” coefficient C0 (n) and the values of the functions Eup (x, ω) and
EFupn(x, ω) at the characteristic points xk.

In the limit when ω → 0, the coefficients Ck (n) for the development of the exponential functions
EFupn(x, ω), n = 1, . . . , 6 from Eq. (40) become the coefficients Ck (n) for the development of the
algebraic basis functions Fupn(x) in the form of a linear combination of mutually shifted functions
up(x) from Eq. (9).

Fig. 5 shows the function EFup2(x, ω) in the form of a linear combination of mutually shifted
Eup(x, ω) basis functions.

Figure 5: Function EFup2(x, ω) as a linear combination of shifted Eup(x, ω) basis functions
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3.5 The Derivatives and Integrals of the Function EFupn(x, ω)
The derivatives of the function EFupn(x, ω) are obtained by a linear combination of the derivatives

of the shifted Eup(x, ω) functions using the coefficients specified in the previous section:

EFup(m)

n (x, ω) =
∑∞

k=0
Ck (n) · Eup(m)

(
x − 1 − k

2n
+ n + 2

2n+1
, ω

)
. (41)

Fig. 6 shows the basis function EFup2(x, ω) and its first three derivatives for the value of the
parameter ω = 2.

Figure 6: Function EFup2(x, ω) and the first three derivatives
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The integrals of the function EFupn(x, ω) are also obtained by a linear combination of the integrals
of the shifted Eup(x, ω) functions:∫ x

−∞
EFupn (x, ω) dx =

∑∞

k=0
Ck (n)

∫ x

−∞
Eup

(
x − 1 − k

2n
+ n + 2

2n+1
, ω

)
dx. (42)

3.6 The Connection between the Function EFupn(x, ω) and the Exponential Monomials
Similar to the function Eup(x, ω) [28], which is only a special case of the function EFupn(x, ω)

for n = 0, a connection between the functions EFupn(x, ω) and exponential monomials e2nω·x can be
established.

For a linear combination of the basis functions EFupn(x, ω),

ϕ (x) =
∑∞

k=−∞
C(n)

k · EFupn

(
x − k · 2−n, ω

)
, (43)

(offset from each other for the characteristic section �xn = 2−n) to represent an exponential
monomial of degree n, it is necessary and sufficient that by the action of the differential operator
from [12,28] for a given n ∈ N

Ln =
∏n

j=1

(
d/dx − 2j−1ω

)
(44)

on Eq. (43), the linear combination on the right is annuled.

For example, we show the calculation of the coefficients in the case of the basis function
EFup2 (x, ω). Fig. 7 shows the disposition of the basis functions EFup2 (x, ω). Such an disposition of
the basis functions accurately develops the exponential monomials up to and including the second
degree, as well as the exponential polynomials formed by their combination. By the action of the
operator from Eq. (44) on Eq. (43) for n = 2, the following recursion is obtained:

a1 · C(2)

k−1 + a2 · C(2)

k + a3 · C(2)

k+1 + a4 · C(2)

k+2 = 0, (45)

where
a1 = 64 · ω3 · e7·ω/4/N

a2 = −64 · ω3 · e3·ω/4 · (
e3·ω/4 + eω/2 + 1

)
/N

a3 = 64 · ω3 · eω/4 · (
e3·ω/4 + eω/4 + 1

)
/N

a4 = −64 · ω3/N

N = (
eω/4 + 1

)2 · (
1 − eω/4

)3 · (
eω/2 + 1

)
or, after reordering:

e7·ω/4 · C(2)

k−1 + e3·ω/4 · (
e3·ω/4 + eω/2 + 1

) · C(2)

k + eω/4 · (
e3·ω/4 + eω/4 + 1

) · C(2)

k+1 + C(2)

k+2 = 0. (46)

By introducing the substitution C(2)

k = λk in Eq. (46), we obtain a characteristic equation whose
roots are

λ0 = eω/4; λ1 = eω/2; λ2 = eω. (47)

“Recompositioning” the roots (47) gives the general form of the coefficients C(n)

k for n = 2:

C(2)

k = A(2)

0 e(ω/4)k + A(2)

1 e(ω/2)k + A(2)

2 eωk, (48)
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or

C(2)

k =
n∑

j=0

A(2)

j eωk/2n−j
. (49)

The coefficients A(2)

j from Eq. (49) are calculated from the following system of equations:

C(2)

k−1 · EFup2 (1/4, ω) + C(2)

k · EFup2 (0, ω) + C(2)

k+1 · EFup2 (−1/4, ω) = eωk·�x

C(2)

k · EFup2 (1/4, ω) + C(2)

k+1 · EFup2 (0, ω) + C(2)

k+2 · EFup2 (−1/4, ω) = eω(k+1)·�x

C(2)

k+1 · EFup2 (1/4, ω) + C(2)

k+2 · EFup2 (0, ω) + C(2)

k+3 · EFup2 (−1/4, ω) = eω(k+2)·�x

For k = 0 and �x = 1/4, we obtain

A(2)

0 = 1
e−ω/4 · EFup2 (1/4, ω) + EFup2 (0, ω) + eω/4 · EFup2 (−1/4, ω)

, A(2)

1 = 0, A(2)

2 = 0.

In general, the exponential monomial e2mωx, m = 0, 1, . . . , n, n ∈ N on a segment of length 2−n

can be accurately represented by the linear combination of the (n + 2) · 2n basis functions EFupn (x, ω)

offset from each other by 2−n in the form:

e2mωx =
∑∞

k=−∞

e2m ·ω·k·�xn

A(m)
n

· EFupn(x − k · �xn, 2n · ω · �xn) ; m = 0, 1, . . . , n, (50)

where the coefficients A(m)

n (calculated from Eq. (49) for x = 0) are of the following form:

A(m)

n =
∑(n+2)·2n−1

i=−(n+2)·2n−1
e2m ·ω·i·�xn · EFupn

(
− i

�xn

, 2n · ω · �xn

)
. (51)
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Figure 7: Composition of the EFup2(x, ω) functions in a linear combination to obtain monomials
ϕ (x) = eω·x·2n

4 Practical Use of the Exponential ABF EFupn (x, ω)

For practical use we created the efupnM module to calculate the values of the functions
EFupn (x, ω) and their derivatives at arbitrary points. The use of the software modules comes down to
simply describing a function in a similar way to that of, for example, the trigonometric function sine:
sin(ωx + ϕ) → sine (omega, xpoint, fi). Fig. 8 shows a graphical interpretation of the variables that
need to be specified when using the efupnM module.

dummy = efupnM (NFUP, OMEGA, VERTEX, DELTAX, XPOINT, KOD, NMAX),

where:

NFUP = n - the order of the function EFupn(x, ω);



CMES, 2023, vol.135, no.1 81

OMEGA - frequency or tension parameter;

VERTEX - x-local coordinate system coordinates (located in the center of the support);

DELTAX - the real length of the characteristic segment;

XPOINT - the real x-coordinate of the arbitrary point at which the value of the function
EFupn(x, ω) is sought;

KOD - the order of derivation of the function;

NMAX - accuracy parameter (depends on computer characteristics).

Figure 8: Using the efupnM software module to calculate the values of the basis functions Fupn(x) and
EFupn(x, ω)

4.1 Determination of the Best Frequency in the Function Approximation
The basis functions of the exponential type, such as trigonometric functions, exponential splines,

or ABFs of the exponential type, contain the parameter ω that provides them additional approximation
properties. However, their application in numerical analysis is limited by the fact that the value of the
parameter ω is, in most cases, unknown, and there is no universal criterion for choosing its value.

In this paper, the value of the parameter ω is determined using the least squares method by
adopting the value of the parameter that gives the smallest deviation between a given function and
its approximation at each characteristic segment of length �x. This method proved to be simple and
efficient, and is shown in the example of the exponential function below.

Let there be given a function at the section AB = [0, 1] in the form:

f (x) = e10(x−1), x ∈ [0, 1] . (52)

Using the two characteristic segments of the length �x = 0.5 and the formation of the basis
functions according to Fig. 7, the corresponding approximations are determined using the basis
functions Fup2 (x) and EFup2 (x, ω).

As previously shown in Section 3.6, the linear combination of the basis functions EFupn (x, ω)

identically approximates the exponential monomials (as well as their linear combination), i.e., the given
function (52), for any number of basis functions or characteristic segments �x in the region AB, as
shown in Fig. 9. On the other hand, the approximation of the function (52) using the basis functions
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Fup2 (x) shows a significant deviation from the given function on a small number of segments, as shown
in Fig. 9.

x

f(
x)

0 0.25 0.5 0.75 1

-1

-0.5

0

0.5

1 Aprox EFup2(x,�)
Aprox Fup2(x)
Exact

BA

Figure 9: Comparison of the given function (52) and approximations obtained using algebraic and
exponential (frequency ω = 10) ABFs for n = 2

Thus, the criterion for choosing the parameter’s value is in terms of least squares:

snk (ω) =
ns∑

k=1

∫ [
f (x) − f̃ (x)

]2

dx = min, (53)

where f (x) is a given function, f̃ (x) is an approximation of a given function, and ns is the number of
characteristic segments �x in the domain AB.

