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ABSTRACT

The reliability and sensitivity analyses of stator blade regulator usually involve complex characteristics like high-
nonlinearity, multi-failure regions, and small failure probability, which brings in unacceptable computing efficiency
and accuracy of the current analysis methods. In this case, by fitting the implicit limit state function (LSF) with active
Kriging (AK) model and reducing candidate sample pool with adaptive importance sampling (AIS), a novel AK-AIS
method is proposed. Herein, the AK model and Markov chain Monte Carlo (MCMC) are first established to identify
the most probable failure region(s) (MPFRs), and the adaptive kernel density estimation (AKDE) importance
sampling function is constructed to select the candidate samples. With the best samples sequentially attained in the
reduced candidate samples and employed to update the Kriging-fitted LSF, the failure probability and sensitivity
indices are acquired at a lower cost. The proposed method is verified by two multi-failure numerical examples, and
then applied to the reliability and sensitivity analyses of a typical stator blade regulator. With methods comparison,
the proposed AK-AIS is proven to hold the computing advantages on accuracy and efficiency in complex reliability
and sensitivity analysis problems.
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Nomenclature

AK Active Kriging
AIS Adaptive Importance Sampling
AKDE Adaptive Kernel Density Estimation
AK-IS AK combined with Importance Sampling
AK-MCS AK combined with MCS
AK-AIS Active Kriging-based Adaptive Importance Sampling
C.O.V. Coefficient of Variation
DS Directional Simulation
FORM First-Order Reliability Method
HCF High Cycle Fatigue
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iPDF Instrumental PDF
IS Important Sampling
KAIS Kriging-based Adaptive Importance Sampling
LSF Limit State Function
M-H Metropolis Hastings
MCS Monte Carlo Simulation
MPP Most Probable Point
MCMC Markov chain Monte Carlo
MPFRs Most Probable Failure Region(s)
Meta-IS Meta-model-based Importance Sampling
PDF Probability Density Function
SORM Second-Order Reliability Method

1 Introduction

During the air compression process of aeroengine compressor, stator blade regulator plays a key
role in increasing airflow and preventing surge phenomenon [1]. As shown in Fig. 1, by driving the
multiple rocker arms in regulator, the blade inlet angle can be adjusted in place quickly. Nevertheless,
due to the coupling effects of complex fluid-solid loads and repeated reaction forces from stator blade,
high-frequency alternating stress and high cycle fatigue (HCF) failure are inevitably induced in these
rocker arms. Engineering practice shows that the HCF failure occurred in multiple rocker arms has
become the main failure mode and seriously affects the structural reliability of stator blade regulator
[2–9]. Moreover, on account of the multiple uncertainties of material variabilities, load variations and
model randomness [10–17], large random behaviors physically emerge in these HCF lives [18–25].
Therefore, it is required to develop reasonable probabilistic analysis methods to address these multiple
uncertainties, quantify the stochastic behaviors, and ensure the structural reliability of stator blade
regulator.

Stator blade

(b) Stator blade regulator(a) Stator blade in aeroengine

Figure 1: Schematic diagram of stator blade regulator

For probability analysis problems involving multiple random input variables, the key point is to
calculate the following multivariate integral, i.e.,

Pf = Pr {g (x) ≤ 0} =
∫

g(x)≤0

fX (x) dx

=
∫

. . .

∫
Rn

I [g (x) ≤ 0] fX (x) dx (1)
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where x is the vector of random input variables; g(x) the limit state function, where g(x) ≤ 0 denotes
the failure event; fX(x) the joint probability density function of x; I [·] the failure domain indicator
function, having the value 1 if g(x) ≤ 0 and the value 0 otherwise.

To obtain the failure probability by solving Eq. (1), the first-order reliability method (FORM)
[26–28], second-order reliability method (SORM) [29,30], moment method [31,32], and Monte Carlo
simulation (MCS) [33,34] have been developed and widely used. Unfortunately, for small failure
probability (10−3∼10−7) problems, a large number of sampling times and real limit state function
(LSF) calls need to be generated [35–37], which limits the MCS availability due to the unacceptable
sampling efficiency. To reduce the unaffordable computing tasks of the crude MCS method, surrogate
model combined with MCS strategy has been emerged [38–47]. As one impressive progress, the active
learning Kriging (AK) combined with MCS (AK-MCS) is proposed, which can decrease the required
LSF calls by only adding the failure samples in model updating process. Due to the advantages of
fast modeling and accurate approximation, AK-MCS is widely used in reliability analysis [48–50].
However, the estimation of small failure probability remains an issue for AK-MCS, since the method
still regards the MCS sample pool as the sampling candidate regions. In this case, researchers have
found a wise solution to avoid such disadvantages by integrating AK-MCS with variance reduction
techniques [51–53]. Wang et al. [54] incorporated multi-ring-based importance sampling into the
Kriging. Tong et al. [55] introduced subset simulation importance sampling into the AK model.
Zhang et al. [56] combined directional sampling with adaptive Kriging to overcome the limitations
of the AK-MCS method.

