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ABSTRACT

In uncertainty analysis and reliability-based multidisciplinary design and optimization (RBMDO) of engineering
structures, the saddlepoint approximation (SA) method can be utilized to enhance the accuracy and efficiency
of reliability evaluation. However, the random variables involved in SA should be easy to handle. Additionally,
the corresponding saddlepoint equation should not be complicated. Both of them limit the application of SA for
engineering problems. The moment method can construct an approximate cumulative distribution function of
the performance function based on the first few statistical moments. However, the traditional moment matching
method is not very accurate generally. In order to take advantage of the SA method and the moment matching
method to enhance the efficiency of design and optimization, a fourth-moment saddlepoint approximation (FMSA)
method is introduced into RBMDO. In FMSA, the approximate cumulative generating functions are constructed
based on the first four moments of the limit state function. The probability density function and cumulative
distribution function are estimated based on this approximate cumulative generating function. Furthermore, the
FMSA method is introduced and combined into RBMDO within the framework of sequence optimization and
reliability assessment, which is based on the performance measure approach strategy. Two engineering examples
are introduced to verify the effectiveness of proposed method.

KEYWORDS
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1 Introduction

The progress of science and technology has put forward higher reliability requirements for
engineering structural systems [1,2]. The actual engineering structure system always has various
uncertainties to varying degrees [3–5]. Uncertainty can be roughly divided into two categories: aleatory
uncertainty and epistemic uncertainty [6]. The aleatory uncertainty is objective and irreducible. It can
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be modeled by probabilistic methods. While the epistemic uncertainty is subjective and reducible. It is
caused by incomplete information.

Uncertainty-based design optimization problems are mainly divided into two categories: robust
design optimization and reliability design optimization. Robust design optimization focuses on
guaranteed performance, looking for designs that are relatively insensitive to changes in uncertain
variables. The purpose is to make the design solution robust when the design variables are degraded.
The main observation is the tail of the PDF. Reliability design optimization focuses on the possibility
of system failure, mainly to obtain a design that satisfies a given reliability. The main observation is
the center of the PDF [7–13]. The definition of reliability can be given as follows: the probability that a
structure completes a specified function within a specified time and under specified conditions [14–17].

Among reliability calculation methods, the moment method approximates the distribution of
random response by fitting the first few random moments based on a type of hypothetical distribution.
It reduces the calculation difficulty of design under uncertainty [18,19]. As one of the basic methods
based on the moment method, the first order second moment (FOSM) is effective, but not accurate
[20,21]. Therefore, it is necessary to use higher-order moments to improve the calculation accuracy. The
use of the saddlepoint approximation (SA) for progressive analysis is efficient and practical [22–28].
The SA method has the following characteristics: simple calculation and strong operability; the overall
approximation effect of the function is excellent, especially the tail probability distribution; when
the density function is known and the calculation of the cumulative distribution function (CDF) is
difficult, the SA method is useful. However, the SA method requires that the cumulative generating
functions (CGF) exist. Moreover, when using the SA method, it is necessary to solve the saddlepoint
equation to obtain the saddlepoint. But when the probability distribution type CGF is complicated,
the saddlepoint equation is highly nonlinear. In this case it is difficult to solve.

Based on these problems, this study combines the moment method with the SA. It proposes
an improved reliability-based multidisciplinary design and optimization (RBMDO) combined with
fourth-moment saddlepoint approximation (FMSA) method (RBMDO-FMSA). In the FMSA
method, the CGF is constructed based on the first four moments of limit state function (LSF)
[29,30]. Then, this study uses the CGF to approximate the probability density function (PDF) and the
CDF. To further improve the efficiency of RBMDO [31–35], this study also uses the FMSA method
while adopting the sequence optimization and reliability assessment (SORA) [36,37] based on the
performance measure approach (PMA) strategy.

