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ABSTRACT

There are many sources of geographic big data, and most of them come from heterogeneous environments. The
data sources obtained in this case contain attribute information of different spatial scales, different time scales
and different complexity levels. It is worth noting that the emergence of new high-dimensional trajectory data
types and the increasing number of details are becoming more difficult. In this case, visualizing high-dimensional
spatiotemporal trajectory data is extremely challenging. Therefore, i-tStar and its extension i-tStar (3D) proposed,
a trajectory behavior feature for moving objects that are integrated into a view with less effort to display and extract
spatiotemporal conditions, and evaluate our approach through case studies of an open-pit mine truck dataset. The
experimental results show that this method is easier to mine the interaction behavior of multi-attribute trajectory
data and the correlation and influence of various indicators of moving objects.
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1 Introduction

In the era of big data, we can obtain higher precision motion data. However, with the increase of
dimension, the amount of calculation increases exponentially, and the difficulty of visualization also
increases. How to solve it? Star coordinate is a high-dimensional data visualization technology, which is
most widely studied in the fields of biology and medicine. An interesting application of star coordinates
is vista system [1], which uses linear mapping to avoid cluster rupture after dimensional to 2D spatial
mapping. Users can use the visual output to confirm the effectiveness of cluster structure. The main
disadvantage of this method is that it can only be used for the visualization of dimensional data. So
far, several Vista-like systems have been introduced. For example, maps [2], Section [3] and fastmap
[4] are constellation-based visualization technologies, which are suitable for generating static clusters
for multidimensional data. Since the substantive analysis of trajectory data may involve variables
beyond space and time, Gatalsky et al. [5], based on the expansion of star coordinate technology,
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proposed stretchplot, an interactive positioning technology method similar to star coordinates for
multidimensional spatio-temporal trajectory data, which allows users to map trajectory set variables to
high-dimensional space and express them as connected linear sequences. It embeds sequential events
(and the variables associated with the event) in entities and connects them according to their time
sequence to form tracks. However, the way based on track lines is suitable for track sets with a small
amount of data.

The behavior pattern mining and visualization of high-dimensional trajectory data face the
problem that the data projection method is difficult to obtain data from high-dimensional space and
map it to low-dimensional space with minimum error. When the data is complex and dynamic, it is
difficult to establish a high-dimensional data mining and visualization model. Therefore, this paper
establishes new trajectory interactive star coordinate models i-tStar and i-tStar (3D) for trajectory data
of different dimensions. By setting measurement standards, detecting dimension similarity, detecting
attribute similarity, reordering attribute axes, interactively manipulating data sets, adding labels to
enhance clustering information, and designing an engine to guide cluster perception, Thus, the
technical defects of the original Star coordinates are overcome, the star coordinates are applied to the
dynamic space-time trajectory data, the technical reliability of the star coordinates for the visualization
of high-dimensional data is improved, the layout configuration of the star coordinates is optimized,
the cluster discovery is enhanced, and the point cloud clustering effect is better, to mine the evolution
law of multi-attribute of any trajectory data set with time and space.

The value of this paper is: Based on the designed i-tStar and i-tStar (3D) methods, display the
attribute patterns of mine trajectory data samples, and mine their internal associations and laws; the
process of clustering exploration of the star coordinate system is realized, and a variety of interactive
means supporting the design are displayed; based on the attribute merging method, the interaction
behavior of multiple attributes is analyzed, and the correlation and influence of various indexes
during tramcar operation are explained; the point cloud aggregation effects of i-tStar and i-tStar (3D)
methods are compared. The experimental results show that the two methods can effectively realize the
behavior pattern mining and visual analysis of multidimensional trajectory data.

2 Original Star Coordinate

In Star Coordinate, data points are represented as points, and data dimensions are represented by
axes, i.e., A1, A2, . . . , An. All of the axes here are radial lines starting from the origin and axes Ai are
inclined at an angle of 2 (i − 1) π/n. The angles between the axes of the original Star Coordinates are
equal and all axes have the same length. The user can apply a scaling transformation to change the
length of the axis, thereby increasing or decreasing the weight of the dimension to achieve the goal of
optimizing the separation and resolution of the point cloud (cluster). The Star Coordinates maps the
data instances to the visible space through a linear combination of axes, and the position of each data
instance Pi is given by [6]:
→
Pi = pi1

→
v1 + pi2

→
v2 + · · · + pin

→
vn (1)

where n is the data dimension and
→
vj is the j-th attribute axis. The point mapping from the

k-dimensional space to the two-dimensional Cartesian coordinates is determined by multiplying the

sum of all unit vectors
(→

vxi,
→
vyi

)
on each coordinate by the data element values of the coordinates.

Projecting high-dimensional data into a two-dimensional space inevitably introduces overlap and
blur, even bias. This means that multiple points in the k-dimensional space can be mapped to one point
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in Cartesian space. In addition, the vector addition in the space of Star Coordinates must be valid
to project all data points correctly on the Star Coordinate. However, the original Star Coordinates is
converted to a range of [0, 1] by normalizing all data elements of the vector (including negative values),
and the placement of independent dimensions on the opposite axis cannot cancel each other [6–8]).
The design flaws inherent in the original Star Coordinates reduce the technical reliability of the Star
Coordinates for data visualization. In addition, the original Star Coordinates also has problems such
as hierarchical mapping of dimension maps, difficulty in characterizing dynamic data, and inflexibility
of visual adjustment mechanisms. Therefore, it is necessary to improve the original Star Coordinates so
that the high-dimensional trajectory data is characterized by the optimal configuration while revealing
the interaction relationship of the trajectory data attributes.