In recent years, by shifting the sampling center from the origin to the most probable point
(MPP), AK combined with importance sampling (AK-IS) can produce satisfactory results as long
as the MPP can be well identified. Moreover, it has become hot solution paths in addressing small
probability problems [57]. Nonetheless, since only single MPP can be obtained, the traditional AK-IS
method can only suitable to limit state functions with one single failure region, which significantly
limits its application to multiple failure regions [58,59]. In this case, to address the multiple MPPs or
multiple most probable failure regions (MPFRs) in small failure probability problems, by combing AK
model to obtain the samples in failure regions and kernel density estimation (KDE) to generate the
importance samples, Markov chain Monte Carlo (MCMC) method based on improved Metropolis-
Hastings (M-H) algorithm has been developed. Zhao et al. [60] used Markov chain Metropolis
algorithm to efficiently generate samples in the failure region. Nassim et al. [61] used MCMC sampling
method to explore all the failure regions. Cadini et al. [62] used MCMC and K-means clustering
algorithm to identify the multiple-failure regions. Unfortunately, due to the fixed KDE function and
great subjectivity in determining the initial state of MCMC [60,62], a large tail error of the kernel
density function and unreasonable initial state problems can occur, inevitably decreasing the modeling
accuracy.

Under such circumstances, by fitting the implicit LSF with AK model and reducing candidate
sample pool with adaptive importance sampling (AIS), a novel AK-AIS method is proposed to address
the high-nonlinearity, multiple failure regions, and small failure probability problems. In the proposed
method, AK model is adopted to determine the initial state of Markov chain and identify the MPFRs,
and the adaptive kernel density estimation (AKDE) function is constructed to generate the candidate
importance samples in adaptive reduced sample pool. By sequentially importing samples to update
the Kriging model, the reliability and sensitivity indices can be obtained through few real LSF calls.
Compared with the current relevant methods [63–65], two computing advantages are accompanied
with the AK-AIS method: (1) the AK model guided MCMC procedure can precisely determine the
initial state of Markov chain and identify the MPFRs. (2) AKDE function needs fewer candidate
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samples and smaller candidate regions in model updating. These advantages are validated by two
numerical examples and can be exploited in the reliability and sensitivity analyses of stator blade
regulator.

The organization of this paper is summarized as follows: The AK-AIS method is expounded
in Section 2. In Section 3, the effectiveness of the proposed method is examined by two numerical
examples. In Section 4, reliability and sensitivity analyses of stator blade regulator are performed using
the proposed method. Some conclusions are summarized in Section 5.

2 The Proposed AK-AIS Method

In this section, to reduce the calls of real LSF and improve the computing accuracy of complex
reliability and sensitivity analysis problems, a novel AK-AIS method is presented, which includes the
identification of the MPFRs, adaptive importance sampling and the corresponding procedures. The
basic principle of the proposed AK-AIS method is illustrated in Fig. 2.

Markov chain Monte Carlo

Adaptive importance sampling

Reduced 
sample pool

x0 x1 xi xj...
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Figure 2: Basic principle of the proposed AK-AIS method

2.1 AK-Based MPFRs Identification
By determining the initial state of Markov chain with AK model and calibrate the boundaries by

M-H algorithm, the accurate identification of the MPFRs is realized as follows.

2.1.1 MCMC Initial State Determination

To acquire the precise steady state distribution (i.e., optimal importance sampling density func-
tion) in complex reliability and sensitivity problems, the AK model instead of subjective experience
[66,67] is employed to determine the initial state of Markov chain. The basic thought is introduced as
follows.
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(1) Initial Kriging establishment

Considering Latin hypercube sampling (LHS) technique, the initial samples x = [x1, x2, . . . , xs]
and the corresponding responses g0(x) are extracted. Based on the initial sample set D0 = { x, g0(x)}
and Kriging tool [68,69], the initial Kriging can be built as

g0 (x) = f (x)
T
β + z (x) (2)

where f T(x) = [f 1(x), f 2(x), . . . , f m(x)] is the regression basis function; β = [β1, β2, . . . , βm] the
regression coefficient; m the dimension number of regression function; z(x) the local random deviation,
which follows Gaussian distribution (0, σ 2).