The structure of the study can be briefly summarized as: in Section 2, the moment method and
the SA method are briefly reviewed. Section 3 introduces the FMSA method. Section 4 applies the
FMSA method to RBMDO. Section 5 uses two examples to verify the proposed method. Section 6
gives the conclusion.

2 The Moment Method and Saddlepoint Approximation
2.1 The Moment Method

Compared with FORM and SORM, the moment method does not have the problem of finding the
derivative and design point of the performance function. It directly uses the value of the performance
function at some feature points to approximate the failure probability. The moment method can also
be directly used for reliability analysis of single and multiple failure mode systems [38–40].
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Here, Y = g(x) is assumed to follow a normal distribution. If the first two orders of Y are obtained,
namely μY (or α1Y) and σY (or α2Y), the reliability index β2M of the matrix of the first two orders can be
approximately expressed as Eq. (1).

β2M = μY

σY

= α1Y

α2Y

(1)

where μY denotes the mean, σY denotes the standard deviation.

Normalize the random variable Y standard in Eq. (2).

Yu = Y − μY

σY

(2)

Then in Eq. (3).

Pf 2M = P {Y ≤ 0} = P
{

Y − μY

σY

≤ −μY

σY

}
= P {Yu ≤ −β2M} = Φ (−β2M) (3)

where Φ (·) denotes the CDF of the standard normal variable.

When the first four-order center distance of the performance function is known, according to the
high-order moment standardization technique (HOMST), the reliability index β4M can be obtained as
Eq. (4).

β4M = 3 (α4Y − 1) β2M + α3Y

(
β2

2M − 1
)

√(
5α2

3Y − 9α4Y + 9
)
(1 − α4Y)

(4)

where α3Y and α4Y denote the third-order and fourth-order dimensionless center distances respectively,
also known as, the skewness and kurtosis.

The failure probability is expressed as Eq. (5).

P4M = Φ (−β4M) (5)

when α3Y = 0, β4M = β2M .

A new higher accuracy reliability index takes into account the parameters ignored by HOMST,
which is expressed as Eq. (6).

β∗
4M = 3 (α4Y + 1) β2M + 5α3Y

(
β2

2M − 1
)

√
9 (3α4Y + 1)

2 − 5α2
3Y (13α4Y + 11)

(6)

2.2 The Saddlepoint Approximation
The use of the SA method for progressive analysis is efficient and practical. The SA has the follow-

ing characteristics: (1) convenient calculation and strong operability; (2) good overall approximation
effect to the function, especially the tail probability distribution; (3) SA method is useful when the
PDF is known but the calculation of the CDF is difficult [41,42].

Firstly, given the performance function g(Y ), then, the moment generating function (MGF) is
defined by Eq. (7).

MY (t) =
∫ +∞

−∞
etyg (y) dy (7)
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Take the logarithm of MGF to get CGF in Eq. (8).

KY (t) = ln MY (t) (8)

By deriving CGF, the saddlepoint ts can be obtained by Eq. (9).

K

‘

Y (t) = y (9)

According to the ts, the failure probability Pf ,SPA and the PDF can be calculated as Eqs. (10) and
(11).

Pf ,SPA = Pr {Y ≤ y} = Φ (ω) + ϕ (ω)

(
1
ω

− 1
υ

)
(10)

fY ,SPA (y) =
(

1
2πK ′′

Y (ts)

) 1
2

exp (KY (ts) − tsy) (11)

where ω = sgn (ts) [2 (tsy − KY (ts))]
1/2, υ = ts

[
K ′′

Y (ts)
]1/2

.

Alternative equation for calculating the failure probability is as Eq. (12).

P∗
f ,SPA = Pr {Y ≤ y} = Φ

[
ω + 1

ω
ln

(υ

ω

)]
(12)

3 The FMSA

This study combines the moment method and the saddlepoint approximation, then introduces an
improved FMSA.

