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ABSTRACT

To achieve the high availability of health data in erasure-coded cloud storage systems, the data update performance
in erasure coding should be continuously optimized. However, the data update performance is often bottlenecked
by the constrained cross-rack bandwidth. Various techniques have been proposed in the literature to improve
network bandwidth efficiency, including delta transmission, relay, and batch update. These techniques were largely
proposed individually previously, and in this work, we seek to use them jointly. To mitigate the cross-rack update
traffic, we propose DXR-DU which builds on four valuable techniques: (i) delta transmission, (ii) XOR-based
data update, (iii) relay, and (iv) batch update. Meanwhile, we offer two selective update approaches: 1) data-delta-
based update, and 2) parity-delta-based update. The proposed DXR-DU is evaluated via trace-driven local testbed
experiments. Comprehensive experiments show that DXR-DU can significantly improve data update throughput
while mitigating the cross-rack update traffic.
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1 Introduction

With growing of the ageing population and the related rise in chronic illness (e.g., diabetes [1] or
Parkinson’s disease [2]), the Internet of Things (IoT) has been widely identified as a potential solution
to alleviate the pressures on healthcare systems [3]. For instance, Health Care Assistants (HCA) [4]
(e.g., Remote Patients Monitoring) are generating a huge amount of data (called “health data” for
brevity) in real time using IoT medical sensors and ambient sensors (Fig. 1). These massive amounts
of health data are usually stored in Cloud Storage Systems (CSS) to enable applying different analytical
techniques to extract the medical knowledge, such as detecting patients’ health status, innovating
methods for the diagnosis of different diseases, and how to treat them [5]. For example, medical
images are usually used to assist the healthcare provider to predict diseases and make clinical decisions
accurately [6]. However, with the explosively increasing of health data in CSS, the conventional storage
techniques which poses many needs and challenges [3], such as
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1. The need to develop infrastructures that are capable of processing data in parallel.

2. The need to provide safe data transmission [7,8] and data storage for the huge amount of
unstructured data sets.

3. The need to provide a fault-tolerant mechanism with high availability.

In this paper, we focus on the third one: provide a fault-tolerant mechanism with high availability.

Erasure codes (EC) are a leading technology to achieve strong fault-tolerance in CSS [9]. Roughly
speaking, as all the files in CSS are usually split into fixed-size data blocks, EC encode these data
blocks to generate a small number of redundant blocks (also called parity blocks), such that a subset
of data and parity blocks still suffices to recover the original data blocks. Compared to conventional
replication (e.g., 3-replication), EC can assuredly maintain the same degree of fault tolerance with
much less storage overhead and hence is preferable in practical storage systems. For example, the
erasure-coded Quantcast File System saves 50% of storage space over the original HDFS, which uses
3-replication. Besides, EC have been widely used in CSS, such as Microsoft Azure [10], Google Cloud
[11], Facebook Cluster [12] and Alibaba Cloud [13].

Figure 1: This figure shows a typical architecture of Remote Patients Monitoring [5], where the
wearable sensors can measure the patients’ vital signs-respiratory rate, pulse, and body temperature. In
addition, some special-purpose sensors can be used for fall detection, gait detection, etc. These massive
amounts of health data collected by IoT wearable devices are required to be safely transferred and
stored in CSS [7,8]. Thus, it can allow the authorized relevant parties (such as caretakers or doctors)
to safely access these sensitive and privacy data [14,15] and apply different analytical techniques

However, EC bring two new problems, namely data repair (DR) and data update (DU). In DU,
since each parity block is a linear combination of multiple data blocks, once the data block is updated,
the relevant parity blocks must also be updated to achieve data consistency. Otherwise, it may cause
permanent data loss (especially for the precious health data) in the face of node failures. Obviously, the
health data in CSS is “hot data”, which means it will be frequently generated or updated by various
IoT devices. Thus, it will cause considerable network traffic for DU, especially for the cross-rack
traffic, which is often oversubscribed and much more scarce than the inner-rack bandwidth [16]. To
provide a fault-tolerant mechanism with high availability, it is necessary to provide an efficient and
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reliable DU scheme to solve the problem of data transmission in DU, especially for the cross-rack
data transmission.