(2) Kriging model update with active learning function

Considering the large-scale randomly generated samples (i.e., 104 samples) as candidate sampling
pool, based on active learning function (i.e., U [49], expected feasibility function (EFF) [70], reliability-
based expected improvement function (REIF) [71], and REIF2 [71]), the best next sample xk. can be
identified and sequentially employed to update Kriging model. Regarding U function as an example,
with the best next sample xk = arg min

i=1,2,...,N1

{U (x)}, the corresponding LSF g(xk) is called and calculated.

By adding the sample {xk, gk(x)} into the k-th sample set Dk, the k-th updating Kriging model gk(x)
can be acquired as

gk (x) =
{

g0 (x) |D0

Activelearning−→
Ufunction

gk (x) |Dk

}
(3)

(3) Screening the samples located in failure regions

Based on the updated Kriging model, the failure region samples with g(xi) < 0 (i = 1, 2, . . . , N)
are screened out, and selected as the initial state of Markov chain. These screened samples are denoted
as {x1, x2, . . . , xm} (m = 1, 2, . . . , l, l ≥ 1). Due to the initial state obtained are determined by the
failure samples, the obtained steady state distribution of MCMC would be more accurate than that of
subjective experience methods.

Moreover, it should be noted that compared with the direct subjective given initial state of Markov
chain, although the additional large candidate sampling pool (i.e., 104 samples) is used to update
Kriging model, only few LSF calls are required during the determination of the MCMC initial state.

2.1.2 Calibration of the Multiple Failure Boundaries

During the transition of the Markov chain from one state to another, by introducing an acceptance
mechanism, M-H algorithm is adopted to accept the new transition state with a certain probability.
With the combination of the state transition probability and acceptance probability, the failure samples
can be generated quickly in Markov chain simulation. Considering the distributions of failure samples,
the multiple failure boundaries can be accurately calibrated. The main steps are introduced as follows.

(1) Stationary distribution selection

Considering the obtained initial state of Markov chain {x1, x2, . . . , xm}, to accurately acquire the
desired samples in the failure region, and the limit stationary distribution is chosen as the optimal
importance sampling density (ISD) hX (x) = IF(x)f X(x)/Pf .

(2) j-th state of Markov chain determination

Regarding the (j−1)-th state x(j-1), the j-th state x(j) can be generated by M-H algorithm. The ratio
r of the conditional probability distribution of the candidate state x∗ to the previous state x(j−1) is
defined as
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r = h (x∗)

h (x(j−1))
= IF (x∗) fX (x∗)

IF (x(j−1)) fX (x(j−1))
(4)

According to the improved M-H criterion [72], x∗ is accepted as the j-th chain state, that is
x∗ = x(j) if r ≥ 1, and vice versa.

(3) Failure boundaries calibration

Repeat Step (2) until M Markov chain states {x(1), x(2), . . . , x(M)} are acquired. Based on Steps (1)–
(3), all Markov state samples {x(1), x(2), . . . , x(M)} residing in failure regions are obtained. Regarding the
distribution of failure samples, the multiple failure boundaries can be effectively calibrated, and the
MPFRs can be accurately identified, which is conducive to construct the efficient probability density
sampling function to enhance the sign classification precision in complex reliability and sensitivity
analyses.

2.2 Adaptive Importance Sampling
To address the large tail error problem caused by the fixed KDE function and low modeling

efficiency problem caused by the large candidate sampling pool in IS method, an adaptive kernel
density estimation (AKDE) function is constructed based on the identified MPFRs, and an adaptive
reduced sampling pool varying with the fitted Kriging model is established. By combining the AKDE
to generate important samples and the adaptive reduction sample pool to reduce candidate important
samples, the adaptive importance sampling (AIS) method is proposed to guarantee a small tail error
and few calls of real LSF.

2.2.1 Adaptive KDE Function Construction

Considering the generated samples in identified MFPRs, by combing Gaussian kernel function
with high robustness and adaptive kernel window width parameter, a width-varying KDE function
(i.e., optimal important sampling density function) is built. This function can be regarded as the
optimal important sampling density function, which can generate a set of important samples based
on discrete random integer interpolation. Since the AKDE function fitted by the samples in identified
MFPRs is closer to the optimal sampling density function, the sampling accuracy is promising to be
elevated.

Based on the generated samples {x(1), x(2), . . . , x(M)} located in identified MFPRs, by modifying the
window width parameter ω and local bandwidth factor λj, the probability density function of those
samples can be estimated by the following AKDE function, i.e.,

hX (x) = 1
M

M∑
j=1

1(
ωλj

)n K
(

x − x(j)

ωλj

)
(5)

in which⎧⎪⎨
⎪⎩

ω = M
− 1

n+4
d

λj =
{[∏M

k=1 f
(
x(k)

)] 1
M /f

(
x(j)

)}α (6)

where Md is the number of different samples, Md ≤ M; α the sensitivity factor, 0 ≤ α ≤ 1; x(j) the j-th
sample in failure region, j = 1, 2, . . . , M; M the number of sample points; n the variable dimension;
ω the window width parameter; λ the local bandwidth factor; K (·) the KDE function, the frequently-
used gauss KDE function [64,72] is expressed as
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K (X) = 1√
(2π)

n |C | exp
(

−1
2

XTC−1X
)

(7)

where C is the covariance matrix of the sample point set {x(1), x(2), . . . , x(M)}, which mainly describes
the data dispersion of each sample point in different directions and ranges.

