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ABSTRACT

Currently, energy conservation draws wide attention in industrial manufacturing systems. In recent years, many
studies have aimed at saving energy consumption in the process of manufacturing and scheduling is regarded as
an effective approach. This paper puts forwards a multi-objective stochastic parallel machine scheduling problem
with the consideration of deteriorating and learning effects. In it, the real processing time of jobs is calculated by
using their processing speed and normal processing time. To describe this problem in a mathematical way, a multi-
objective stochastic programming model aiming at realizing makespan and energy consumption minimization
is formulated. Furthermore, we develop a multi-objective multi-verse optimization combined with a stochastic
simulation method to deal with it. In this approach, the multi-verse optimization is adopted to find favorable
solutions from the huge solution domain, while the stochastic simulation method is employed to assess them.
By conducting comparison experiments on test problems, it can be verified that the developed approach has
better performance in coping with the considered problem, compared to two classic multi-objective evolutionary
algorithms.
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1 Introduction

Currently, the energy crisis has become one of the most prominent and urgent environmental
issues [1,2]. For the last few years, excessive energy resources have been consumed, which causes
both resource depletion and environmental pollution. Consequently, energy conservation attracts
considerable attention from government concern and public awareness [3,4]. An official report shows
that the energy demand continues to grow at a rapid rate of 56% between 2010 and 2040 (EIA 2013).
The manufacturing industry consumes an amount of energy and produces a great deal of greenhouse
gas, which result in seriously environmental pollution. As a result, manufacturers are encouraged
to make energy-efficient decisions involving process reformation, product design and production

https://www.techscience.com/journal/CMES
https://www.techscience.com/
http://dx.doi.org/10.32604/cmes.2022.019730
https://www.techscience.com/doi/10.32604/cmes.2022.019730
mailto:wanglei0225@shnu.edu.cn


326 CMES, 2023, vol.135, no.1

scheduling when managing and organizing their production [5–7]. Parallel machine scheduling is an
important scheduling problem in practical manufacturing systems. In the past years, vast studies
have been made on this subject, such as Saricicek et al. [8], Prot et al. [9], Vallada et al. [10],
Bozorgirad et al. [11], Zhong et al. [12] and Li [13]. In an actual process, it is important to take the
actual environment into account when studying the parallel machine scheduling problems (PMSP). In
the workplace, the parameters of scheduling problem are influenced by many existing factors [14–16].
Stec et al. [17] considered that the processing time of jobs obeys a specified normal distribution in a
PMSP. Al-Khamis et al. [18] focused on the uncertain due dates when solving a PMSP. Zhang [19]
used the random processing time and adjustable production rate in a PMSP.

Previous work on parallel machine scheduling tends to set the processing time as a fixed constant,
which obviously deviates from the actual situation. In real-life, the processing time of jobs always
changes with their start time. For example, the steel industry wants to process the job under high
temperatures. However, if the processing time of the unprocessed job is very late, the temperature will
drop accordingly. Therefore, due to the later start time, the processing time of this job will be prolonged,
i.e., the later the job starts, the longer the corresponding processing time is. In general, it is called the
deteriorating effect. Kang et al. [20] aimed at achieving maximum completion time minimization in an
identical PMSP with processing deteriorating jobs. Cheng et al. [21] developed the unrelated PMSP
considering the deteriorating maintenance activities. Jiang [22], Huang et al. [23], Zhao et al. [24] and
Na et al. [25] proposed related PMSPs with respect to deteriorating effects. Mazdeh et al. [26] discussed
the PMSP considering both machine and job deterioration effects. Except for the deteriorating effects,
the learning effects usually occur as well. In the real world, production facilities (machines, workers)
will continuously improve their production capacity and skills over time. Therefore, when one job is
processed late, its processing time can be shortened. Mosheiov [27] summarized the classical scheduling
problems with consideration of learning effects. Yeh et al. [28] concentrated on both learning effects
and fuzzy processing time in a PMSP. To solve it, they used two heuristic algorithms, i.e., a simulated
annealing method and a genetic approach. Hidri et al. [29] solved a PMSP with learning effects. They
employed several heuristic algorithms to tackle it. Eren et al. [30] focused on the learning effects in
a PMSP regarding setup and removal times. Toksari Duran et al. [31] presented a PMSP with the
consideration of due dates, the deteriorating and learning effects, and sequence dependent-setups.