In order to alleviate the impact of network traffic, many works concentrate on network tier, as
shown in Fig. 2. We re-examine and group them into two classes: 1© improve bandwidth utilization
(e.g., PUM-P, PDN-P [17], and T-Update [18]) and 2© reduce network traffic (e.g., XORInc [19] and
CAU [16]). Specifically, to improve bandwidth utilization, PUM-P [17] used a dedicated node called
Update Manager (UM) to collect the update info and the old parity value of the relevant parity nodes
for DU. T-Update [18] found that the traditional data transmission path is a star structure, which
is detrimental to fully use the network bandwidth. What is worse, it is easy to cause a single-point
bottleneck. Hence, T-Update modified the transmission path to a tree structure, which is great to
leverage network traffic to other unused links and increase the network parallelism. To reduce network
traffic, XORInc [19] offloads computation operations onto the programming network devices (i.e.,
modern switches with XOR computation capability and sufficient buffers). Thus, it can help data
nodes forward the delta info to the relevant parity nodes. In order to mitigate the cross-rack traffic,
Shen et al. [16] proposed CAU, which grouped the storage nodes into racks, and offered two optional
update methods (data-delta-based update and parity-delta-based update) based on batch update and
relay. However, despite the fruitful achievements of these great works, we found there is still massive
room for network optimization, especially for the XOR-based DU.
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Figure 2: The different schemes are divided into five tiers (Coding Tier, Scheduling Tier, Network Tier,
IO Tier, and Hardware Tier). The main goals (CPU, network, IO, and others) of these schemes are with
different colors [20]

By carefully summarizing the previous works, we found four valuable techniques for network
optimization: delta transmission, XOR, relay and batch update. The delta transmission means that
we only transmit the delta info, since the DU size is generally smaller than the whole block size
[21]. XOR means our scheme is based on XOR, as XOR-based DU can lead better throughput than
RS-based DU. Relay means we exploit the relay nodes to forward data, which can fully use the
unused links to mitigate the update traffic. In a word, we propose a simple and efficient mechanism
Delta-XOR-Relay DU (DXR-DU) by using them jointly. To summarize, our work mainly makes the
following contributions:
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• We summarized the previous works on network optimization and found four valuable tech-
niques: delta transmission, relay, XOR and batch update.

• Based on the four techniques, we proposed a novel data update scheme called DXR-DU, which
can significantly improve throughput for DU. In other words, it can help CSS to build a fault-
tolerant mechanism with high data availability.

• We implemented the DXR-DU prototype in Go programming language and analyzed that it
can achieve the optimal cross-rack data update.

• We conducted numerous local testbed experiments based on our prototype. 1Experiments on a
local testbed show that DXR-DU can significantly reduce the cross-rack traffic and improve
the update throughput.

2 Background
2.1 Cloud Storage Systems

It is well-known that modern DC deploy thousands of storage nodes in one or multiple geographic
regions to provide large-scale storage services. These storage nodes are grouped into racks and further
interconnected via the network core-an abstraction of aggregation switches and core routers [22]. Fig. 3
shows a typical CSS with three racks and each rack comprises four nodes.

Storage

k=3 Encode m=2
Stripe

Rack Rack  Rack

Network Core

Figure 3: A typical RS (5, 3) CSS, here n = 5, k = 3, m = 2

2.2 Erasure Codes and RS Codes
A leading technique to achieve strong fault-tolerance in CSS is to utilize EC. As stated above, EC

use the original data to generate more encoded data, thus they allow a fixed number of component
failures in the overall system. EC are usually configured by two parameters: the number of data
symbols k to be encoded, and the number of coded symbols n to be produced [9]. The data symbols
and the coded symbols are usually assumed to be in finite field GF(2w) in computer systems.