3 Improved Star Coordinates: Interactive Trajectory Star Coordinates i-tStar

Due to the above defects of the original Star Coordinates, it is not suitable for spatiotemporal
data and semantic data. Therefore, it is necessary to evaluate the axis arrangement of traditional Star
Coordinates and the quality of point cloud layout to establish a framework for a new interactive Star
Coordinates model. Before doing this research, the technique was first named: interactive trajectory
Star Coordinates (i-tStar).

3.1 i-tStar Optimization Design
Initially, the i-tStar design only adjusted the arrangement of the original Star Coordinates. There

are still three problems: 1) it depends on the adjustment of the visual parameters to identify the overlap
in multiple frames (visualization results are considered as frames); 2) visual distortion is inevitable, and
the retained data clusters may overlap each other in the visualization; 3) the number of dimensions
affects the view layout. When a small number of dimensions are involved, the layout produced by
i-tStar is clear and readable (Fig. 1a). As the number of dimensionalities increases, the layout begins to
get confused (Fig. 1b). When added to more dimensions, the results may become unreadable (Fig. 1c).
Therefore, the scalability of i-tStar will be improved by redesigning from two aspects of point layout
and axis. Among them, to adapt to the spatiotemporal feature of the trajectory data, the dimensions
and attributes in the axis layout are separated.

Figure 1: Original i-tStar layouts with different dimensionalities: (a) 10 dimensions, (b) 40 dimensions
and (c) 80 dimensions
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3.1.1 Dimension Similarity Measure

The dimension arrangement idea of i-tStar visualization technology is to rearrange the data
dimensions according to the similarity of data, that is, the similarity data dimensions are adjacent to
each other. In order to deal with large-scale dynamic trajectory data sets, i-tStar uses three methods to
measure the similarity between two data dimensions, namely distance dissimilarity (DSIM), Pearson
correlation coefficient similarity (PSIM) and cosine similarity (CSIM). The calculation is as follows:

DSIM : sij = 1 − 1
n

n∑
k=1

∣∣∣∣ xki − mini

maxi − mini

− xkj − minj

maxj − minj

∣∣∣∣ (2)

PSIM : sij =
∣∣∑n

k=1(xki − mi)(xkj − mj)
∣∣[∑n

k=1(xki − mi)2
] 1

2
[∑n

k=1(xkj − mj)2
] 1

2

(3)

CSIM : sij =
∣∣∑n

k=1 xkixkj

∣∣[∑n

k=1 x2
ki

] 1
2
[∑n

k=1 x2
kj

] 1
2

(4)

The similarity matrix is defined as S = (
sij

)
, where sij varies between 0 and 1. If sij is closer to 1,

the i-th and j-th dimensions are more similar; If the value is closer to 0, they are less similar.

3.1.2 Attribute Similarity Measure

The j-th attribute in the data instance pi is represented as pij, and the variance σ 2
j of the attribute

is given by:

σ 2
j =

∑m

i=1(pij − μ2
j )

m
(5)

where m is the number of instances and μj is the average of the jth attribute. If
∣∣σ 2

j − σ 2
k

∣∣ is closer to
0, the more similar the attributes j and k are considered. Continue to cluster similar properties after a
given variance.

The PCA method is used to measure the similarity between attributes, and each attribute is treated
as a point in the m-dimensional space (m is the number of data instances). These points are mapped into
a two-dimensional space using PCA, and if the two attributes are similar to each other after mapping,
the two are considered to be similar. After doing PCA downscaling, those with less correlation are
eliminated, and some information they more or less contain is lost. Then more or less it will affect the
accuracy. But from another point of view, if the scale of the calculation is significantly reduced, the
efficiency will be significantly improved, in a given limited time and cost, the efficiency is increased,
which means that you can get better results.

The K-Means clustering algorithm groups similar attributes [9], and the centroid mechanism
identifies similar attributes based on the cluster information. Specifically, given a training set, it is
desired to group the data into several clusters. K-Means is intuitively represented as an iterative process
that starts by guessing the initial clustering centroids and then repeatedly assigns samples to the closest
centers, recalculating the centroids based on the assignment. The inner loop of the algorithm repeats
two steps: assigning each training sample to its closest centroid, and recalculating the mean of each
centroid using the points assigned to it. Note that the fusion solution may not always be ideal and
depends on the initial setting of the center of mass. Therefore, in practice, the K-Means algorithm is
usually run several times with different random initializations, and one way to select these different
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solutions from the different random initializations is to choose the solution with the lowest cost
function value (distortion).

The centroid pCi
of cluster Ci is given by:

pCi = 1
NCi

∑
p∈Ci

p (6)

where NCi is the number of instances in the Ci categories. Considering that each centroid can be used
as a representative example of each cluster, first, construct a matrix M with a centroid pCi

(∀Ci) as a
column vector. Then, k-means calculations are performed on the row vectors of M to group attributes
of similar centroids.

Through the above method, each calculated attribute of each group is arranged on i-tStar to
generate each attribute axis, and the axis length is set to pji. By averaging the values 1 of all the attributes
j in the corresponding group, the positional effect of each attribute axis on the instance Pi can be
obtained.

3.1.3 Axis Rearrangement

Arranging the dimension axes and attribute axes correctly is critical to revealing the patterns in
the i-tStar layout [10]. i-tStar offers two mechanisms for automatically arranging axes, one based on
combinatorial optimization and the other based on a powerful mechanism. According to the similarity
measure described in Section 3.1.2, if the similarity matrix S is a k × k distribution, where k is the
number of axes, then:

sij = 1
m

m∑
s=1

∣∣∣∣ psi − mini

maxi − mini

− psj − minj

maxj − minj

∣∣∣∣ (7)

where psi (psj) is the i-th (j-th) axis of Example Ps, and mini (minj) and maxi (maxj) are the minimum
and maximum values of the i-th (j-th) axis, respectively. If the matrix M is filled with other similarity
measures based on correlation, the different axes of the data can be explored from other perspectives.
The similarity matrix is represented as a complete Star Coordinates visualization with each node
corresponding to one axis. According to the genetic algorithm [11], the best closed path connecting all
nodes could be found.