In practical scheduling problems, not only single objective needs to be considered, but also multi-
objective needs to be solved optimally [32]. The prior research has coped with multi-objective problems
under the condition of considering deteriorating and learning effects. Lu et al. [33] aimed at optimizing
completion time and total load and resource cost in a multi-objective PMSP considering deteriorating
and learning effects. Amini et al. [34] studied an identical PMSP where the setup and removal times of
jobs are influenced by both deteriorating and learning effects. Arik et al. [35] considered a multi-
objective PMSP under a fuzzy environment, in which the jobs are affected by deterioration and
learning effects. Rostami et al. [36] also took the deterioration and learning effects into account in
solving a multi-objective non-identical PMSP.

Through the analysis of existing studies, we find that an energy-aware PMSP with the consid-
eration of deteriorating and learning effects and uncertainty is not be adequately considered by the
existing studies. In an actual process, energy consumption optimization needs to be considered, and
thus a multi-objective model should be addressed to find a balance between energy-saving and time-
related criteria. Additionally, because the details of machines and jobs usually cannot be foreseen, jobs’
processing time is uncertain [37]. Besides, to depict a real-life manufacturing system, it is necessary
to consider the deteriorating and learning effects. By comparing with previous studies, twofold
contributions are made as follows:
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1) We propose a stochastic energy-aware parallel machine scheduling problem with deteriorating
and learning effects. Its goal is to minimize the makespan and energy consumption. Further-
more, a stochastic multi-objective model is formulated to describe it mathematically.

2) We design a multi-objective multi-verse optimization incorporating a stochastic simulation
approach to solve the proposed problem. In it, a multi-objective multi-verse optimization is
applied to search for favorable solutions from the entire solution domain, and the stochastic
simulation approach is employed to evaluate the performance of obtained solutions. Via
conducting experiments on a set of test problems and comparing the designed approach with
its peers, i.e., the nondominated sorting genetic algorithm II and multi-objective evolutionary
algorithm based on decomposition, we demonstrate its effectiveness in solving the considered
problem.

2 Problem Description

In this paper, the investigated problem is demonstrated as: There are n jobs in a manufacturing
system, and they need to choose any one out of m machines to perform production operations. The
deteriorating and learning effects of jobs occur in the manufacturing process. The real processing time
of jobs is calculated via using their normal processing time, start processing time, processing position
and speed in a schedule. In the investigated problem, we aim at minimizing the makespan and energy
consumption by determining job assignment among machines, job sequence on machines and job
processing speed. We introduce the following notations:

Indices:

N set of jobs, N = {0, 1, 2, . . . , n}, in which the index n indicates the number of jobs, and 0 is a
virtual job.

M set of machines, M = {0, 1, 2, . . . , m}, in which the index m indicates the number of machines,
and 0 is a virtual machine.

D set of speeds, D = {1, 2, . . . d}, in which the index d denotes the number of processing speeds.

j job index, j ∈ N.

i machine index, i ∈ M.

k position index, k ∈ N.

l selected processing speed index, l ∈ D.

Parameters:

pij normal processing time of the job j on machine i.

βij learning rate of job j on machine i.

αij deteriorating rate of job j on machine i.

vil the l-th processing speed of machine i.

tij setup time of job j on machine i.

eα

ij energy consumption per unit time in the processed phase if job j is processed on machine i.

eβ

ij energy consumption per unit time in the setup phase if job j is processed on machine i.

Decision variables:

p′
ijk actual processing time of job j at the k-th position on machine i.
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sijk start processing time of job j at the k-th position on machine i.

Cmax makespan.

xijk if job j is processed at the k-th position on machine i, xijk = 1; otherwise, xijk = 0.

zjl if job j chooses the l-th processed speed for processing, zjl = 1; otherwise, zjl = 0.