RS codes [23] are a well-known erasure code construction and have been widely deployed in
production [24–26]. RS codes are usually referred to as RS (n, k). For instance, Fig. 3 depicts a typical
CSS with RS (5, 3), which encodes k = 3 data blocks into m = 2 parity blocks. These n = k+m blocks
group into a stripe, scattering in different nodes.

1The source code of DXR-DU is available for download at: http://git@gitee.com:xyf1989/cau.git.

http://git@gitee.com:xyf1989/cau.git
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2.3 Data Update
It is known that EC can be divided into two classes: RS-based codes and XOR-based codes [13].

Accordingly, we can classify DU into two types: RS-based DU and XOR-based DU .

2.3.1 RS-Based DU

Fig. 4 shows the typical encoding process of RS (5, 3), where the leftmost matrix (called generator
matrix) encodes the data blocks (d0, d1, d2) into a codeword (d0, d1, d2, p0, p1). After encoding, the data
blocks (d0, d1, d2) will be sent to the corresponding data nodes and the parity blocks (p0, p1) will be sent
to the corresponding parity nodes. From Fig. 4 we can infer that, in a (n, k) RS-based CSS, each parity
block could be represented by a linear combination of the k data blocks with the following equation:

pi =
k−1∑

j=0

αi,jdj, i ∈ [0, m − 1] (1)

where m = n − k and all elements are numbers in GF(2w) for some value of w. Suppose that dh is
updated to d ′

h(0 ≤ h ≤ k − 1), Eq. (1) can be called for DU.
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Figure 4: The encoding process of RS (5, 3). The leftmost matrix is called generator matrix, which
encodes data blocks (d0; d1; d2) into codeword (d0; d1; d2; p0; p1)

RS-delta-based: On the other hand, we can simply utilize the delta info (d ′
h −dh) to renew the parity

block with the following equation:

p
′
i =

∑

j∈[0,k−1],j �=h

αi,jdj + αi,hd
′
h = pi + αi,h(d

′
h − dh), i ∈ [0, m − 1] (2)

where pi denotes the old value. In this way, we can simply transfer the delta of dh (also called
�dh = d ′

h − dh) to the parity node i.

2.3.2 XOR-Based DU

No matter Eq. (1) or Eq. (2) is selected for DU, a considerable number of multiplications are
generated, which will significantly impede the performance of DU. To end this, as shown in Fig. 5,
XOR-based encoding is proposed via Binary Distribution Matrix (BDM), where each element e in
GF(2w) can be denoted by a matrix M(e) of w × w or a vector V(e) of 1 × w, thus, the generator matrix
of size k ×m can be converted to a new generator matrix of size wk ×wm in GF(2) [9]. In this light, we
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can use the smaller element (w bits) to encode. According to Fig. 5, the parity blocks can be computed
by the following equations:

p0,0 = d0,0 ⊕ d1,0 ⊕ d2,0 ⊕ d2,2 (3)

p0,1 = d0,1 ⊕ d1,1 ⊕ d2,0 (4)

p0,2 = d0,2 ⊕ d1,2 ⊕ d2,1 (5)

p1,0 = d0,0 ⊕ d1,0 ⊕ d1,2 ⊕ d2,0 (6)

p1,1 = d0,1 ⊕ d1,0 ⊕ d2,1 (7)

p1,2 = d0,2 ⊕ d1,1 ⊕ d2,2 (8)

where the matrix multiplications are now converted to XORs of data bits corresponding to the ones
in BDM. Zhou et al. [9] proved it is more efficient to use XOR operation to encode instead of directly
using RS-based encoding. In other words, XOR-based DU can significantly reduce the computation
overhead than RS-based DU.
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Figure 5: Encoding with BDM: the Cauchy matrix is converted to BDM, where the blue block denotes
bit 1 and the white block denotes bit 0, identically, k = 3, m = 2, w = 3

2.3.3 Parity Update in CSS

As mentioned earlier, nodes are grouped into racks. We assume data racks are dedicated to data
nodes and parity racks are dedicated to parity nodes. Without loss of generality, suppose that there
are Ud blocks denoted by (d0, d1, . . . , dUd −1) that are updated to (d ′