C =
M∑

i=1

(
x(j) − x

) (
x(j) − x

)T
(8)

where x is the mean value of these samples.

Assuming that a discrete random integers u obeying uniform distribution on interval [1, M]. If u
= j (j = 1, 2, . . . , M), the kernel density function hj(·) of the j-th component is selected to generate
sample xi (i = 1, 2, . . . , N). hj (·) can be represented as

hj (x) = 1(
ωλj

)n K
(

x − x(j)

ωλj

)
(9)

where x(j) (j = 1, 2, . . . , M) are the samples generated by Markov chain. The above sampling process
is repeated until N importance samples x1, x2, . . . , xN are obtained.

The window width parameter controls the smoothness of the AKDE function. By adaptively
adjusting the kernel window width in the KDE process, the constructed AKDE function is promising
to improve the smoothness degree and accelerate the convergence of the optimal sampling density
function, then the desired important samples can be generated precisely.

2.2.2 Candidate Sampling Pool Reduction

Regarding the large candidate importance sampling pool will reduce the finding efficiency of
the desired samples, by only selecting the importance samples close to the Kriging-fitted LSF as the
candidate sample pool [73], the reduced important sampling pool is proposed. As illustrated in Fig. 3,
f G(G) is the joint probability density function of the performance predictions G, the zone near the LSF
G(x) = min (g1(x), g2(x)) in the input (X) space �LSF

x and the output (G) space �LSF
G can be defined as

ΩLSF
x =

{
x| Ĝ (x) ∈ ΩLSF

G

}
(10)

ΩLSF
G = ΩĜ−τ ∩ ΩĜ+τ (11)

in which{
Ĝ (x) = min

(
ĝ1 (x) , ĝ2 (x)

)
ĝi (x) = f T

(x) β̂ + rT (x) R−1
(

g − Fβ̂
) (12)

where g indicates the real performance function; ĝi the estimated value of the i-th perfor-
mance function, i = 1, 2; τ the 2-elements vector whose all elements are equal to the threshold
value, which can be given according to the actual situation; F the unit column vector; r =
[R (x, x1) , R (x, x2) , . . . , R (x, xn)]

T the correlation vector between an predicted point x and training
sample points (x1, x2, . . . , xn); R the correlation matrix. Based on the definition of zone ΩLSF

x and
ΩLSF

G in Eqs. (10) and (11), the whole candidate important samples pool generated by the AKDE is
divided into two parts (inner zone and outer zone). By taking the importance samples inner the zone
as candidate samples, the Kriging model is further updated to achieve the accuracy sign prediction of
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IS samples. The proposed reduction strategy of candidate sample pool has the potential to improve
modeling efficiency and accuracy with few calls of real performance function.

(a) X space                                    

Failure region

Safety regionFailure region

x1

x 2

Faaiiillluurree rreeggiiioonn

g2

g1
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x�

0

2�

2�
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0

LSF
G�

g1

g2

fG(G)

(b) G space

Figure 3: Reduction principle of the candidate sampling pool

With the reduced candidate sampling pool, the number of candidate samples is significantly
reduced. Moreover, the reduced candidate sampling pool moves adaptively as the Kriging-fitted LSF
updated ceaselessly, which ensures that the desired samples can be precisely found. In addition, since
the Kriging update process is based on AK model described in Section 2.1.1, the best fitted LSF can
be approached with fewer calls of the real LSF, which can significantly increase the modeling accuracy
and efficiency. Once the best fitted LSF is acquired, the unbiased estimation P̂f can be expressed as

P̂f = 1
N

N∑
i=1

IF [g (xi) ≤ 0]
fX (xi)

hX (xi)
(13)

where xi denotes the i-th sample points, N the number of candidate samples; f X (x) the joint probability
density function of x; hX (x) the importance sampling probability density function; IF(·) the failure
domain indicator function, having the value 1 if g(x) ≤ 0 and the value 0 otherwise.