A viable scheduling scheme needs to obey the following restricted conditions: 1) Only one machine
is chosen for each job to perform processing operations; 2) For each machine, only one job rather than
multiple jobs can be processed on it at a time; 3) No machines can be interrupted. Note that the actual
processing time of jobs can be calculated as:

p′
ijk =

(
pij

vi

∑
l∈D

zjl + αij · sijk

)
· kβij . (1)

According to the above notations and definitions, the considered problem can be established as
follows:

min E (Cmax) (2)

min E

(∑
i∈M

∑
j∈N

∑
k∈N

(
eα

ij · p′
ijk · xijk + eα

ij · tij · xijk

))
(3)

s.t.∑
j∈N

∑
k∈N

xijk ≤ 1, ∀ i ∈ M. (4)

∑
i∈M

∑
k∈N

xijk ≤ 1, ∀ j ∈ N. (5)

∑
l∈D

zjl = 1, ∀ j ∈ N. (6)

E

(
p′

ijk −
(

pij

vi

∑
l∈D

zjl + αij · sijk

)
· kβij

)
= 0, ∀i ∈ M, ∀j ∈ N, ∀k ∈ N. (7)

E

(
eα

ij − 4.0 ∗ v2
il

∑
l∈D

zjl

)
= 0, ∀i ∈ M, ∀j ∈ N. (8)

E
(
sijk+1 − s′

ijk − p′
ijk − tij + G

(
2 − (

xijk + xijk+1

))) ≥ 0, ∀i ∈ M, ∀j ∈ N, k = 1, . . . , N − 1. (9)

E
(
Cmax − sijk − p′

ijk − tij + G
(
1 − xijk

)) ≥ 0, ∀i ∈ M, ∀j ∈ N, ∀k ∈ N. (10)

xijk ∈ {0, 1} , zjl ∈ {0, 1} , ∀i ∈ M, ∀j ∈ N, ∀k ∈ N, ∀l ∈ D. (11)

where the objective functions (2) and (3) are minimizing the makespan and total energy consumption,
respectively. Note that E (ξ ) demonstrates the expected value of the random variable ξ . Eq. (4)
guarantees that at most one job can be processed at one position of a machine. Eq. (5) indicates that
each job is allowed to choose only one position of a machine for processing. Eq. (6) shows that each
job is processed with only one speed. Eq. (7) gives the actual processing time of jobs. Eq. (8) shows the
energy consumption per unit time of jobs. Eq. (9) indicates that the start processing time of subsequent
jobs on each machine should be larger than the end time of previous jobs. Eq. (10) means that the end
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time of each machine is smaller than the makespan. Eq. (11) represents that each decision variable
equals to 0 or 1.

3 Solution Algorithm
3.1 Basic Multi-Verse Optimizer (MVO)

Recently, a global optimization algorithm named Multi-verse optimizer (MVO) is initially put
forward by Hatamlou et al. [38]. It primarily contains three important cosmology notations, i.e., white
hole, black hole, and wormhole. Based on them, employing three mathematical models can contribute
to exploration and exploitation, respectively. More detailed descriptions about MVO can refer to [38].

Due to its advantages, such as easy implementation, powerful exploration and exploitation
abilities, MVO has been successfully employed to solve many optimization problems [39–41]. Thus,
it is a good choice to deal with the considered problem. Although basic MVO is initially introduced
to solve continuous and single-objective optimization problems, its variants have been employed to
solve various discrete and multi-objective optimization problems and shown excellent performance.
Consequently, to make it suitable for handling the considered problem, a MOMVO incorporating a
stochastic simulation approach is designed according to the considered problem’s characteristics. The
detailed descriptions of MOMVO are shown below.