0, d ′
1, . . . , d ′

Ud −1) in the data rack Rd,
based on Eq. (2), we can calculate the parity block p′

i (i ∈ [0, m − 1]) with the following equation:

p
′
i =

Ud −1∑

j=0

αi,j�dj + pi = �pi + pi (9)

where �pi is the delta of parity block i. Suppose that parity block i (i ∈ [0, m − 1]) are located in the
parity rack Rp, and there are Up parity blocks to update. As illustrated in Fig. 6, there are two options
to renew the parity block: 1© data-delta-based update, and 2© parity-delta-based update [16].
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Figure 6: Examples of the data-delta-based update and parity-delta-based update: (a) Ud = 2 and
Up = 3; (b) Ud = 3 and Up = 2

Data-delta-based update: which updates the parity blocks of a rack in batch via transmitting data
delta blocks directly [22]. As shown in Fig. 6a, the number of data updates in Rd is less than the number
of parity updates in Rp (i.e., Ud < Up). Thus, we separately send the delta info (�d0, �d1) to the relay
node P0, when P0 receives all the deltas, it calculates and forwards the new values for P1 and P2 via
Eq. (9).

Parity-delta-based update: as shown in Fig. 6b, Ud > Up, to mitigate the cross-rack traffic, parity-
delta-based update is selected, where we select a data node as the relay node to collect the deltas in the
same rack. Similarly, the relay node is responsible for regenerating the parity blocks via Eq. (9) and
transferring the deltas to the relevant parity nodes.

3 Delta-XOR-Relay Data Update

In this section, we elaborate the design overview of Delta-XOR-Relay Data Update (DXR-DU).

3.1 Design Overview
Our study of previous works on network optimization found four valuable techniques for network

optimization: delta transmission, XOR, relay, and batch update.

Recall that the existing two classes of network optimization: 1© improve bandwidth utilization,
and 2© reduce network traffic. We found that the key technique to improve bandwidth utilization is
using relay. For example, PUM-P [17] used a dedicated node called update manager (UM) as a relay
node to compute the deltas of the relevant parity blocks, while PDN-P discarded it. CAU [16] selected
a data node or a parity node as a relay node, and RackCU [22] selected a data rack or a parity rack
as a relay rack. It sounds like the triangle principle: If the sum (network overhead) of the two sides
(using relay node) is greater than the third side (directly sending data), it is unnecessary to use the
relay; Otherwise, we should use the relay to fully exploit the unused links. Besides, the relay can be
used for updating one block (e.g., T-Update [18]) or a group of blocks (e.g., CAU [16] and RackCU
[22]), and the latter should consider node grouping. For example, CAU groups nodes into racks and
selects a relay node for each rack.

To reduce network traffic, we found two key factors: delta transmission and batch update. The
block size in CSS normally ranges from 1 MB to 64 MB [16,24]. But it is unnecessary to update the
whole block, since DU is small (60% of them are less than 4 KB [21]). Thus, the better way is to
transfer the delta of the updated block. Another key point is batch update. For instance, CAU proved
the batch update is powerful for saving network traffic via setting the threshold at 100 (i.e., when 100
data requests arrive). However, the batch update has the disadvantage that will slightly sacrifice the
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system reliability. Fortunately, we can utilize the interim replication to maintain the system reliability
and data availability at the same level as the baseline EC approach [16].

As mentioned above, the fourth valuable technique is XOR. The experimental results in Section 4
reinforce our determination to use XOR. In the next section, we will discuss how to use delta, relay
and batch update jointly based on XOR-based DU.