Assuming that Y is a random variable, its MGF and CGF are denoted by MY and KY , respectively.
It is known that KY has the following relationship with the first four moments in Eqs. (13a)–(13d).

KY
(1)

(0) = μY (13a)

KY
(2)

(0) = σ 2
Y (13b)

KY
(3)

(0) = α3Y (13c)

KY
(4)

(0) = α4Y − 3σ 2
Y (13d)

where KY
(1)

(0), KY
(2)

(0), KY
(3)

(0) and KY
(4)

(0) denote the first, second, third and fourth derivatives of
the function KY , respectively. μY , σg, α3Y and α4Y denote the mean, standard deviation, third-order and
fourth-order center distances of random variables, respectively.

Then, the first four moments of the standard variable Ys = Y − μY

σY

are 0, 1, α3Ys and α4Ys − 3,

where α3Ys = α3Y

σ 3
Y

, α4Ys = α4Y

σ 4
Y

.

According to the saddlepoint approximation method, the CGF can be modeled as Eq. (14).

KYs (t) = m1t + m2t2 − m3 ln
{
(1 − nt)2

}
(14)

where m1, m2, m3 and n are undetermined coefficients.
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Therefore, the first four derivatives of CGF can be derived as Eqs. (15a)–(15d) in turn according
to the Eqs. (13a)–(13d).

KYs
(1)

(t) = m1 + 2m2t + 2m3n
1 − nt

(15a)

KYs
(2)

(t) = 2m2 + 2m3n2

(1 − nt)2 (15b)

KYs
(3)

(t) = 4m3n2

(1 − nt)3 (15c)

KYs
(4)

(t) = 12m3n4

(1 − nt)4 (15d)

Then combine with the Eqs. (13a)–(13d) to get Eq. (16).⎧⎪⎪⎨
⎪⎪⎩

m1 + 2m3n = 0
2m2 + 2m3n2 = 1
4m3n3 = α3Ys

12m3n4 = α4Ys − 3

(16)

If α3Ys = 0, then in Eq. (17)⎧⎪⎪⎨
⎪⎪⎩

m1 = 0
m2 = 0.5
m3n = 0
α4Ys = 3

(17)

Then in Eq. (18)

KYs (t) = 0.5t2 (18)

This is the CGF of a standard normal variable whose second derivative is KYs
(2)

(t) = 1.

When α3Ys �= 0, α4Ys �= 3, we can get Eq. (19).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1 = − 9α3
3Ys

2 (α4Ys − 3)
2

m2 = −3α3
3Ys + 2α4Ys − 6

4 (α4Ys − 3)
2

m3 = 27α4
3Ys

4 (α4Ys − 3)
3

n = α4Ys − 3
3α3Ys

(19)

According to the Eq. (9), by deriving CGF can get Eq. (20).

m1 + 2m2t + 2m3n
1 − nt

− y = 0 (20)
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The saddlepoint ts can be obtained as Eq. (21).

ts =
±

√(
16m2m3 + (y − m1)

2
)

n2 − 4m2 (y − m1) n + 4m2
2 + (y − m1) n + 2m2

4nm2

(21)

Bring the Eq. (19) into Eqs. (14) and (15b), the approximate CGF and second moment can be
obtained as Eqs. (22) and (23).

KYs (t) =
−3α3

3Ysψ
2t2 − 27α4

3Ys ln
(

(ψt − 3α3Ys)
2

9α2
3Ys

)
+ 2ψ 3t2 − 18α3

3Ysψt

4ψ 3
(22)

KYs
(2)

(t) = −3α3
3Ys + 2ψ

2ψ
+ 27α4

3Ys

2ψ (ψt − 3α3Ys)
2 (23)

where ψ = α4Ys − 3.

According to the Eq. (2), the CGF can be expressed as Eq. (24).