The estimated variance V
(

P̂f

)
and C.O.V. of P̂f can be described as

V
(

P̂f

)
= 1

N − 1

[
1
N

N∑
i=1

IF [g (xi) ≤ 0]
f 2

X (xi)

h2
X (xi)

− P̂2
f

]
(14)

Cov
(

P̂f

)
=

√
V

(
P̂f

)
P̂f

(15)

With the samples of input random parameters gained by massive samplings, the local sensitivity
index of the failure probability Pf with respect to the distribution parameter θ xi, i.e., mean μxi and
standard deviation σ xi in the normal distribution) of each input variable xi is estimated as

∂P̂f

∂θ (k)
xi

= 1
N

N∑
j=1

IF

[
g
(
xj

) ≤ 0
]

hX

(
xj

) ∂fX (x)

∂θ (k)
xi

∣∣∣∣∣
x=xj

(16)
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where xj is the important sampling points, j = 1, 2, . . . , N; θ (k)

xi
is the k-th distribution parameter of xi;

∂P̂f /∂θ (k)

xi
the partial derivative of the k-th distribution parameter of xi.

To assess the effect of xi on the failure probability in its entire distribution ranges, a global
sensitivity index is established [74,75] as

δi = E
(

Pf − Pf |xi

)2

(17)

where Pf |xi
indicates the conditional failure probability, which can be rewritten as the condition

expectation of the indicator function

Pf |xi
= E (IF |xi ) (18)

Therefore, the sensitivity index is transformed into a variance-based index of the indicator
function, i.e.,

δi = E
{
[E (IF) − E (IF |xi )]

2} = V [E (IF |xi )] (19)

Based on the total variance law

V [E (IF |xi )] = E
[
E2 (IF |xi )

] − E2 [E (IF |xi )]

= E
[
E2 (IF |xi )

] − E2 (IF) (20)

V (IF) = E
(
I 2

F

) − E2 (IF) = Pf − P2
f ≈ P(k)

f − (
P(k)

f

)2
(21)

where V (·) is the variance value function; V (IF) represents the variance of IF ; E(·) the mean value
function, E [E2 (IF |xi )] is expressed as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E [E2 (IF |xi )] = ∑s

k=1 Pr {Xi ∈ Ak} E2 (IF |Xi ∈ Ak )

= ∑s

k=1

[∫
Ak

hXi (xi) dxi

]2

∫
Ak

fXi (xi) dxi

[
1

mk

∑mk
r=1 IW

(
x(k)

r

)]2

IW (x) = IF (x)
fX (x)

hX (x)

E2 (IF) = P2
f ≈ (

P(k)

f

)2

(22)

The normalized version of the main effect index and total effect index are given as

Si = Vi

V (IF)
= V [E (IF |xi )]

V (IF)
≈ 1 − E [V (IF |xi )]

V (IF)
(23)

STi = V (IF) − V [E (IF |x−i )]
V (IF)

= E [V (IF |x−i )]
V (IF)

(24)

where Si and STi are the main effect index and total effect index of the single input variables xi,
respectively.

2.3 AK-AIS Procedure
The flowchart of the proposed algorithm is depicted in Fig. 4. The basic procedure is summarized

as follows:
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Figure 4: The flowchart of the proposed AK-AIS method

Step 1: Transform input variables into standard normal space.

Step 2: Construct the initial Kriging model. Considering the initial samples set by LHS technique
and Kriging toolbox, the initial Kriging model is constructed.

Step 3: Determine the initial state of Markov chain. The Kriging model is updated by active learning
function and the initial states of Markov chain are obtained by AK model.

Step 4: Generate failure samples populating all the MPFRs. Based on the initial state of Markov
chain, more samples located in the failure region are acquired through M-H algorithm, and all the
MPFRs are identified. In this step, none of samples is evaluated with the real performance function.

Step 5: Perform AKDE and generate candidate important samples. A quasi-optimal iPDF for IS
is constructed by AKDE, and then a large number of important samples are generated obeying the
quasi-optimal iPDF hX (x).

Step 6: Determine adaptive reduced sample pool. Taking the important samples in the reduced
pool as candidate samples, the Kriging model is updated again until approaching the real LSF to
ensure the prediction accuracy of important sample signs. If the update stop criterion is satisfied, the
active learning process stops, and the algorithm goes to Step 7. Otherwise, continue to perform Step
6 to determine the reduced sample pool and update the Kriging model. Note that the AK model in
this step is to obtain a high-precision surrogate model to realize the accurate prediction of important
sample signs. The AK model in Step 3 is to obtain the initial state of Markov chain. The modeling
purposes of the two steps are different. Since the Kriging model has been updated in Step 3, the AK
model in this step can quickly approach the real LSF with fewer real LSF calls by combing with the
adaptive sample pool reduction strategy.
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Step 7: Estimate failure probability, C.O.V. and sensitivity. With the final Kriging model, the failure
probability, C.O.V. and sensitivity can be estimated. If the estimated C.O.V. is larger than the requested
criterion (i.e., 0.05 in this paper), the procedures will go back and re-execute Step 5. Note that no
information about previous true evaluations is lost in Step 7, which prevents the waste of computing
resources.