3.2 Solution Expression and Population Initialization
For solving the considered PMSP, it is necessary to make three decisions as: job assignment among

machines, job sequence on machines and job processing speed. In this work, we use a double-chain
structure to indicate a solution [42]. In MOMVO, a solution is expressed by an integer string S =
(O, V). O = (o1, o2, . . . , oN) represents a job sequence where an integer is a job index, and V =
(v1, v2, . . . , vN) indicates a speed vector where vn, vn ∈ D denotes the selected processing speed of its
corresponding job. Taking 20 jobs and 2 machines as an example, each job has 5 available processing
speeds, an individual S = (O, V) can be expressed as: O = (7, 18, 16, 20, 5, 19, 14, 1, 13, 15, 8, 4, 11,
2, 12, 3, 6, 10, 9, 17) and V = (1, 4, 2, 3, 5, 3, 5, 2, 1, 1, 3, 1, 2, 2, 3, 1, 5, 3, 3, 1). It can be seen that
v1, v9, v10, v12, v16, v20 represents that the speed of processing job is 1, and their corresponding jobs are
o1 =7, o9 =13, o10 =15, o12 =14, o16 =3, o20 =17, respectively.

The decode rules are used to transform a solution into a feasible scheme as: Each job is allocated
to a machine having earliest time and its actual processing time is calculated as Eq. (1). Note that the
objective function values of a solution are not directly evaluated due to the jobs’ random processing
time. Hence, for estimating the solutions, we employ a well-known Monte Carlo Simulation approach.

In MOMVO, an initial population consists of 100 randomly viable solutions. Besides, to restore
the obtained non-dominated solutions in the search process, an external archive is developed and a
Pareto rule is employed to update it [43].

3.3 Stochastic Simulation Approach
Notice that the objective function is expressed as an expected value, and we cannot directly

evaluate it. Monte Carlo simulation is one of the most effective stochastic simulation methods. It has
been effectively employed to deal with various stochastic problems [44]. Therefore, it is adopted in this
work to estimate the solutions. The true objective function value is calculated by taking an average of
extensive replications. Each replication is regarded as a sample where the jobs’ normal processing time
is generated at random from their corresponding distributions. In fact, the true objective value can be
achieved if the number of replications tends to infinity. However, the computation resource is usually
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limited, and we need to do such work under limited resources. Thus, the number of replications is set
to 10.

3.4 New Individual Generation Approach
In the proposed MOMVO, we randomly select an individual in the current population as a black

hole. And a binary selection approach is regarded as wormhole, and it is employed to choose an
individual as a white hole. Fig. 1 indicates Pseudo-code of selection approach, where x1 is a solution
chosen from the external archive, x2 is randomly chosen from population. The two selected individuals,
i.e., black hole and white hole, are regarded as parent individuals. This work uses genetic operation
including crossover and mutation approaches to generate new individuals. Let S1 = (O1, V1) and
S2 = (O2, V2) be two newly generated individuals. The crossover operation is performed as follows:

1) Select two parent individuals by using a binary selection method, i.e., Sf = (
Of , Vf

)
and

Sm = (Om, Vm).

2) Perform an order-based crossover approach to acquire child individuals O1 and O2. The first
step is to randomly select two different points in Of . Then store the partial permutation between
two points as jobs of O1 at the same positions. Then the remaining jobs need to be added as the
order of their appearance in Om. Same procedure as O1 is performed to get job permutation
of O2.

3) Generate two binary strings V1 and V2 randomly. If the value in V1 of S1 is 1, the value
corresponding to Vf will be inherited into V1; If the value in V1 is 0, the value corresponding
to Vm will be inherited to V1. If the value in V2 of S2 is 1, the value corresponding to Vm will be
inherited into V2; If the value in V2 is 0, the value corresponding to Vf will be inherited to V2.
Therefore, V1 and V2 of two newly generated individuals are produced.

Figure 1: Pseudo-code of selection approach

The following mutation operations with a probability are performed on each newly generated
offspring individual. Different ways of mutation operations are adopted for parts O and V of the
individual S. Firstly, for part O of the individual S, (1) select two different points in the part O string
randomly; (2) the genes in the two positions are exchanged. Secondly, for the part V of the individual
S, (1) one point in the part V string is selected randomly; (2) the gene at this point is replaced with a
random generated number, where this number is between 1 and 5.
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3.5 Selection Approach
For the solution algorithm designed to tackle multi-objective problems, finding a solution set

with outstanding approximation and distribution is desired. Thus, the rank and crowding distance
methods [43] can availably balance the approximation and distribution. Therefore, MOMVO combines
the contemporary population with new individuals, and the top 100 individuals are selected as the next
population by employing aforementioned methods.