KY (t) =KYs (σY t) + μY t

=
−3α3

3Ysψ
2σY

2t2 − 27α4
3Ys ln

(
(ψσY t − 3α3Ys)

2

9α2
3Ys

)
+ 2ψ 3σY

2t2 − (
18α3

3YsψσY − 4ψ 3μY

)
t

4ψ 3
(24)

Then according to the Eq. (11), the failure probability and the PDF are expressed as Eqs. (25) and
(26).

Pf = FY (0) = Pr {Y ≤ 0} = Pr {Ys ≤ −β2M} = Φ

[
ωy + ωy

−1 ln
(

υy

ωy

)]
(25)

fY (y) = (
2πK ′′

Y (ts)
)− 1

2 exp (KY (ts) − tsy) (26)

where ωy = sgn (ts) [2 (−β2ts − KYs (ts))]
1/2, υ = ts

[
K ′′

Ys (ts)
]1/2

.

Therefore, the CDF can be expressed as Eq. (27).

FY (0) = Pr {Ys ≤ 0} = 1
2

+ K (3)

Y (0)

6
√

2π
(27)

When y = 0,

Pf = Pr {Y ≤ μY} = Pr {Ys ≤ 0} = 1
2

+ α3Ys

6
√

2π
(28)

4 The RBMDO-FMSA

This section first introduces the SORA and the PMA. Finally, the RBMDO-FMSA model is
proposed.

4.1 The SORA Strategy
The SORA method is a decoupling method that can efficiently solve reliability design optimization

problems [43,44]. It serializes the reliability design optimization process of the traditional nested loop
based on decoupling. It divides the reliability design optimization process into deterministic design



CMES, 2023, vol.134, no.3 1861

optimization and reliability analysis, forming a recursive optimization loop, as shown in the Fig. 1.
The SORA method transforms the RBMDO problem into an approximate MDO problem by means of
equivalent constraints. Then use the deterministic MDO method to solve it. It can make the equivalent
constraint gradually shift toward the direction of the probability constraint. Then, the optimal solution
can be quickly obtained [45].

Deterministic MDO

Initial design

Reliability analysis

Develop a new 
deterministic MDO

Design Optimal

No

Yes

Convergence

Figure 1: SORA process diagram [43]

The SORA method uses a single-cycle strategy to perform continuous deterministic optimization
cycles and reliability analysis. In each cycle, optimization and reliability analysis do not interfere
with each other. Reliability analysis is used to verify the feasibility of probabilistic constraints after
optimization. The key of this method is to continuously revise the constraints in the optimization
with the results obtained through the reliability analysis. Keep it close to the expected probability
constraints, realize the optimal design as quickly as possible, reduce the number of optimizations.
Thereby reducing the number of reliability analyses.

4.2 The PMA
In RBMDO, the PMA has the advantages of high calculation efficiency, good stability and wide

application range [46,47]. It takes the specified reliability index β as the radius of the hypersphere as
the search area. It uses the performance function value at the searched extreme point to determine
whether the target system is reliable. The equation Pr [Y (·) ≥ YMLP] = 1 − [

Pfi

]
can be obtained by

PMA, where YMLP denotes the value of the LSF at most likelihood point (MLP) [48,49]. As shown in
the Fig. 2, if YMLP ≥ 0, the reliability requirements can be met.

0

PDF of Y

Pf =Pr[Y(·)<0] 

YYMLP

Figure 2: PMA schematic [47]
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4.3 The Improved RBMDO Using FMSA
The process of RBMDO-FMSA using SORA is as follows:

Step 1. Deterministic MDO.

min
dS ,di ,xS ,xi

f (dS, di, xi, xS, p, z)

s.t.Yi (dS, di, xi, xS, p, z·i) ≥ 0,

gi (dS, di, xi, xS, p, z·i) ≥ 0,

dS ∈ [
dL

S , dU
S

]
, di ∈ [

dL
i , dU

i

]
,

xS ∈ [
xL

S, xU
S

]
, xi ∈ [

xL
i , xU

i

]
,

z ∈ [zL, zU ] , i = [1, n] , i ∈ N∗

(29)

where dS and xS denote shared deterministic design variables and shared random input variables,
respectively; di and xi denote local deterministic design variables and local random variables of
discipline i, respectively; p denotes the vector of independent random design parameters; z denotes
a coupling variable; the superscripts L denotes the lower limit, U denotes the upper limit.