Fig. 10 shows the values of the least squares sum (53) for the approximations obtained by the
values of the parameter ω in the interval [0, 60] with a step �ω = 0.1.

Since the frequency of the given function (52) is known and is ω∗ = 10, it is to be expected that, for
the given value of ω∗, the least squares sum (53) for approximation by the exponential basis functions
EFup2 (x, ω∗) will be equal to zero; however, according to Section 3.6, for the values of the parameter
ωi = 2m · ω∗, m = 0, 1, 2 also, which is confirmed in Fig. 10.

This confirms that the least squares method is a reliable, simple, and optimal choice of criteria for
the determination of the value of the parameter ω.
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Figure 10: Values of the least squares sum of the approximation obtained by the basis functions
EFup2 (x, ωi) for the different values of the parameter ω on the interval I = [0, 60]
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4.2 Example 1: Approximation of a High-Degree Polynomial
An algebraic polynomial of degree 12 is approximated

f (x) = 858 · x2 · (1 − x)
10 , x ∈ [0, 1] . (54)

Unlike the previous example where the value of the parameter ω followed from the function itself,
here we have a “problem” of choosing the value of the parameter ω. The procedure for determining the
value of the parameter ω is reduced to the simultaneous direct solution of the linear system of Eq. (43)
using the point collocation method for different values of the parameter ω. Of all the numerical
solutions thus obtained, the one that gives the minimum of the least squares function (53) for a given
number ns of characteristic segments �x is adopted.

Fig. 11 shows the values of the least squares sum of the approximation obtained by the
EFup2 (x, ω) basis functions on two characteristic segments for the values of the parameter ω on
the interval I = [−30, 10] with the step �ω = 0.1.
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Figure 11: Values of the least squares sum of the approximation obtained by the basis functions
EFup2 (x, ωi) for the values of the parameter ω on the interval I = [−30, 10]

The minimum value of the least squares sum for two characteristic segments was obtained for the
approximation using the exponential basis functions EFup2 (x, ω), when the value of the parameter
ω = −16.5, and is Ls = 0.113453941003, while the value of the least squares sum of the approximation
obtained by the algebraic basis functions Fup2 (x), i.e., when the value of the parameter ω = 0.0, for
the same number of sections is 2.62204156514.

Fig. 12 shows a comparison of the given function (54) with the approximations obtained by the
algebraic basis functions Fup2(x) and the exponential basis functions EFup2(x, ω) for four different
segment lengths �x = 1/ns, where ns = 2, 4, 8, 16.

In Figs. 12a and 12b, it can be seen that for a small number of characteristic segments, the approxi-
mation by the exponential basis functions EFup2(x, ω) gives a significantly better approximation to the
given function (54) than the approximation obtained by the algebraic functions Fup2(x), while as the
number of segments (ns) increases, this difference in approximations decreases, as shown in Figs. 12c
and 12d.

In order to draw a conclusion regarding the character of the convergence of the mentioned
numerical approximations to a given function, it is necessary to perform a calculation by increasing the
number of segments to a certain desired accuracy of the results. From Fig. 12, it can be seen that the
best approximation is achieved using the exponential basis functions with different parameterω values
depending on the number of segments in the area (ns). Fig. 13 shows the values of the parameter ω
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obtained by the least squares method in relation to the number of characteristic segments in the area.
It can be seen that the value of the parameter ω is sensitive to discretization of the domain only for
a small number of sections up to ns = 16, while when the number of sections is greater than 16,
the parameter ω has a constant value of −19.0. Therefore, the convergence diagram of the numerical
solution for the exponential basis functions EFup2 (x, ω) is obtained using the values ω = −19.0.