The above steps provide the order in which the axes are placed. Next, a simple scheme for setting
the angle 3 between axes 1 and 2 is introduced. Let W be the sum of the weights of the best paths
found by the reordering process, then the angle maps to:

aij = 2πMij

W
(8)

The forcing mechanism distributes the axes evenly in a uniform circle and then swaps their
positions to find the optimal configuration. The layout evaluation is performed based on the layout
quality metric, and the topology protection and the Dunn index are also used as quality indicators.
Fig. 2 shows the axis configuration based on the optimization mechanism and the forcing mechanism
rearrangement using simulation data. The combination optimization method changes the initial
configuration, while the forcing mechanism only swaps some axes.
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Figure 2: Visualization of 200 instances with 6 attributes (a) In the original configuration, (b)
Reordered by optimized configuration and (c) Reordered by forcing mechanism

3.2 Interactive Manipulation of Dataset Adjustment
In i-tStar, the purpose of interactive exploration is to distinguish between visually overlapped

clusters.

3.2.1 Parameter Normalization

The normalized range [η1, η2] of different parameters (η1 and η2 varies with parameters) has a
significant impact on the resulting visualization and interaction. In the setting of Kandogan’s system,
although the normalized range [0, 1] causes visual tilt, the display area is used inefficiently. Therefore,
this section draws on the setting of the VISTA model (normalization range [−1, 1]): assuming that the
data points are samples from the joint multidimensional distribution, let x denote the random variables
of the distribution. Correspondingly, the mapping result has a two-dimensional distribution, and y
represents a two-dimensional distributed random variable. Aligning the visualization with the center
is equivalent to aligning the two-dimensional distribution to 0, which means E [y] = 0. Assuming that
the parameter α is independent of the data distribution, it can be expressed as:

E [y] = c
k∑

i=1

E [αi] E [xi] si (9)

Therefore, to make E [y] = 0, E [xi] = 0 or E [αi] = 0 is required. Obviously, if the normalization
range is set to [−1, 1], E [xi] = 0 is required. And E [αi] = 0, indicating that the random variation of
the visualization is evenly distributed to all directions around the center, which effectively utilizes the
display space.

Adjusting α in the range [−1, 1] will also bring more dynamic information. Suppose the dis-
tribution of the target dimension i has two modes, xi,1 and xi,2, xi,1 < xi,2. By adjusting �αi, the
movement along the axis i is xi,1�αi and xi,2�αi, respectively, and the distance between the two modes
is (xi,1 − xi,2)�αi. Therefore, increasing �αi will separate them, and reducing �αi will cause them to
contract. Changing �αi to − � αi will use �αi to map the two modes from the mirror position to their
original position. Therefore, a continuous change of αi in [−1, 1] will produce a similar “rotation”
effect, showing the user more information.

The interaction of parameter range settings is an important factor affecting interactive cluster
visualization [12]. Because the purpose of exploration is to distinguish visually overlapping clusters, it
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is hoped to maximize the utility of each interaction (such as parameter adjustment) towards the goal.
It is well known that linear mapping does not destroy clusters, but may lead to cluster overlap. Fig. 3
shows the original data distribution from the simulated dataset, which contains 100 data points and 4
clusters. Fig. 3a depicts the raw data distribution of the dataset. Fig. 3b uses the K-means clustering
algorithm to cluster and show its distribution, with some clusters creating an overlap. Fig. 3c is a
α-normalized setup using [η1, η2] to represent a particular model. The results show that the cluster
distribution performed by the interaction shows better resolution.

Figure 3: (a) Original data distribution of data clusters; (b) Original data distribution of dataset created
by K-means; and (c) Dataset visualization after the α-adjustment

3.2.2 Scaling Transformation

The scaling of data manipulation allows the user to change the length of one or more axes
simultaneously, thereby increasing or decreasing the impact of a particular column of data (specific
dimensions or features) on the visualization results [13], the basic idea is to recalculate the contribution
of the attribute by multiplying the ratio and the “mapping” formula, and re-mapping according to the
new scaling factor, as shown in the following equation:

v
maxi − mini

× scale (10)

By using axis scaling interactively, the user can observe the dynamic change of the data distribu-
tion, which is:

Pj (x, y) =
(

c
k

k∑
i=1

αi

→
vxi

(
dji − mini

)
,

c
k

k∑
i=1

αi

→
vyi

(
dji − mini

))
(11)

where αi|i=1...k ∈ [−1, 1] provides visually tunable parameters. [−1, 1] covers a fairly large range of
mapping functions, and this range combined with a scaling factor of c is sufficient to find a satisfactory
visualization. For example, set all axis scale dimensions for all of the first attributes (axes) to 1, and the
data points are observed as coarsely scattered points on each attribute, as shown in Fig. 4a; when the
scale size of axis 1 is set to 0.2, some form of the cluster is displayed, as shown in Fig. 4b. This proves
that when the data of different factors belong to the same cluster, the visualization of data similarity
is usually generated.
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Figure 4: Visual clustering results of i-tStar (a) before interactions, (b) after axis rotation, (c) after axis
scaling and (d) after attribute coloring

3.2.3 Rotation Transformation

Rotating axes make a particular data attribute more or less related to other attributes by modifying
the direction of the axis unit vector and changing the correlation of the corresponding feature axis to
other feature axes. The immediate benefit is to effectively solve the overlap problem, and help the user
distinguish clusters that may be mistakenly overlapped. Model the Star Coordinates using the Euler
formula:

eix = cos x + i sin x (12)

Among them, z = x + iy, i is imaginary units. As shown in the experimental results, adjusting
the scaling transformation is sufficient to find a satisfactory visualization. Therefore, θi can be kept
as θi = 2π i/k. However, rotation changes the angle of the axis and redistributes the scatter plot as
follows:
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vi =
(

cos
2π i
m

, sin
2π i
m

, 1
)

, i = 1, . . . , m (13)

The user can rotate a particular property by adjusting the angle value of the axis, recalculating
and re-mapping the data as the angle changes. Fig. 4c shows the results of point clustering after the
axis is rotated.