The initial values dS
(0), di

(0), x(0)

S , x(0)

i of the design variable in SORA are given when k = 1. Then
solve the MDO problem according to the Eq. (29).

Step 2. Reliability analysis.

I. Linearization of the LSF by first-order Taylor expansion at the MLP point to minimize
the accuracy of reliability analysis. When k = 2, if any reliability constraints are not met, the
deterministic MDO constraints will use the MLP information based on the previous cycle.
Joint PDF has the maximum value at MLP, so the MLP can be obtained by the following
Eq. (30):

maxxS ,xi ,p

∏
fxi (xi) fxS

(xS) fp (p)

s.t.Yi (ds, di, xS, xi, p, z·i) = 0

i = [1, n] , i ∈ N∗

(30)

II. Solve the percent performance Y
1−[Pfi]
i and MLP. According to PMA, the following Eq. (31)

can be obtained

Pr
[

Ŷi (ds, di, xi, xS, p, z·i) < Y
1−[Pfi]
i

]
= [

Pfi

]
(31)

Solving Eq. (31) can get Y
1−[Pfi]
i . Define Ŷi as Eq. (32).

Ŷi = Ŷi (ds, di, xi, xS, p, z·i) − Y
1−[Pfi]
i (32)

In FMSA, the CGF KŶ(t) can be obtained by Eq. (24). Then, the reliability Pr
[
Ŷi − Y

1−[Pfi ]

i ≥ 0
]

=
Pr

[
Ŷi ≥ 0

]
can be obtained by Eq. (12).
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The MLP needs the corresponding percent performance Y
1−[Pfi]
i to solve. Then construct the

reliability constraint Yi for the next (k + 1) cycles. It can be obtained by the following Eq. (33).

max
xS ,xi ,p

∏
fxi (xi) fxS

(xS) fp (p)

s.t.Yi (ds, di, xi, xS, p, z·i) − Y
1−[Pfi]
i = 0

i = [1, n] , i ∈ N∗

(33)

Step 3. Modified MDO.

Through the obtained MLP, the shift vector can be derived as Eq. (34).{
S(k+1)

xS
= x(k)

S − x̂(k)

S

S(k+1)

xi
= x(k)

i − x̂(k)

i

(34)

Then, the RBMDO problem is transformed into an MDO problem. Deterministic optimization
can be performed in the next cycle of SORA. The optimization process is as Eq. (35).

min
dS ,di ,μXS

,μXi

f (ds, di, xi, xS, p, z)

s.t.Yi

(
ds, di, xi − S(k+1)

xi
, xS − S(k+1)

xS
, p̂(k), z

)
≥ 0, gi (ds, di, xi, xS, p, z·i) ≥ 0,

dS ∈ [
dL

S , dU
S

]
, di ∈ [

dL
i , dU

i

]
, xS ∈ [

xL
S, xU

S

]
, xi ∈ [

xL
i , xU

i

]
, z ∈ [zL, zU ] , i = [1, n] , i ∈ N∗

(35)

In the next cycle of SORA, after the MDO problem of the equation is solved, the reliability analysis
is performed again. This process is repeated until the optimization converges.

5 Examples

This section gives two examples to verify the proposed method. The results obtained by the
proposed method will be compared with existing methods. Other methods include mean first-order
second-moment method (MVFOSM), first-order reliability method (FORM), second-order reliability
method (SORM) and Monte Carlo simulation method (MCS) [50].