Step 8: End the algorithm and output P̂f . If the C.O.V. meets the requirements, the algorithm is
stopped, and the final results of failure probability and sensitivity are output.

Noticeably, by precisely identifying the most probable failure regions with AK model and effi-
ciently re-updating the Kriging-fitted LSF by adaptive importance sampling, the proposed AK-AIS
method holds the potential to improve the computational efficiency and accuracy for complex
reliability and sensitivity analysis problems.

3 Numerical Examples

To demonstrate the accuracy and efficiency of the proposed method, two numerical examples are
selected to compare the proposed method with the existing methods. All computations are performed
on an Inter(R) Core (TM) Desktop Computer (3 GHz CPU and 16 GB RAM).

3.1 Numerical Example 1 (Series with Three Branches)
The first example is taken from references [65,72]. The performance function with three failure

regions is defined as

G (x1, x2) = min
{

3 − 1 − x2 + exp
(−x2

1/10
) + (x1/5)

4

32/2 − x1 · x2
(25)

where x1 and x2 are two independent standard Gaussian random variables.

To identify the MPFRs using the proposed AK-AIS method, the real LSF functions are called
13 and 25 times to build and update the Kriging model, respectively; in the AIS process, the real
LSF functions are further called 13 times to approximate the LSF curves. With 51 (i.e., 13 + 25
+ 13) real LSF calls, the failure probability is achieved as 3.39 × 10−3 and the sensitivity indices
are listed in Table 1. The comparisons in Fig. 5 illustrate that the MPFRs identification ability is
consistent with that of the MCS method even with few real LSF calls. To investigate the effect of
the active learning function on the efficacy of the AK-AIS model, several active learning functions are
combined with AK-AIS model, whose sampling distributions and fitted LSF curves are depicted in
Figs. 6–7, respectively. The results show that: compared with AK-AIS+REIF, AK-AIS+REIF2 and
AK-AIS+EFF methods, the AK-AIS+U method can approximate the real LSF with minimal real
LSF calls.

Table 1: The PRS and GRS results for example 1

Indices Mean PRS Tu Standard deviation PRS Tσ Main effect index S Total effect index ST

x1 −0.1976 2.6395 0.0165 0.5438
x2 1.4447 7.0030 0.4609 0.9845
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(a) MCS          (b) AK-AIS+U

Failure region 

Failure region 

Failure region 

Failure region 

MCS samples Fitted LSFFailure samples True LSF

Figure 5: Comparison of MCS and the proposed method for example 1

(a) AK-AIS+U                  (b) AK-AIS+REIF2

(c) AK-AIS+REIF                         (d) AK-AIS+EFF  

Initial samplesFailure samples True LSFAdd samples

Figure 6: Comparison of active learning function for example 1
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(a) AK-AIS+U            (b) AK-AIS+REIF2

(c) AK-AIS+REIF                     (d) AK-AIS+EFF  

Failure region

Safe regionFailure region

Failure region

Safe regionFailure region

Failure region

Safe regionFailure region

Failure region

Safe regionFailure region

Fitted LSFFailure samples True LSF

Figure 7: Comparison of fitted LSF for example 1

To validate the computational advantages of the proposed method, MCS, FORM, Subset, Meta-
IS, MetaAK-IS2, and KAIS are also performed the example. From Table 2 and Fig. 8, we observe
that the AK-AIS (with U function) displays the highest accuracy and efficiency than FORM, Subset,
Meta-IS, MetaAK-IS2 and KAIS, and its failure probability (3.39 × 10−3) is closest to the reference
value (3.35 × 10−3) of MCS. Moreover, as shown in Fig. 8, compared to current methods, AK-AIS
holds the minimum computing error of failure probability. Current small failure probability methods
like MetaAK-IS2 and KAIS acquire the failure probability are 3.47 × 10−3 and 2.69 × 10−3 by calling
real LSF functions with 117 and 163 times, respectively, which consumes more time and lower accuracy
than that of the proposed method. Therefore, the proposed AK-AIS method is validated to achieve
high computing accuracy at a smaller price than other methods with subjectively given Markov chain
initial state.