3.2.4 Coloring

Coloring is the classification of data based on similar factors, and assigns colors to each set
of factors to achieve visual or clear clustering of information data distribution. It creates another
dimension of data visualization, which can be classified as an interactive feature because the user is
free to choose different color values in the various color representation dimensions. Based on the same
data, Fig. 4d clearly indicates the two generated clusters.

3.3 Tag Enhancement for Different Clusters
As described in the literature [14], when the number of dimensions exceeds 50, the use of user

interaction does not effectively visualize the data, and the cluster overlap problem cannot be solved.
It can be found that this problem could be solved by marking a small amount of data in i-tStar.
The tag information used for data clustering is identifiable. According to the experimental situation,
satisfactory results can also be obtained by using limited tags, i.e., unsupervised clustering [15],
including available scenarios for two clusters and more than two clusters.

3.3.1 Discussion of a Two-Cluster Scenario

There are two types of tags that can be used for the data portion of the tag. One set of

k-dimensional samples
{

x1
1, x1

2, . . . , x1
n1

}
is labeled w1 and the other set of samples

{
x2

1, x2
2, . . . , x2

n2

}
is

labeled w2. Since the tag information is typically limited, n1 (the first set of tag data points) and n2

(the second set of tag data points) are much smaller than the total number of data points N (n1 � N,
n2 � N) in the dataset. Use the label to find the best α-adjustment that projects the k-dimensional data
into a two-dimensional space such that the mapped clusters are heterogeneous or isomorphic [16]. To
this end, the Fisher discriminant is used as a linear classification of the objective function.

J (α) = F1

F2

= αT(SB)α

αT(SW)α
(14)

In Eq. (14), J (α) is the Fisher discriminant, and F1 and F2 represent the distance between the
clusters and the cluster respectively, based on the axis scaling parameter α, inter-cluster scattering
matrix SB and intra-cluster scattering matrix SW . The increase of the distance between clusters means
that the clustering pattern is more separated, and the decrease in the distance within the cluster
indicates that the clusters in the mapping space are denser. To find the optimal axis scaling parameter
α, the sum of the Euclidean distances of each point and its cluster mean can be minimized and the
distance between the mean (centroid) of the cluster can be maximized.

3.3.2 Discussion of a Scenario with More Than Two Clusters

If there are more than 2 clusters (c ≥ 2), the visualization information provided by the partial
data can be used to enhance the visualization results. The general form of the scatter matrix within a
cluster is:
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SW =
c∑

i=1

Si (15)

among them,

Si = 1
ni − 1

ni∑
j=1

(
VjVj

T + V ′
j V

′T
j

)
(16)

Vj = [(xj1 − x1
1

)
cos θ1,

(
xj2 − x1

2

)
cos θ2, . . . ,

(
xjk − x1

k

)
cos θk

]
(17)

V ′
j = [(xj1 − x1

1

)
sin θ1,

(
xj2 − x1

2

)
sin θ2, . . . ,

(
xjk − x1

k

)
sin θk

]
(18)

The generalized form of SB can be defined as the following Fisher discriminant:

SB =
c∑

i=1

(
ni (μi − μ) (μi − μ)

T
)

(19)

where μi is the average of the tagged data in each cluster and can be calculated as Eq. (23). Define the
total average vector μ, then:

μ = 1
n

∑
x

x =
c∑

i=1

niμi (20)

Using the generalized Eq. (19), it can be got:

SB =
c∑

i=1

ni

(
MiMi

T + M ′
i M

′T
i

)
(21)

Mi = [(cos θ1

(
X i

1 − X t
1

)
, cos θ2

(
X i

2 − X t
2

)
, . . . , cos θk

(
X i

k − X t
k

))]
(22)

M ′
i
= [(sin θ1

(
X i

1 − X t
1

)
, sin θ2

(
X i

2 − X t
2

)
, . . . , sin θk

(
X i

k − X t
k

))]
(23)

where X i
j is the average of the i dimension of the marker data in the j-th cluster, and X t

j is the average
of the j dimension of all marker data. Finally, the target function can be demonstrated as:

Jmulti(α) = αT(SB)α

αT(SW)α
= αT

(∑c

i=1 ni

(
MiMi

T + M ′
i M

′T
i

))
α

αT

(∑c

i=1

(
1

ni − 1

∑ni
j=1

(
ViVi

T + V ′
i V ′T

i

)))
α

(24)

By maximizing Jmulti (α), it could be found that the best α vector to get dense and separate
cluster visualization results. Using the computed α vector and Star Coordinates mapping, the optimal
projection of k-dimensional data into a two-dimensional space can be achieved.