5.1 The Simple Wellhead Platform Calculation Example
This is a one-leg wellhead platform composed of a deep well foundation, a tower body

and two upper and lower decks [22]. Its simplified model is shown in Fig. 3. In the figure,
Xi (i = 2, . . . , 11) denotes the failure point, Li (i = 1, . . . , 5) denotes the wave force at each point
of action, Yi (i = 1, . . . , 5) denotes the wall thickness design variable, Yi (i = 6, . . . , 8) denotes the
diameter design variable, Yi (i = 9, . . . , 12) denotes the height design variable, F denotes the wind
force, W denotes the weight of the platform equipment.

The example has 7 basic random variables. The specific information is shown in Table 1, where
Hm, Uc and VF are completely correlated, CD and CM are negatively correlated, with a correlation
coefficient of −0.8, other variables are independent and uncorrelated. The above-mentioned related
variables can be converted into linear independent variables through Zi = ai × Hm +bi × Uc + ci ×
VF + di × CD + ei × CM , as shown in Table 2.
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Y1Y6
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Y4

Y3Y7

Y5Y8Y
9

Y
10

Y
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Y
12

57
.5

m

Figure 3: The Simple wellhead platform model

Table 1: The relevant information of each variable in example 1

Variable Name Distribution Mean Coefficient

W (N) Equipment
weight

Normality 1.94 × 106 0.1

Hm(m) Limit wave height Extreme value type I 15.4 0.07
U c(m/s) Flow rate Extreme value type I 1.10 0.13
V F(m/s) Limit wind speed Lognormal 67.5 0.1
CD Drag coefficient Normality 1.83 0.1
CM Mass force

coefficient
Normality 2.90 0.1

σ y(Pa) Bow to extremes Lognormal 1.88 × 108 0.13

Here only the yield failure of each failure point is considered. The load effect takes into account
the axial force N and the bending moment M, so the LSF is:

gi (Z) = 1 − Ni/NFi − |Mi/MFi| (36)

where Mi denotes the bending moment borne by each section; Ni denotes the axial force borne by

each section; MFi = σy

[
d3

i − (di − wti)
3]

6
; NFi = σyπ

[
d2

i − (di − 2ti)
2]

4
; di denotes the diameter of each

section; ti denotes the wall thickness of each section.
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Table 2: The coefficients of related variables

ai bi ci di ei

Z1 0.656 0.716 −0.240 0 0
Z2 −0.673 0.697 0.245 0 0
Z3 0.343 0.001 0.940 0 0
Z4 0 0 0 0.856 0.516
Z5 0 0 0 −0.516 0.856

The mathematical model of the optimal design is as Eq. (37).

min F (Y)

s.t.βi ≥ βαi, i = 2, 3, . . . , 11 (37)

where F (Y) is the volume of the platform steel, the unit is m3; Yi (i = 1, 2, . . . , 12) is the design variable;
βi is the reliability index at each failure point; βαi is the target value of the reliability index at each failure
point, which is taken as 4.0 in this example.

The results obtained by different methods are shown in Table 3. The minimum volume of the
optimized platform steel is 16.26 m3, which is nearly 14% smaller than the original design. For more
details, the length of truncated cones in two transition sections is obviously increased. Among different
methods, the increase obtained by FMSA is the largest one, followed by MCS. While MVFOSM
and FORM have relatively smaller length increases. The wall thickness increase of the transition
section obtained by FMSA is less. While the increase obtained by FORM is the most. In addition,
the diameters of the non-transition sections away from the fixed surface obtained by FMSA increased
more than those obtained by the other methods. However, the diameters of the parts contacting the
fixed surface decreased.