In addition, MOMVO uses the newly obtained population to update the external archive with
maximum capacity constraints by employing a Pareto dominance rule [43]. The framework of the
basic MOMVO is described by the pseudo-code in Fig. 2.

Procedure of MOMVO

Begin
initialize parameters;

evaluate all individuals in population;

Repeat
generate new individuals;

construct the next population;

update the external archive;

until a stopping condition is satisfied.

export the nondominated solutions.

End.

Figure 2: Pseudo-code of MOMVO

4 Experimental Study

To test MOMVO’s effectiveness in coping with the problem studied, we choose two classical
and popular multi-objective optimization methods, i.e., Nondominated sorting genetic algorithm II
(NSGA-II) [43] and Multi-objective evolutionary algorithm based on decomposition (MOEA/D) [45],
as peer algorithms to perform comparison experiments.

4.1 Test Problem Generation
To validate the performance of MOMVO in solving the problem under consideration, we

randomly produce 30 test problems which are the combinations of m ∈ {2, 4, 6, 8, 10} and n ∈
{20, 40, 60, 80, 100}. The normal processing time of jobs follows normal distribution. Their mean
processing time is a random number from 1 to 100, and their standard deviation is calculated
through multiplying their mean processing time by the coefficient γ , where γ = 0.0000001. The
setup time of jobs is obtained from 1 to 10. Machine processing speed at five levels, i.e., vil =
{1.00, 1.30, 1.55, 1.80, 2.00}. The deteriorating and learning rate of jobs on machines are randomly
produced from [0, 0.1] and [−0.1, 0], respectively. The energy consumption per unit time of standby
machines is set to eβ

ij = 1.0.

4.2 Parameter Setting
MOMVO, NSGA-II and MOEA/D have two identical parameters as: population size and

mutation probability. For three algorithms, the population size is equal to 100. The values of mutation
probability for them are equal to 0.3, 0.3 and 1.0, respectively. The maximum capacity of external
archive is set as 100 and the number of fitness evaluation 100 mn is chosen as the stopping condition,
in which m and n are machine number and job number, respectively.
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4.3 Performance Metrics
Approximation and distribution are two key indicators for evaluating the multi-objective opti-

mization algorithms’ performance. Therefore, this work employs C-metric by Deb et al. [43] and IGD-
metric by Fu et al. [44] as performance metrics.

1) C-metric is employed to measure a dominated percentage of two sets acquired by two
optimizers. C (X , Y) represents the dominated percentage of solutions in Y dominated by at
least one solution in X . C (X , Y) is calculated as:

C (X , Y) = |{y ∈ Y |∃x ∈ X :x ≺ y}|
|Y | . (12)

where |Y | denotes the number of solutions in Y . Evidently, a larger C (X , Y) value means that the X
is better.

2) IGD-metric is adopted to assess both convergence and diversity of a solution set by measuring
the average distance between an optimal solution set V ∗ and an approximated solution set V .
It is calculated as:

IGD (V , V ∗) = 1
|V ∗|

∑
v∈V∗ dist (v, V) . (13)

where dist (v, V) denotes the Euclidean distance between a solution v in V ∗ and its closest solution
in V . In fact, we are unable to attain V ∗ for the practical problem. Thus, all solutions acquired by
MOMVO and its peers are combined, and then choose the nondominated solutions as V ∗. Besides, we
normalize all objective function values into [0, 1], then calculate IGD-metric. Obviously, the smaller
IGD value, the better V .

4.4 Experimental Results and Analysis Discussion
In this part, MOMVO’s performance in tackling the considered problem is validated. MOMVO

and its peers run 10 times for each problem, and the mean and variance values regarding C-metric and
IGD-metric are calculated.