3.4 Cluster Recognition
In the configuration described above, the visual perception of the cluster is enhanced. However,

when visualizing higher dimensional data, even if a possible parameter adjustment method is provided,
it is difficult or even impossible for the user to achieve favorable adjustments. Therefore, this section
attempts to solve this problem using cluster recognition to achieve the separation of target clusters
with a minimum number of interactions.
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3.4.1 Engine Design

The engine design consists of three steps, including information object transformation, dimension
mapping, and interactive functional design. Step 3 has been explained in Section 3.2. Steps 1 and 2 are
described below.

Suppose the target dataset is a six-dimensional dataset with six attributes F1, F2, . . . , F6. Step 1
involves converting an information object from a data file, which essentially allocates values to non-
numeric objects. The data is then arranged into a matrix with columns representing the dimensions
and row values for each field in the record. Fig. 5 shows the matrix model of the information object
P1, P2, . . . , Pn.

Figure 5: Information objects of matrix transformation

Step 2 involves mapping each information object onto an axis. The axis representing the dimension
v1, . . . , v6 is derived from the common origin and can be conveniently represented as (0, 0) in the
Cartesian coordinate system, as shown in Fig. 6. Each vector f1, . . . , f6 is calculated by multiplying
the distance by its corresponding unit vector, which is oriented in the direction of the axis vj, followed
by the vector Pj (x, y) of the final projected point.

3.4.2 Cluster Detection

The cluster detection of Star Coordinates not only improves the efficiency of axis operations
with higher cluster quality, but also allows users to analyze the relationship between cluster and data
attributes. To achieve this goal, Approximated Silhouette Index (ASI) could be used [17] to assess
cluster quality based on inter-cluster distance and intra-cluster distance. This approach requires the
construction of an SI view to inform the user of the quality of the real-time projection.

To get the best projection matrix, the maximum global contour index is obtained by the energy
function, it can be expressed as:

E = max
n∑

i=1

wis∗ (x′
i

) = max
n∑

i=1

wis∗ (Pxi) (25)

where n is the number of data points, xi ∈ R
m×1 is the m dimensional data point, P = {p1, . . . , pn} ∈ R

l×m

is a linear transformation that maps the xi of the m dimension to the x′
i of the l dimension (lower

dimension) by the matrix product.

x′
i = Pxi (26)

Let d
(
xi, xj

)
be the Euclidean distance between xi and xj in the m-dimensional space. Approximate

contour index s∗ (x′
i

)
:

a∗ (x′
i

) = d
(
x′c

i , μc

)
(27)
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Figure 6: Mapping architecture

b∗ (x′
i

) = min
j∈{1,...,k}

d
(
x′c

i , μj

)
(28)

s∗ (x′
i

) = b∗(x′
i) − a∗(x′

i)

max
{
a∗(x′

i), b∗(x′
i)
} (29)

The projection space can visualize and explore the influence of different data attributes when
separating point clouds. Therefore, the quality of the clustering structure is evaluated by calculating
the contour index x′ in the projected space: point-based ASI averages the points within the cluster and
defines cluster-based SI

(
gj

)
to measure the SI value of each cluster. In addition, the global SI (g) for

all clusters is defined:

gj = 1
nj

nj∑
i=1

s∗
(

x′ j
i

)
(30)

g = 1
k

k∑
i=1

gj (31)

The constructed SI view is used to reflect the quality of the real-time projection point cloud. The
whole process is as follows: First, the data points in each cluster are sorted in descending order of SI
value s∗ (x′

i

)
, and the SI values (horizontal: −ve on the left and +ve on the right) are plotted as data

point (vertical) clusters after sorting from top to bottom clusters in the SI view. For data points with an
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SI value of +ve, they are colored using their associated cluster color, and for data points with a SI value
of −ve, the cluster color currently misclassified at that point is used to help the user quickly understand
how to merge (or mix) between the cluster. As shown in Fig. 7, the view in Fig. 1 is supplemented by
Si view, which can effectively visualize the overall cluster quality and individual cluster quality.

Figure 7: Distribution in SI views

4 Extended Three-Dimensional Star Coordinates: i-tStar (3D)

i-tStar is designed to display multidimensional data in a two-dimensional visualization space,
and its natural extension is to extend the visualization space to three dimensions [18]. This approach
extends the data exploration space and helps discover subtle patterns hidden in the 2D space, but two
flaws still exist: the original data symbols cannot be preserved (no signals in the Star Coordinates),
and the opposite axis configuration (two irrelevant attributes may cancel each other out). This section
will introduce a 3D visualization algorithm for complex high-dimensional data, which extends i-tStar
to 3D star coordinate system, which is called i-tStar (3D) in this paper.

4.1 Spherical Star Coordinates
4.1.1 Spherical Coordinate Visualization Model

The spherical coordinate visualization model is shown in the following equation [19]:

v′ = 2 (v − min)

max − min
− 1 (32)

where v is the original value and v′ is the normalized result value. Then, the α map maps the
d-dimensional points onto the three-dimensional space with the convenience of visual parameter
adjustment. Let the three-dimensional point Q (x, y, z) represent the image P (x1, x2, . . . , xd), xi ∈
[−1, 1] of the F-dimensional normalized data points in the three-dimensional space. Q (x, y, z) is
determined by the average of the vector sums of the d vectors sci ·xi, where sci is the spherical coordinate
representing the d dimension in the three-dimensional visual space. According to the A mapping, the
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three-dimensional projection point Q (x, y, z) is determined by the following formula:

Q (x, y, z) = 1
d

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d∑
i=1

αixi cos θi − y0

d∑
i=1

αixi sin θi sin ϕi − y0

d∑
i=1

αixi sin θi sin ϕi − z0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

Here, the vector α = [α1, α2, . . . , αd] |αi∈[−1,1] is an adjustable scaling parameter; the initial rotation
parameters θi and ϕi are set to 2π i/d, which can be adjusted later. The point o = (x0, y0, z0) refers to
the center of the display area. The A map is a linear map with fixed values of α, θ , ϕ. If the center o is
fixed, the mapping Aα,θ ,ϕ (x1, x2, . . . , xd) can be expressed as MxT , where

M =
⎡
⎣α1 cos θ1 · · · αd cos θd

α1 sin θ1 sin ϕ1 · · · αd sin θd sin ϕd

α1 sin θ1 cos ϕ1 · · · αd sin θd cos ϕd

⎤
⎦

x = [x1, x2 . . . , xd]

(34)

Aα,θ ,ϕ (x1, x2, . . . , xd) is a linear transformation that will not break down the cluster in the
visualization, but it may cause cluster overlap [20]. Separating clusters that may overlap can be achieved
with interactive visualization through interactive visualization.