3.2 Transmission Path
As far as we known, the transmission path is either a star structure (e.g., the baseline method) or

a tree structure (e.g., T-Update, CAU, XORInc and RackCU). As mentioned earlier, the conventional
star-structured path can easily cause single point bottleneck or even single point failure. Obviously,
the tree-structured path is better. To build a tree-structured path, T-Update relies on the network
distance (i.e., the hops) between nodes. While CAU groups nodes based on racks, and selects a relay
node for each rack. Comparely, we believe CAU is more simple and easy for implementation. Besides,
T-Update builds a tree only for one block, while CAU builds a tree for a group of related blocks.
For example, in parity-delta-based update (Fig. 6b), CAU collects the deltas of a rack and directly

transfers the merging result of parity block i (�pi =
Ud −1∑

j=0

αi,j�dj) to related parity nodes. We argue that

transferring the parity deltas is better than transferring the data deltas one by one. Therefore, we build
the transmission path based on CAU.

3.2.1 Delta Transmission

It has long been recognized that transferring the data block in delta style will substantially save
network load than transferring the whole data block. However, few works indeed transfer the delta in
implementation. Although it is just a implementation issue, we proved that it is significant performance
differentiator in evaluation. Thus, in this section, we elaborate our way to transfer the delta.

Block merging for batch update: It is well-known that a dirty (updated) data block may be modified
in different places within a batch time (as shown in Fig. 7), which means the delta info (the gray parts)
is scattered. To end this, we employ a very straightforward way: we label the leftmost offset as rangeL
and the rightmost offset as rangeR. Thus, we only transfer the [rangeL, rangeR] of the whole block. As
mentioned earlier, DU is small (most updates are less than 4 KB), even though we pack these small
and scattered blocks into a large piece, the optimization space is still huge.

0 1MBrangeL rangeR

Figure 7: An example of a dirty block, which size is 1 MB. We label the leftmost offset as rangeL and
the rightmost offset as rangeR

Delta Alignment: As mentioned above, we label the delta of an updated block as [rangeL, rangeR],
but the ranges of distinct data blocks within a stripe are probably different, which prevents us from
calculating the parity blocks. Therefore, before renewing the parity node in a relay node, we have to
perform the delta alignment.

A typical example is depicted in Fig. 8, where there are four updated blocks within a stripe, and
the ranges are D0[28, 1557], D1[1024, 8096], D2[356, 768], D3[4096, 14400], respectively. To compute the
new value of the parity node, we use a dedicated node called central controller to align these four deltas
based on the maximum range. Thus, D0 can receive three deltas with identical range, and easily renew
the parity node.
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Figure 8: Delta alignment for batch update in DXR-DU

3.3 Design of DXR-DU
As mentioned above, we design DXR-DU based on the four valuable techniques: delta transmis-

sion, XOR, batch update and relay. As shown in Fig. 9, we first build the transmission path based on
CAU, which offers two selective methods (data-delta-based update and parity-delta-based update).
When the number of the updated data blocks in data rack is smaller than the number of updated
parity nodes in parity rack (i.e., Ud < Up), as shown in Fig. 9a, data-delta-based update is selected,
which means we choose a parity node as the relay node to collect deltas and compute the new values
for parity nodes. On the contrary, parity-delta-based update is selected, where we choose a data node
as the relay node to collect the deltas and compute the parity deltas for the parity nodes.

Figure 9: The design of DXR-DU is based on CAU, which offers two update methods: data-delta-
based update and parity-delta-based update. But we have two extra techniques: 1© XOR and 2© delta
transmission. In coding tier, we choose XOR-based DU. Meanwhile, we utilize the delta transmission
to send data

Based on CAU, we have two extra techniques: 1© We choose XOR-based DU to improve the
update throughput in coding tier, unlike CAU, which relies on RS-based DU. 2© We employ the delta
transmission to mitigate the network traffic, especially for the cross-rack traffic.

Algorithm details: Algorithm 1 elaborates the main procedure to schedule the update requests in
a batch. We first collect the data blocks (getting from user requests) in a batch, and perform block
merging (Line 1). Then, we group these blocks into stripes (Line 2). For each stripe, according to
the number of the updated data blocks in a data rack, we handle the data blocks of a stripe in this
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rack: 1) as mentioned above, if Ud > Up, we use parity-xor-based update (Line 6). 2) Otherwise, we
use data-xor-based update (Line 7).