Table 1 exhibits the experiment results of C-metric, in which MOMVO, NSGA-II and MOEA/D
are denoted by the indices “X”, “Y” and “Z”, respectively. It is worth mentioning that a larger mean
value represents a better performance. Through looking at the results, it is clear that MOMVO shows
obvious outperformance since the mean values of MOMVO is larger than those of its peers on most
of test problems. In addition, the average of mean and variance values on all the test problems are
calculated, we can find that the average of MOMVO, NSGA-II and MOEA/D regarding mean value
are 0.6345, 0.1990, 0.7139 and 0.2082, and those of variance value are 0.1696, 0.0984, 0.1241 and
0.0813, respectively. Hence, the average of MOMVO regarding mean value performs better than its
peers, while the average of MOMVO in terms of variance value shows a little worse. Through the
analysis of above results, we can declare that MOMVO has obvious advantage in solving the considered
problem.
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Table 1: Result comparison of C-metric

m n C(X, Y) C(Y, X) C(X, Z) C(Z, X)

Mean Variance Mean Variance Mean Variance Mean Variance

2 20 0.6214 0.2100 0.1906 0.1208 0.0616 0.0093 0.8008 0.0444
40 0.7212 0.0900 0.1569 0.0479 0.3000 0.2233 0.6473 0.2000
60 0.4277 0.1832 0.3737 0.0768 0.7235 0.1441 0.2436 0.1269
80 0.6875 0.1740 0.1117 0.0405 0.9000 0.0989 0.1000 0.0989
100 0.8143 0.1506 0.0583 0.0336 1.0000 0.0000 0.0000 0.0000

4 20 0.8139 0.1049 0.1273 0.0743 0.2034 0.1718 0.5919 0.1314
40 0.7425 0.1613 0.2130 0.1248 0.8000 0.1067 0.1500 0.0336
60 0.7167 0.0863 0.0581 0.0059 0.5958 0.2201 0.2401 0.1200
80 0.4000 0.2489 0.4616 0.1648 0.8086 0.1145 0.0917 0.0586
100 0.7000 0.2233 0.3000 0.2233 1.0000 0.0000 0.0000 0.0000

6 20 0.4545 0.1405 0.3459 0.1832 0.1813 0.1443 0.6732 0.1414
40 0.6517 0.1773 0.1303 0.0139 1.0000 0.0000 0.0000 0.0000
60 0.7000 0.1789 0.1142 0.0106 0.7000 0.2233 0.2886 0.2071
80 0.7665 0.1578 0.2040 0.1586 0.8000 0.1067 0.0880 0.0396
100 0.6000 0.2489 0.2376 0.1295 0.9000 0.0989 0.0938 0.0869

8 20 0.6157 0.1306 0.2277 0.1238 0.6071 0.2405 0.3173 0.1724
40 0.6759 0.1435 0.0597 0.0217 1.0000 0.0000 0.0000 0.0000
60 0.5435 0.2148 0.2791 0.1217 0.8000 0.1733 0.0290 0.0083
80 0.4563 0.1598 0.2876 0.1473 0.6879 0.1741 0.1711 0.1143
100 0.5066 0.2493 0.1158 0.0761 0.6763 0.2115 0.1348 0.0988

10 20 0.9607 0.0015 0.0000 0.0000 0.8035 0.1192 0.1731 0.1265
40 0.5072 0.2022 0.3083 0.1670 0.9000 0.0989 0.0511 0.0258
60 0.6085 0.1295 0.1000 0.0989 1.0000 0.0000 0.0000 0.0000
80 0.6000 0.2489 0.3281 0.1914 0.8000 0.1733 0.0928 0.0702
100 0.5592 0.2255 0.1859 0.1046 0.6000 0.2489 0.2275 0.1279