In order to distinguish the visual differences between i-tStar (3D) and i-tStar, the three-
dimensional Star Coordinates are combined with the spherical coordinate system.

4.1.2 Selecting an Automatic Algorithm for Projection Configuration

The process of manual intervention to determine the optimal configuration for projecting high-
dimensional data in low-dimensional space [21] is cumbersome and may need to browse a large
number of configurations. The proposed algorithm will enable the user to obtain the best projection
by eliminating the need for manual browsing in all possible configurations, as shown in Table 1.

Table 1: i-tStar (3D) automatic star projection

Algorithm 1: i-tStar (3D) automatic star projection

input: I as Number of iterations, Q0 as an initial measure of the
quality of clusters
output: parameters p corresponding to highest Q1
1: for i in (1, . . . , I):
2: initialize parameters
3: Q(X,Y,Z) calculate by Eq. (36) // a projection in 3D space
4: Apply SOM clustering algorithm in projected space
5: Apply validation measure and calculate the quality of

clusters Q1 given by Dunn index and Davies-Bouldin index
6: if Q1 > Q0:
7: Q0 Q1

(Continued)
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Table 1 (continued)

Algorithm 1: i-tStar (3D) automatic star projection

8: p parameters
9: return p

4.2 Visual Clustering
If there is a large number of dimensions and records in the dataset, it is effective to combine semi-

supervised clustering with three-dimensional visual clustering, that is, to find the optimal projection
distance metric given by the matrix M. The following are several alternatives for modeling and
evaluating the best projection distance metrics for advanced data analysis, interactive visual clustering
flexibility, and manual parameter adjustment.

4.2.1 Spherical Coordinates and Normative Discriminant Variables

If using the category label for annotation, the canonical variable [22] can be used to get the
spherical coordinates of the optimal projection distance metric M. According to Bishop [23], the
canonical variables of the three-dimensional projection can be obtained as follows:

For each cluster, first form the Mahalanobis covariance matrix Vk and the mean μk, and then
define the weighted covariance matrix V = ∑c

k=1 NkVk, where Nk is the data instance in cluster k
Quantity, c is the total number of clusters.

Using μ, the average of the entire dataset and μk, the average of each cluster k, form a matrix
VB =∑c

k=1 Nk (μk − μ) (μk − μ)
T .

An optimal projection matrix W3 having three first eigenvectors V−1VB is formed to be projected
into the three-dimensional space.

After obtaining the projection matrix W3 = {
wij

} |i=1,2,3,j=1,2,...,d, the matrix equation MT = W3 is
solved in the following equation by elemental decomposition.⎧⎪⎨
⎪⎩

αi cos θi = wi1

αi sin θi sin ϕi = wi2

αi sin θi cos ϕi = wi3

, i = 1, 2, . . . , d (35)

If wi1, wi2, wi3 are not all zero, then Eq. (1) has a unique solution of αi, θi and ϕi. This method
is similar to converting spherical coordinates to spherical coordinates: αi = √

w2
i1 + w2

i2 + w2
i3, θi =

arctan
w2

i2 + w2
i3

wi3

, ϕi = arctan
wi2

wi3

, ϕi = arctan
wi2

wi3

. If the projection matrix W3 is a non-singular matrix,

it may correspond to a unique set of θ , α and ϕ visualized by the Star Coordinates.

4.2.2 Projection Distance Metric

The use of Fisher discriminant analysis usually makes implicit assumptions about the polynomial
distribution of the data. When there is no specific assumption of the data distribution, the distance
metric can be obtained from the set of similarity and dissimilarity pairs by optimizing the function of
reducing the distance between similar items while increasing the distance between different pairs of
items. When exploring the projection distance metric M of a dataset separated in a three-dimensional
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projection space (rather than the original space), it is defined as the distance between two items x1 and
x2 in the projected three-dimensional space:

dM (x1, x2) = ||x1 − x2||M =
√

(x1 − x2)
T MTM (x1 − x2) (36)

For the case of processing a set of similar pairs S and a set of dissimilar pairs D, assuming that
some items xn process category labels, items having the same category label form a similarity set S, and
items having different labels form a dissimilarity set D.

4.2.3 Comparison Algorithms of i-tStar (3D) and i-tStar

To illustrate the efficacy of the i-tStar (3D) algorithm, the performance of i-tStar (3D) was
compared with that of the i-tStar, and simulated data sets were used in the empirical analysis. The
simulated data is composed of three types of Gaussian distribution data in five dimensions, and the
mean and covariance matrices used are given by the following formula:

p (x) = 1

(2π)
d
2
∣∣∑∣∣ 1

2

exp

[
−1

2
(x − μ)

t

−1∑
(x − μ)

]
(37)

m1 = [100 100 100 100 0
]

,
m2 = [100 100 100 100 10

]
,

m3 = [100 100 100 100 20
] (38)

cov1 = cov2 = cov3 =

⎡
⎢⎢⎢⎢⎣

40 0 0 0 0
0 40 0 0 0
0 0 40 0 0
0 0 0 40 0
0 0 0 0 40

⎤
⎥⎥⎥⎥⎦ (39)

Fig. 8 shows the results obtained using i-tStar and i-tStar (3D) projections. The i-tStar (3D)
algorithm seems to render better visualizations because of the clear images involving three classes.
This may be due to the fact that in some data sets, the projection obtained by the i-tStar algorithm
involves more fuzzy indications of classes than the i-tStar (3D) algorithm, and data points are relatively
sparsely distributed with no clear boundaries between two of the three classes involved.