Table 2: The failure probability analysis results for example 1 by different methods

Methods Ncall Pf Computing error Cov

Crude MCS [62] 120000 3.35 × 10−3 – <5%
FORM [62] 7 1.35 × 10−3 59.7% –
Subset [62] 300000 3.48 × 10−3 3.88% <3%

(Continued)
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Table 2 (continued)

Methods Ncall Pf Computing error Cov

Au and Beck [62] 100 + 500 2.47 × 10−3 26.27% 8%
Meta-IS [62] 44 + 600 3.54 × 10−3 5.67% <5%
MetaAK-IS2 [62] 48 + 69 3.47 × 10−3 3.58% <5%
KAIS [60] 35 + 65 + 63 2.69 × 10−3 19.7% 5%
AK-AIS+EFF 13 + 44 = 57 3.43 × 10−3 2.39% 1.27%
AK-AIS+REIF 13 + 54 = 67 3.36 × 10−3 0.29% 0.76%
AK-AIS+REIF2 13 + 72 = 85 3.41 × 10−3 1.79% 1.00%
AK-AIS+U 13 + 38 = 51 3.39 × 10−3 1.19% 1.05%

Note: Assuming that the Pf MCS indicates the failure probability obtained by direct MCS and Pf denotes the failure probability
retrieved by other methods, the computing error of each method is calculated by 1 − [(|Pf MCS − Pf |)/Pf MCS] × 100%.

Figure 8: Comparison of the reliability results for example 1

3.2 Numerical Examples 2 (Series with Four Branches)
The second example [76,77] is a LSF function with four failure regions, which is defined as

G (x1, x2) = min

⎧⎪⎪⎨
⎪⎪⎩

3 + (x1 − x2)
2
/10 − (x1 + x2) /

√
2

3 + (x1 − x2)
2
/10 + (x1 + x2) /

√
2

(x1 − x2) + 7/
√

2
(x2 − x1) + 7/

√
2

(26)

where x1 and x2 are two independent standard Gaussian random variables.

Using the proposed method, the real LSF are called 10, 19, and 23 times to build, update, and
re-update the Kriging model, four failure regions are identified and the adaptive importance sampling
is performed, respectively. With 52 (i.e., 10 + 19 + 23) times of real LSF calls, the failure probability
is achieved as 2.22 × 10−3 and the sensitivity indices are acquired in Table 3. Compared with MCS
method (Fig. 9), the proposed method can well identify four MPFRs at a lower cost. In addition,
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various active learning functions are combined with AK-AIS, and their sampling distributions and
fitted LSF curves are compared in Figs. 10 and 11. Comparison results reveal that the AK-AIS
combined with U function exhibits better LSF approximation effect than that of other combining
types.

Table 3: The PRS and GRS results for example 2

Indices Mean PRS Tu Standard deviation PRS Tσ Main effect index S Total effect index ST

x1 −0.0340 5.1936 0.0424 0.9255
x2 −0.0394 5.1628 0.0408 0.9290

(a) MCS          (b) AK-AIS+U

Failure region Failure region 

Failure region Failure region 

Failure region 

Failure region Failure region 

Failure region 

MCS samples Fitted LSFFailure samples True LSF

Figure 9: Comparison of MCS and the proposed method for example 2

(a) AK-AIS +U                     (b) AK-AIS +REIF2

Figure 10: (Continued)
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(c) AK-AIS +REIF                        (d) AK-AIS +EFF

Initial samplesFailure samples True LSFAdd samples

Figure 10: Comparison of activing learning process for example 2

(a) AK-AIS +U                   (b) AK-AIS +REIF2

(c) AK-AIS +REIF                 (d) AK-AIS +EFF

Failure region

Safe region

Failure region

Safe region

Failure region

Safe region

Failure region

Safe region

Fitted LSFFailure samples True LSF

Figure 11: Comparison of LSF for example 2

To validate the computational advantages of the proposed method, Table 4 and Fig. 12 compare
the numerical results acquired from MCS, FORM, DS, Subset, SMART, MetaAK-IS2, and the
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proposed method. The AK-AIS (with U function) only needs 52 Ncall to achieve the highest sign
prediction and lowest coefficient of variation, which shows better computing efficacy than DS, Subset,
SMART, and MetaAK-IS2. As revealed in Fig. 12, although AK-AIS has the same failure probability
with that of DS, Subset, and MetaAK-IS2; AK-AIS method has lower coefficient of variation and less
calls to real performance function. Moreover, for MetaAK-IS2 method with subjectively determining
the initial state by engineering experience, it should call the real LSF 138 times to reach the equivalent
accuracy as AK-AIS method. In summary, in four failure regions cases, the proposed method holds a
strong competitive advantage on computing accuracy and efficiency.