Average 0.6345 0.1696 0.1990 0.0984 0.7139 0.1241 0.2082 0.0813

Table 2 gives the experiment results regarding IGD-metric. It is worth mentioning that a smaller
mean value denotes a better approximation performance. We can observe that MOMVO has obvious
advantages over its peers on most of test cases. Through calculating the average values of all instances
in term of mean and variance indicators, we know that the average of MOMVO, NSGA-II and
MOEA/D regarding mean values are 0.3573, 0.4800 and 0.7456, while those in terms of variance values
are 0.0383, 0.0482 and 0.0683, respectively. Hence, MOMVO outperforms NSAG-II and MOEA/D
regarding the average. As can be seen from the above analysis, MOMVO is superior to its peers in
obtaining a better set of nondominated solutions.
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Table 2: Result comparison of IGD-metric

m n MOMVO NSGA-II MOEA/D
Mean Variance Mean Variance Mean Variance

2 20 0.1741 0.0032 0.2678 0.0140 0.1132 0.0014
40 0.3277 0.0125 0.4417 0.0335 0.4677 0.1499
60 0.2492 0.0295 0.2840 0.0158 0.7633 0.2149
80 0.2324 0.0344 0.2569 0.0349 0.9803 0.1094
100 0.0865 0.0047 0.1627 0.0021 1.1800 0.0309

4 20 0.2253 0.0035 0.3866 0.0092 0.1740 0.0079
40 0.2485 0.0205 0.4047 0.0390 0.7080 0.1492
60 0.2998 0.0238 0.4787 0.0325 0.4954 0.0689
80 0.4265 0.0983 0.4907 0.0559 0.9583 0.0556
100 0.2892 0.0081 0.3759 0.0734 1.0325 0.0442

6 20 0.3008 0.0117 0.3435 0.0223 0.2212 0.0280
40 0.2533 0.0298 0.4727 0.0447 0.8333 0.0444
60 0.3773 0.0396 0.5236 0.0338 0.7398 0.0727
80 0.3043 0.0461 0.5035 0.0996 0.7997 0.0544
100 0.4409 0.0326 0.5640 0.0852 0.9696 0.0676

8 20 0.3704 0.0551 0.5118 0.0112 0.4987 0.0612
40 0.3325 0.0452 0.6160 0.0783 0.8188 0.0489
60 0.3851 0.0440 0.4236 0.0596 0.8806 0.0654
80 0.3437 0.0449 0.4731 0.0462 0.7981 0.1081
100 0.4782 0.0473 0.5670 0.0479 0.6998 0.0571

10 20 0.1756 0.0045 0.4148 0.0157 0.3749 0.0898
40 0.2702 0.0471 0.3927 0.0647 0.8161 0.0843
60 0.3886 0.0683 0.6103 0.0970 0.9527 0.0509
80 0.9907 0.0401 0.8963 0.1609 1.2023 0.0211
100 0.9636 0.1632 1.1385 0.0294 1.1636 0.0213

Average 0.3573 0.0383 0.4800 0.0482 0.7456 0.0683

To visually analyze the experiment results, we draw the boxplot graphs of some test problems of
10 runs in Fig. 3. From them, we can find that the obtained results of MOMVO are better and more
stable than its peers. Therefore, we can conclude a conclusion that MOMVO is well-converged and
well-diversified in solving our considered problem.
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Figure 3: Boxplots of some test problems regarding IGD-metric of three approaches, (a) 6 × 80, (b)
6 × 100, (c) 10 × 20, (d) 10 × 40, (e) 10 × 60, (f) 10 × 80
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5 Conclusion

This work addresses a stochastic multi-objective parallel machine scheduling problem with
deteriorating and learning effects to reach makespan and energy consumption minimization. By
fully considering the characteristics of the proposed problem, we design a multi-objective multi-verse
optimization incorporating a stochastic simulation approach to deal with it. The experimental results
show that it is an excellent optimization algorithm for solving our considered problem. The results can
assist decision-makers in making effective decisions under stochastic environments when handling a
parallel machine scheduling problem with multiple optimization objectives, deteriorating and learning
effects. The studied problem can help the manufacturing industry improve production efficiency and
decrease energy consumption, thereby protecting resources and reducing environmental pollution.

In future work, we plan: 1) To propose a rescheduling approach based on the formulated model;
2) To study an effective approach to solve parallel machine scheduling problems according to the
formulated model.
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