Figure 8: Projection results of simulated dataset on (a) 2D star coordinates and (b) 3D star coordinates
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5 Case Study
5.1 Experimental Dataset

In the mining field, open pit mining processes often rely on large mining trucks as the primary
means of transport. According to the GPS receiving module installed on the mining truck, the GPS
satellite signal is periodically received to obtain the real-time three-dimensional coordinates of the
truck, and a large amount of trajectory data is accumulated as the truck moves continuously. The mine
car data has general features or metadata combined with spatiotemporal data, the spatial dimension of
which exists in the expressed geolocation characters, and the time dimension represents the continuity
of these data over time. As a result, these data are multidimensional in space and time. Moreover, the
movement process of the mine car is accompanied by changes in direction, speed, tire temperature
and tire pressure, which constitute the variable data of the mine car, which is the property of the
mine car. Therefore, our dataset represents continuous time data collection for a mining area in
Inner Mongolia, China, from June 28, 2016 to August 30, 2016, it consists of four-dimension (three-
dimensional geospatial, time) and four-attribute-trajectory data (direction, speed, tire temperature,
tire pressure). To facilitate visualization, instead of distinguishing between multidimensional and
multivariate conceptual operations, they are treated as data instances of eight dimensions that describe
the statistics of all the relevant information that the mine car has. This paper hopes to use i-tStar and
i-tStar (3D) to realize the mining and visual modeling of a high-dimensional trajectory dataset.

5.2 Clustering Visualization and Interactive Results of i-tStar
5.2.1 Visualization Results of Star Coordinate Markers Based on Uniform, DSIM, PSIM and CSIM

We use DSIM, PSIM and CSIM to measure the similarity between the two data dimensions, and
then use the data set visualization of the proposed multi-class method to confirm the best visualization
effect of the number of tags. Figs. 9a to 9d show the visualization results of uniform star coordinates,
i-tStar of DSIM based dataset, i-tStar of PSIM based dataset and i-tStar of CSIM based dataset,
respectively. It can be seen that some clusters are overlapped based on uniform star coordinates,
which cannot achieve the perfect separation of clusters, including some mixed clusters. The latter three
methods of configuring constellation coordinate layout can better separate clustering. All modified
star coordinates are better than standard star coordinates, and the i-tStar visualization effect of the
data set based on DSIM is the best.

In order to visualize multiple clusters in multidimensional trajectory dataset, one visual space is
not enough to show the separation of clusters. The visualization of dataset using the proposed multi-
class method effectively solves this problem. In this case, samples from multiple classes are randomly
selected as marker data input. As shown in Figs. 9e∼9h, we marked a small number of data samples,
including 3 samples from the class, 4 samples from the class and 5 samples from the class. Although
the number of labeled samples will affect the proposed method, the results are satisfactory over a wide
range of values. We show that the best data visualization is achieved where the axis is adjusted until
the mapping point cloud (cluster) in the mapping plane is as dense and separated as possible. I-tStar
aims to achieve this optimal mapping. Even if the number of labeled samples is limited, users can easily
identify the visual results using a set of labeled samples. This method automatically and clearly shows
the clustering without any direct user participation. And the minimized cluster overlapping region
proves the effectiveness of i-tStar, and the results are very close to our previous reasoning. Therefore,
our subsequent experimental data visualization is based on the labeled DSIM i-tStar.
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Figure 9: Uniform star coordinates (a); and i-tStars based on DSIM (b), PSIM (c), and CSIM (d).
(e–h) Fully automated multi-class results, where ω1 = 3, ω2 = 4, ω3 = 5

5.2.2 Attribute Interaction Behavior

Then do further analysis and merge the relevant attributes. The PCA-based clustering algorithm
is used to cluster some attributes of the dataset. This process is a collection of the time axis and
the tire temperature axis, the speed axis and the tire pressure axis. The axis starts at 12 o’clock, and
clockwise is the elevation axis, the longitude axis, the latitude axis, the time/tire temperature axis, the
tire pressure/speed axis, and the direction axis. The attributes assigned to the same axis indicate that
they are highly correlated. (tire pressure and speed, time and temperature). The i-tStar visualization
results are shown in Fig. 10a. After cluster identification, it can be seen from Fig. 10b that the layout
also shows three clusters of stay, no-load, and full-load (the stay point accounts for about 5%, the
no-load point accounts for about 30%, and the full-load point accounts for about 65%).

Figure 10: Clustering of partial attributes

The initial state of the six-dimensional experimental process and the clustering result generated
by the interactive manipulation process are also indicated, and the link between the SI view and the
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projected view is also implemented to show the importance of the cluster, as shown in Fig. 11, it
shows i-tStar attribute clustering based on PCA and variance, in addition of 11 different layouts of the
produced dataset that rearranged. The distribution of point clouds has changed, as well as the discrete
and aggregated features of the cluster.