3.4 Parity Update in XOR-Based DU
Similar to RS-based DU, in this section, we discuss the optimal cross-rack parity update in XOR-

based DU. For ease of presentation, we take an example of a CSS, where there are k = 4 data nodes
and m = 4 parity nodes. We set w = 3 and only show the blocks in one stripe (as shown in Fig. 10).
Besides, we suppose the parity update equations are as follows:

p0 = d0 ⊕ d2 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d8 ⊕ d10 (10)

p1 = d0 ⊕ d1 ⊕ d3 ⊕ d4 ⊕ d5 ⊕ d6 ⊕ d9 ⊕ d11 (11)

p2 = d0 ⊕ d1 ⊕ d3 ⊕ d5 ⊕ d7 ⊕ d8 (12)

p3 = d0 ⊕ d1 ⊕ d3 ⊕ d5 ⊕ d7 ⊕ d11 (13)

pi = (pi,0, pi,1, pi,2), i ∈ [0, 3] (14)

Figure 10: Examples of the data-delta-based update and parity-delta-based update: (a) Ud = 3 and
Up = 2; (b) Ud = 2 and Up = 3

As we focus on network optimization, it is unnecessary to know the exact equations of pi,j, we just
need to make sure that all parity could receive what they want, thus we label pi = (pi,0, pi,1, pi,2), i ∈ [0, 3]
as the all the data of node Pi needed. The key question is: how to update pi to minimize the cross-rack
network load? For example, as shown in Fig. 10a, if d0, d1, d6 are changed in batch, according to Eq. (10)
to Eq. (14), we need to update all parity blocks (p0, p1, p2, p3).

In this case, where the number of updated data blocks in the data rack is smaller than the number of
updated parity nodes in the parity rack (Ud < Up). Unlike the data-delta-based update in CAU, where
there is only one updated block belonging to a node in a stripe. Here we should consider multiple
updated blocks (≤w) in a data node. To save cross-rack traffic, we should consider whether to transfer
the xor result of multiple updated blocks or not. But we found we can not do that, because 1) every
delta info may have different update range, 2) if we transmit the xor result (d0 ⊕ d1) of d0 and d1 to
P0, while P0 only needs d0 (Eq. (1)), we can not extract d0 from the xor result without transferring d1.
Therefore, we can only transfer them one by one (i.e., �0, �1, �6).

In data-delta-based update, where the number of updated data blocks (denoted by Ud) is smaller
than the number of updated nodes in the parity rack (denoted by Up), we should select a relay node
for the parity rack. A small question is: how to select the relay node in the parity rack? We tested 2
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options: 1) Random select, and 2) consider load balance, which means every round we select a different
relay node for forwarding data. However, we test it and found it is unnecessary to do that. Thus, we
choose the frist option.

On the other hand, if Ud > Up, in parity-delta-based update, where we will select a relay node
for the data rack, similar to parity-delta-based update, we will utilize the relay node to compute and
transfer the deltas of the corresponding parity node. As illustrated in Fig. 10b, there are three updated
data blocks (d2, d8, d10) and 2 parity node to be updated (P0, P2), namely Ud = 3 > Up = 2, thus we
randomly select D0 as the relay node to compute and forward the deltas of P0 and P2.

In a nutshell, data-delta-based update and parity-delta-based update are two methods to minimize
the cross-rack network traffic. Compare to CAU, we proved it has advantages on update time,
throughput and cross-rack traffic in experiments.

4 Performance Evaluation

In this section, we conduct extensive performance evaluation via local testbed experiments
between the proposed approach DXR-DU and two well-known Counterparts: PDN-P and CAU. We
summarize our major findings below: compared to the state-of-the-art schemes, 1© DXR-DU saves
more than 44.9% of cross-rack traffic in most cases (Section 4.3); 2© DXR-DU increases 53.6% of
update throughput (Section 4.4).