A
pr

ox

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

EFup2(x,�1)
Fup2(x)
Exact

ns = 2

�1= -16.5

Ls(�1) = 0.113453941003

�2= 0.0

Ls(�2) = 2.62204156514

(a)

xx

A
pr

ox

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

EFup2(x,�1)
Fup2(x)
Exact

ns = 4

�1= -9.5

Ls(�1) = 0.19559201E-02

�2= 0.0

Ls(�2) = 0.59642945764

(b)

x

A
pr

ox

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

EFup2(x,�1)
Fup2(x)
Exact

ns = 8

�1= -6.0

Ls(�1) = 0.58034012E-03

�2= 0.0

Ls(�2) = 0.51321342E-02

(c)

x

A
pr

ox

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

EFup2(x,�1)
Fup2(x)
Exact

ns = 16

�1= -20.0

Ls(�1) = 0.79006288E-05

�2= 0.0

Ls(�2) = 0.32154533E-04

(d)

Figure 12: Comparison of the approximations with a given function (54) using the algebraic and
exponential ABFs for: (a) ns = 2, (b) ns = 4, (c) ns = 8, and (d) ns = 16
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Figure 13: Dependence of the parameter’s ω value on the number of characteristic segments in the
approximation of the given function (54) using the EFup2 (x, ω) basis functions

The diagrams in Fig. 14 show, on a logarithmic scale, the relationship between the error expressed
over the L2-norm and the segment length �x for the approximations obtained by the basis functions
Fup2 (x) and EFup2 (x, ω). It can be observed that the approximation obtained by the exponential
ABFs achieves greater accuracy compared to the approximation obtained by the algebraic ABFs.
Both diagrams show that the expected convergence rate is achieved, which, for the problem of the
approximation of a given function, is p = n + 1.
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Figure 14: Convergence diagrams of the accuracy of the numerical approximations obtained by the
Fup2 (x) and EFup2 (x, ω) basis functions

4.3 Example 2: Approximation of a Sudden Jump Function
The following function on the interval [0, 1] is analyzed:

f (x) = −TANH((x − 0.5)/0.02). (55)
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Fig. 15 shows a comparison of the given function (55) with the approximations obtained by the
algebraic basis functions Fup2(x) and the exponential basis functions EFup2(x, ω) for the segments of
the lengths �x = 1/ns where ns = 2, 4, 8, 16. It can be observed that exponential ABFs better describe
the given function near the jump, while in the parts of the domain where the given function has a
constant value, the approximation obtained by EFup2(x, ω) shows higher oscillations compared to the
approximation obtained by Fup2 (x) function. Fig. 15 also shows that, for this example of the function
with a sudden jump, the exponential basis functions EFup2 (x, ω) achieve a better approximation than
the algebraic Fup2 (x) basis functions for a smaller number of segments in the domain, while for a larger
number of segments, the accuracy of the approximation equates that obtained using the functions
Fup2 (x).
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Figure 15: Comparison of the approximations with a given function (55) using the algebraic and
exponential basis functions for: (a) ns = 2, (b) ns = 4, (c) ns = 8, and (d) ns = 16
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4.4 Example 3: Solving the Differential Equation of Conduction
Let a given differential equation of conduction with corresponding boundary conditions be

d2u
dx2

+ ω · du
dx

= 0; u (0) = 0; u (1) = 1. (56)

with known exact solution of the form

u (x) = eω·x − 1
eω − 1

. (57)

Fig. 16 shows the dependence of the solution of Eq. (56) on the parameter ω, and how, for high
values of ω, the solution function shifts to the right boundary.
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Figure 16: Dependence of the exact solution of the conduction problem (56) on the frequency ω

Fig. 17 compares the exact solution (57) of the conduction problem (56) with the solutions
obtained using the basis functions Fup2 (x) and EFup2 (x, ω) with the point collocation method for
the characteristic segment �x = 0.25, i.e., with a total of seven basis functions on the domain.

Approximation using the basis functions of the algebraic type is limited by the Peclet number
Pe = �x · ω < 2 because, at high values of the Pe, there is a numerical error and oscillation in
the approximate solution. For the atomic basis functions of the exponential type there is no such a
restriction.