Figure 11: (Continued)
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Figure 11: Layouts after attribute reordering. (a–d) Clusters after user interactions; (e–h) i-tStar
projections based on PCA clustering; (i–l) i-tStar projections based on variance

Fig. 12 illustrates the actual interactive resource operations. For example, certain attributes first
perform scaling and rotation operations interactively to better differentiate three clusters (fully loaded,
empty, stay), and move interactively from one cluster to another. In Fig. 12a, the combined attributes
use time and tire temperature, speed, and tire pressure as clustering attributes. In Fig. 12b, the
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combined attributes use time and tire temperature, speed, and elevation as clustering attributes. The
reason for this is that the tire pressure property in Fig. 12b has moved from the red axis to the green
axis, and the elevation attribute has been swapped. The lens is used to describe the contents of the
clustered axis.

Figure 12: A new cluster is uncovered and clearly defined after certain interactions on the final
projection

Fig. 12a shows that in the purple lens, the clusters with high-pressure values and low-speed values
represent fully loaded trucks, and those with low-pressure values and high-speed values indicate empty
trucks. The stay point is observed at the vicinity of the two axes and the origin, which indicates that
the tire pressure and speed are significantly affected and the two values cancel each other out during
the stay; in the blue lens, the clusters of empty trucks exist in the place where the time and temperature
values are large, and the clusters fully loaded trucks exist in time and the temperature values are small
or where the two axes are close to the origin. The position of the stop point indicates that the dwell
state is not related to temperature and time, and the correlation between the two is stronger.

Fig. 12b shows that in the purple lens, where the pressure value is high and the elevation value is
low, most of the clusters are fully loaded trucks. Where the pressure value is low and the speed value is
high, most of the clusters are empty trucks, and the stay point is on the axis. In the blue lens, most of the
empty-truck clusters exist in places where the time and temperature values are great, and most of the
full-truck clusters exist in places where the time and temperature values are small or the neighborhood
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of the origin. Although the distribution of point clouds differs from Fig. 12a, the overall trend is the
same, and the time, elevation, tire temperature, tire pressure, and speed are highly relevant to the three
clusters. These visualizations further validate the behavioral patterns of multi-attribute interactions in
mine cars.

In general, i-tStar achieves better data mining and visualization effects in high-dimensional
relationship distribution, and can classify non-numeric data, that is, clusters are visualized during data
mapping, and i-tStar shows the dispersion distribution of attribute correlations. Although the degree
of separation between some clusters is small, it can be seen that all clusters are separated from each
other.

5.3 i-tStar (3D) Cluster Visualization and Interactive Results
Similarly, by doing similar operations in i-tStar (3D), the following visual views can be obtained

in Figs. 13–16.

5.3.1 Visualization Results of Star Coordinate Markers Based on Uniform, DSIM, PSIM and CSIM

We express the visual presentation using i-tStar in Section 5.2.1 in the form of i-tStar (3D). The
automatic configuration of i-tStar (3D) reveals the hidden mode in complex data sets without human
intervention. On the premise of necessity, semi-supervised clustering is realized.

Figure 13: (a) Uniform 3D star coordinates; and 3D star coordinates based on (b) DSIM, (c) PSIM,
and (d) CSIM. (e–h) Using a fully automated multi-class approach based on (a–d), where ω1 = 3,
ω2 = 4, ω3 = 5



CMES, 2023, vol.135, no.1 233

Figure 14: Visualization results with partial attributes clustered

Figure 15: (Continued)
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Figure 15: 3D layouts after attribute reordering. (a–d) Clusters after user interactions; (e–h) i-tStar
projections based on PCA clustering; (i–l) i-tStar projections based on variance

5.3.2 Attribute Interaction Behavior
5.4 Comparing i-tStar with i-tStar (3D)

The experimental results show that in i-tStar, the basic representation of data is essentially
two-dimensional, the display is essentially two-dimensional, and the input device is essentially two-
dimensional. When there is no obvious separation between two of the three classes in the i-tStar display
database, the result is similar to the scatter diagram. On the contrary, the projection results produced
by i-tStar (3D) projection algorithm have clear category separation, clear boundaries and compact
clusters, that is, it provides a better data trend than i-tStar projection. Therefore, to some extent, it
can be explained that compared with the visualization technology of i-tStar, i-tStar (3D) reveals the
hidden patterns in the data and helps to better visualize the complex high-dimensional data.

As a valuable extension of i-tStar, i-tStar (3D) not only retains all the functions of i-tStar, but
also provides and makes use of the new three-dimensional aspects of the system. It is easy to note that
i-tStar (3D) projection has a higher degree of freedom because i-tStar (3D) visualization algorithm
defines a process to select the best configuration for 3D projection using clustering validity index.
In general, compared with i-tStar technology, i-tStar (3D) has the following advantages: 1) System
rotation allows to maintain the configuration of data while considering different views; 2) The infinite
expansion of the volume relative to the surface allows easier discovery of the structure of the data; 3)
The attribute reference provided can be used to perform more complex multivariate analysis.
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Figure 16: A new clearly defined cluster is uncovered after certain interactions on final projection

6 Conclusion

Based on the original Star Coordinates in high-dimensional data visualization technology, we
improved i-tStar for high-dimensional trajectory data and extended i-tStar to i-tStar (3D) with
better visualization. This type of model is not only the most scalable technique for visualizing high-
dimensional trajectory big data, but also can be used for exploratory tasks such as cluster analysis,
outlier detection, trend prediction or decision making. Obviously, any projection will result in loss of
information and inevitably have cluster overlap. We implemented i-tStar and i-tStar (3D) in a variety
of aspects to perform a complete and complementary visual search of high-dimensional data based
on local and global patterns in an iterative visual search process. More importantly, we point out their
strengths and weaknesses, which are based on guiding recommendations for future research.
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