4.1 Preliminaries
Traces: We assess the update performance via trace-driven evaluation. We utilize MSR Cambridge

Traces (MSR) [16], which record the I/O patterns from 13 core servers of a data center. Every trace
consists of successive read/write requests, each of which records the request type (read or write), the
start position of the requested data, and the request size, etc. According to the ranking results of the
average update size of MSR Cambridge Traces in [16], we select 4 traces with dramatically distinct
update sizes (sorted from small size to big size): rsrch_2, hm_0, hm_1, proj_0.
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Counterparts: We compare DXR-DU to another 2 state-of-the-art schemes: (i) PDN-P [17] and
(ii) cross-rack-aware update (CAU) [16]. We summarize these two schemes as below:

PDN-P: When a data block is updated, PDN-P directly send the delta to the relevant parity nodes,
which means it builds a star-structured transmission path for each update.

CAU: As shown in Fig. 6, CAU updates parity blocks simply through the selective parity update:
1) if the updated data blocks of a data rack are more than the parity blocks of a parity rack, CAU
updates the parity blocks via transferring parity delta blocks; Otherwise, it updates them through
transferring the data delta blocks.

4.2 Implementation
Since open source implementations for PDN-P and CAU are not available, we design and imple-

ment the prototype of DXR-DU and its two counterparts (PDN-P and CAU) with Go programming
language on Ubuntu 18.04. These schemes rely on Cauchy RS code implementations. Hence, we utilize
the reedsolomon library which is the Go version of Jerasure library 2.0.

The system architecture of our prototype is illustrated in Fig. 11, where we choose RS(12, 4)
(deployed in Windows Azure Storage [27]), where there exists k = 8 data nodes and m = 4 parity
nodes. We utilize Linux tool tc [28] to group them into three racks via vitual Top-of-Rack switches
(ToR) and set the cross-rack/inner-rack at 40/200 Mbps. Such a configuration can tolerate any four
nodes failure as well as any single rack failure. Besides, we have another node called metadata server,
which is used for metadata management. The metadata server also includes two components: the
client, which is to generate user requests, and the central controller, which is responsible for sending
commands to the storage nodes and receiving ACKs from them. In addition, the agent in storage nodes
is responsible for performing the tasks (e.g., computing and forwarding data) according to the received
commands. When the task is finished, it returns an ACK to the command sender. All the nodes are
virtual machines (VM) which are generated from 3 Huawei H12M-03 servers via Proxmox VE [29].
Each VM is equipped with a dual core CPU, 2 GB memory and 32 GB disk.
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Central Controller
Client

Agent

Node

Agent

Node

Agent

Node

Agent

Node

Agent

Node

Agent

Node

Data Rack Data Rack Parity Rack

TOR TOR TOR

CMD Cross-rack Traffic Inner-rack TrafficACK

Agent

Node

Agent

Node

Agent

Node

Agent

Node

Agent

Node

Agent

Node

Figure 11: The figure depicts the system architecture of our prototype, where there are 3 racks and
13 nodes. The metadata server includes a central controller and a client. The client is to generate user
requests and the central controller is to send commands to the storage nodes and receive ACKs from
them. The agent in storage nodes is responsible for performing the tasks according to the received
commands
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4.3 Cross-Rack Traffic
As mentioned above, we believe that our proposed scheme has advantages on cross-rack traffic,

thus we first keep eyes on the amount of induced cross-rack traffic.

Experiment A.1 (Impact of update size): We first study the impact of the update size by selected
four traces with distinct update sizes: rsrch_2, hm_0, hm_1, proj_0. We configure the block size
as 1 MB. Table 1 shows the cross-rack traffic for each update. Compared to PDN-P and CAU,
DXR-DU reduces the cross-rack traffic by up to 98.0% and 71.6%, respectively. The result is actually
out of our expectations but still consistent with the fact that DU is small.

Table 1: Comparison on cross-rack traffic with distinct update sizes

Schemes Traces

rsrch_2 hm_0 hm_1 proj_0 Average Improvement

PDN-P 4 4 4 4 4 98%
CAU 0.155 0.395 0.325 0.280 0.289 71.6%
DXR-DU 0.060 0.030 0.171 0.065 0.082 -

Experiment A.2 (Impact of block size): To assess the impact of block size, we set the block size
as 0.25/1/4 MB, respectively. Table 3 exhibits that DXR-DU keeps efficiency on saving the cross-rack
traffic with different block sizes. DXR-DU can reduce 98.4%, 68.2% of the cross-rack update traffic
on average compared to PDN-P and CAU, respectively. The rationale is that DXR-DU utilizes delta
transmission.