In Fig. 17a for ω = 2 and Pe = 0.5 	 2, the solutions coincide with the exact solution. In Fig. 17b
for ω = 5 and Pe = 1.25 < 2, the solution obtained with EFup2 (x, ω) fully corresponds to the correct
solution, while the solution obtained with Fup2 (x) shows a deviation from the exact one, but still does
not oscillate. In Fig. 17c for ω = 10 and Pe = 2.5 > 2, the solution obtained with EFup2 (x, ω) still
fully corresponds to the exact solution, while the solution obtained with Fup2 (x) begins to oscillate
significantly around the exact solutions. In Fig. 17d, for ω = 10000 and Pe = 2500 
 2, the
solution obtained with EFup2 (x, ω) corresponds to the exact solution, while the solution obtained
with Fup2 (x) satisfies the boundary conditions and the differential equation at the collocation points
but is completely unusable.
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Figure 17: Comparison of the numerical solutions of Eq. (56) obtained by the Fup2 (x) and EFup2 (x, ω)

basis functions with the exact solution

5 Conclusion

The current knowledge regarding algebraic atomic basis functions Fupn(x) is synthesized in
the paper. Their basic properties are described, and the expressions for the necessary mathematical
operations are presented in a simpler, more understandable, and user-friendly way. Very little was
known about the ABFs of the exponential type, and they were developed only at the basic level in
[12,27,28]. In this paper, the basic properties of the functions EFupn(x, ω) are shown using the same
approach as that for the ABFs of the algebraic type. The expressions for calculating the values of
the functions and the desired number of derivatives at arbitrary points of the basis function support
and, most importantly, the rules (elements) for their practical use are derived. The EFupnM software
module for the practical application of these functions is also shown.

In the examples of the approximations of given functions, namely, a high-degree algebraic
polynomial representing an asymmetric function and functions with a sudden jump, the exponential
basis functions EFupn(x, ω) show better properties compared to the basis functions of the algebraic
type Fupn(x). This is especially evident in approximations that use a smaller number of basis functions.
As the number of basis functions in the region increases, the approximation properties EFupn(x, ω)

of the functions are equated with the properties of the functions Fupn(x). The advantage of the



CMES, 2023, vol.135, no.1 89

EFupn(x, ω) function comes to expression especially when solving a differential equation of conduction
that has an exact solution in the form of an exponential-type function. The exponential basis functions
give a better approximate solution of high accuracy with the absence of the oscillations of the numerical
solution.

Algebraic atomic basis functions have been used for many years to solve various numerical
problems, and their advantage over other basis functions has become unquestionable. The ABFs of
the exponential type show even better approximation properties, as demonstrated in this paper. The
only question that still remains open is the choice of the value of the tension parameter ω. As with
exponential splines, this complex issue requires further research both in one-dimensional problems
and in the higher dimensions of space. In this paper, for the parameter selection criterion, we used the
least squares sum, which proved to be simple and reliable. However, a disadvantage was the additional
CPU time required to simultaneously solve the system of equations for the purpose of obtaining the
approximations for different values of the parameter ω. This could be reduced by reducing the search
interval of the parameter values according to the properties of a given numerical problem, i.e., whether
it is an approximation of a given function or solving a differential equation.

Our further research should include an improvement of the procedure for finding the optimal
value of the tension parameter. The natural sequence of development and application of the ABF of the
exponential type leads to 2D and 3D numerical analysis. The advantage of ABF of the exponential type
can be suitable for the application of adaptive procedures in the problems of computational mechanics.
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19. Kozulić, V., Gotovac, B. (2000). Numerical analyses of 2D problems using Fupn(x,y) basis functions.
International Journal for Engineering Modelling, 13(1–2), 7–18.

20. Gotovac, H., Kozulic, V., Gotovac, B. (2010). Space-time adaptive fup multi-resolution approach
for boundary-initial value problems. Computers, Materials & Continua, 15(3), 173–198. DOI
10.3970/cmc.2010.015.173.

21. Kozulic, V., Gotovac, B. (2011). Elasto-plastic analysis of structural problems using atomic basis functions.
Computer Modeling in Engineering & Sciences, 80(4), 251–274. DOI 10.3970/cmes.2011.080.251.

22. Gotovac, H., Andricevic, R., Gotovac, B., Kozulic, V., Vranjes, M. (2003). An improved collocation
method for solving the Henry problem. Journal of Contaminant Hydrology, 64(1), 129–149. DOI
10.1016/S0169-7722(02)00055-4.

23. Gotovac, H., Cvetkovic, V., Andricevic, R. (2009). Adaptive Fup multi-resolution approach to flow
and advective transport in highly heterogeneous porous media: Methodology, accuracy and convergence.
Advances in Water Resources, 32(6), 885–905. DOI 10.1016/j.advwatres.2009.02.013.
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