Table 3: The optimization results of different methods in example 1

Variable FMSA MCS MVFOSM FORM SORM

Y 1 0.025 0.025 0.025 0.025 0.025
Y 2 0.032 0.030 0.027 0.025 0.028
Y 3 0.028 0.031 0.035 0.040 0.033
Y 4 0.028 0.031 0.034 0.040 0.032
Y 5 0.028 0.031 0.034 0.040 0.033
Y 6 2.26 2.23 2.08 2.00 2.19
Y 7 3.66 3.59 3.24 3.00 3.40
Y 8 4.20 4.25 4.96 5.00 4.86
Y 9 9.8 9.0 8.0 7.0 8.6
Y 10 17.0 14.0 10.8 9.0 13.7
Y 11 24.0 25.4 32.6 34.0 28.3
Y 12 38.4 38.6 37.5 37.0 37.7
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5.2 The Engineering Speed Reducer Example
This is an engineering evaluation example of NASA standard MDO test [51,52]. The model of

this example is shown in Fig. 4. Table 4 gives the relevant information of each variable. This example
involves three disciplines: discipline 1 (Bearing set A and Shaft A), discipline 2 (Bearing set B and
Shaft B) and discipline 3 (Gear A and Gear B). Table 5 shows the test results of different RBMDO
methods.

Bearing set B
Bearing set AShaft B

Shaft A

Gear B Gear A

x5

x7 x6

x4

Figure 4: Speed reducer design

Table 4: The information about related variables in example 2

Variable Description Distribution Mean Standard
deviation

Lower
bound

Upper
bound

x1 Gear face width – – – 2.6 3.6
x2 Teeth module – – – 0.3 1.0
x3 Number of teeth of

pinion
– – – 17 28

x4 Distance between
Bearings A

Gumbel μx4
0.001 μx4

7.3 8.3

x5 Distance between
Bearings B

Gumbel μx5
0.001 μx5

7.3 8.3

x6 Diameter of Shaft A Gumbel μx6
0.001 μx6

2.9 3.9
x7 Diameter of Shaft B Gumbel μx7

0.001 μx7
5 5.5

Table 5: The optimization results of different methods in example 2

FMSA MCS FORM SORM MVFOSM

x1 3.426 3.427 3.424 3.425 3.423
x2 0.649 0.650 0.645 0.646 0.644
x3 18 18 18 18 18
μx4

7.300 7.300 7.300 7.300 7.300
μx5

7.688 7.688 7.686 7.687 7.685
μx6

3.322 3.320 3.323 3.322 3.323
μx7

5.264 5.264 5.263 5.263 5.263
f 2882 2888 2866 2877 2859
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It can be seen from Table 5 that the values of each variable obtained by different optimization
methods are still within the constraints. The value of each variable varies little. The optimized value
obtained by FMSA is the closest to MCS, indicating that FMSA has higher accuracy. The objective
function f is to minimize the volume of the gear system. Compared with other methods, FMSA has
higher accuracy and more conservative results, so the volume is larger. However, the volume obtained
by FMSA is not much larger than that obtained by other methods. It illustrates that FMSA can
enjoy an effective balance between accuracy and cost. The smallest volume is obtained by MVFOSM.
However, its accuracy is relatively low.

6 Conclusions

In uncertainty analysis and RBMDO of engineering structures, the SA method can be utilized
to enhance the accuracy and efficiency of reliability evaluation. However, the random variables
in SA should be easy to handle. Moreover, the corresponding saddlepoint equation should not
be complicated. Both of them limit the application of SA for engineering problems. The moment
method can construct an approximate cumulative distribution function of the performance function
based on the first few statistical moments. However, the traditional moment matching method is
not very accurate generally. To solve these problems, SA is combined with the moment method. An
improved RBMDO-FMSA method is proposed to take the advantage of above methods. In FMSA,
the approximate CGF is constructed based on the first four moments of the LSF. Then, the PDF and
CDF are estimated based on this approximate CGF. Furthermore, the FMSA method is introduced
and combined into RBMDO within the framework of SORA, which is based on the PMA strategy.
The corresponding formulation RBMDO-FMSA effectively improves the efficiency and accuracy.
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