In a nutshell, with the help of delta transmission, DXR-DU can significantly mitigate the cross-
rack update traffic by up to 44.9%–99.1%.

4.4 Throughput
As the health data is “hot data”, it is significant to achieve an excellent DU throughput to maintain

the data availability at a high level. In this paper, to compare various schemes fair, we assess the DU
throughput of the schemes by changing the update size and block size.

Experiment B.1 (Impact of update size): We first evaluate the update time of a single block on
average by changing th update size: rsrch_2, hm_0, hm_1, proj_0. Similarly, the default block size is
1MB. Table 2 shows the result that DXR-DU keeps efficiency on DU throughput. For DXR-DU, the
update time of single block on average only needs 0.021 s. Compared to PDN-P and CAU, DXR-DU
can save update time of single block on average by up to 89.9% and 53.6%, respectively.

Experiment B.2 (Impact of block size): We further assess the DU throughput under different block
sizes (0.25/1/4 MB), from Fig. 12 we observe that DXR-DU improves the update throughput by up to
13.8% and 88.8% when compared to PDP-P and CAU, respectively. Unsurprisingly, as DXR-DU wins
the game in the comparison on cross-rack traffic, it also has significant advantages on throughput.
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Table 2: Comparison on update time for single block with distinct update sizes

Schemes Traces

rsrch_2 hm_0 hm_1 proj_0 Average Improvement

PDN-P 0.183 0.361 0.133 0.159 0.209 89.9%
CAU 0.024 0.100 0.028 0.029 0.045 53.6%
DXR-DU 0.021 0.021 0.023 0.020 0.021 -

Table 3: Comparison on the traces with different block sizes

Scheme rsrch_2 hm_0

0.25 MB 1 MB 4 MB 0.25 MB 1 MB 4 MB

PDN-P 1.00 4.00 16.00 1.00 4.00 16.00
CAU 0.06 0.16 0.44 0.12 0.40 1.54
DXR-DU 0.02 0.06 0.18 0.01 0.03 0.15

Scheme hm_1 proj_0

0.25 MB 1 MB 4 MB 0.25 MB 1 MB 4 MB

PDN-P 1.00 4.00 16.00 1.00 4.00 16.00
CAU 0.14 0.33 0.66 0.08 0.28 0.98
DXR-DU 0.05 0.17 0.40 0.01 0.06 0.24

(a) wdev_3 (b) hm_0

Figure 12: (Continued)
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(c) hm_1 (d) proj_0

Figure 12: Comparison on the traces with different block sizes

According to our experiments, DXR-DU can reduce 44.9%–99.1% of the cross-rack update traffic
on average compared to PDN-P and CAU in most cases. Meanwhile, it can dramatically improve the
DU throughput by up to 53.6% when compared to CAU.

5 Conclusion

To achieve the high availability of health and medical big data in erasure-coded cloud stor-
age systems, the data update performance in erasure coding should be continuously optimized.
We perform DU performance optimization via mitigating the update traffic, especially the cross-
rack traffic. Thus, we propose a rack-aware update scheme called Delta-XOR-Relay Data Update
(DXR-DU) based on four valuable techniques: delta transmission, XOR, relay, and batch update. Our
proposed scheme offers two selective update options: (i) data-delta-based update, when the number of
updated data blocks in data rack is less than the number of parity blocks to update in parity rack, we
select a parity node as a relay node for collecting the data deltas and renewing the parity blocks, and
(ii) parity-delta-based update for the opposite case, where we select a relay node for each data rack to
collect the local data deltas and send the parity deltas to the relevant parity nodes. Experiments on a
local testbed show that DXR-DU can significantly reduce the cross-rack update traffic and improve
the update throughput.
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