Table 4: The failure probability analysis results for example 2 by different methods

Methods Ncall Pf Computing error Cov

Crude MCS [62] 781016 2.24 × 10−3 – 2.3%
FORM [62] 7 1.35 × 10−3 39.73% –
DS [62] 1800 2.22 × 10−3 0.89% –
Subset [62] 600000 2.22 × 10−3 0.89% 1.5%
SMART [62] 1035 2.21 × 10−3 1.34% –
MetaAK-IS2 [62] 48+90 2.22 × 10−3 0.89% 1.7%
AK-AIS+EFF 10+43=53 2.19 × 10−3 2.23% 1.16%
AK-AIS+REIF 10+46=56 2.22 × 10−3 0.89% 1.75%
AK-AIS+REIF2 10+43=53 2.21 × 10−3 1.34% 0.87%
AK-AIS+U 10+42=52 2.22 × 10−3 0.89% 0.83%
Note: Assuming that the Pf MCS indicates the failure probability obtained by direct MCS and Pf denotes the failure
probability retrieved by other methods, the computing error of each method is calculated by 1 − [(|Pf MCS − Pf |)/
Pf MCS] × 100%.

Figure 12: Comparison of the reliability results for example 2
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4 Application: Reliability and Sensitivity Analyses of Stator Blade Regulator

Under the multiple uncertain parameters of flexible deformation, joint friction and multi-physics
loads, the HCF life of stator blade regulator exhibits large dispersion, which seriously affects the
fatigue reliability and security, and prone to HCF failure. A typical stator blade regulator with TC4
titanium alloy is illustrated in Fig. 13. To precisely quantify the dispersion of HCF life and evaluate
the security performance, fatigue reliability and sensitivity analyses for the above-mentioned stator
blade regulator is performed using the proposed AK-AIS method.

Crank

Stator Blade

Synchronous ring

Rigid body

Rocker arm

Flexible body R
igid-flexible

coupling

Figure 13: Rigid-flexible coupling schematic diagram of stator blade regulator

4.1 Material Preparations
According to the operating loads, material properties and model parameters pose important

influence to the HCF life dispersion of stator blade regulator, the gas temperature T , thermal
conductivity λ, expansion coefficient α, aerodynamic torque τ , elastic modulus E, material density
ρ, Poisson’s ratio u, friction coefficient mu, material constants γ , β, S0 are chosen as the input random
variables, their mean values and standard variances are μ = [150°C, 8.02 W/(m°C), 9.15 × 10−6°C,
840 N·mm, 110 GPa, 4.44 × 10−9 t/mm−3, 0.34, 0.2, 12.23, −3.53, 120] and std = [3°C, 0.148 W/(m°C),
0.182 × 10−6°C, 16.8 N·mm, 2.2 GPa, 0.088 × 10−9 t/mm−3, 0.0068, 0.004, 0.0014, 0.0188, 28.62] [78,79],
respectively. Assuming that all the selected physical random variables and model random variables
obey mutually independent normal distribution. During the operation of stator blade regulator, two or
more rocker arms may simultaneously undergo HCF failure. In this case, to simplify the computational
complexity, HCF failure of two rocker arms are considered in this study, the series system with two
failure units are given as

g (T , λ, α, τ , E, ρ, u, mu, γ , β, S0) = min
{

g1 (T , λ, α, τ , E, ρ, u, mu, γ , β, S0) ,
g2 (T , λ, α, τ , E, ρ, u, mu, γ , β, S0)

}

s.t.g1 (T , λ, α, τ , E, ρ, u, mu, γ , β, S0) = N − N1 (X)

g2 (T , λ, α, τ , E, ρ, u, mu, γ , β, S0) = N − N2 (X) (27)

where X = {T , λ, α, τ , E, ρ, u, mu, γ , β, S0}; N denotes the allowable life; N1 (X), N2 (X) the fatigue life
of two components, which can be obtained by rigid-flexible coupling model of stator blade regulator
(i.e., the real LSF) [2,5].
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4.2 AK-AIS Modeling
According to Latin hypercube sampling (LHS) technique and the distributed traits of input

variables, 65 groups of input variables are extracted, and the corresponding real outputs (fatigue life
N1 and N2) are acquired by calling rigid-flexible coupling model. Based on the 65 groups of input
variables and output responses, the initial Kriging model is established. Subsequently, with 48 and
371 times calls the complex rigid-flexible coupling model, the Kriging model is gradually updated,
and re-updated to the real LSF. With the obtained Kriging-fitted LSF curves, the nephograms of the
relationship between output responses and partial variables are drawn in Fig. 14. It can be found that
all the nephograms appear high-nonlinearity between responses and partial parameters, which reveals
that the reliability and sensitivity analysis of stator blade regulator is a highly nonlinear problem.

Figure 14: Relationship nephograms of output response with partial variables

4.3 Reliability and Sensitivity Analyses
Based on the LHS technique, 10,000 samples are generated and imported into the Kriging-fitted

LSF curves instead of the complex rigid-flexible coupling model. Then, the marginal probability
distributions of mean stress σ m and fatigue life N f can be acquired, as shown in Figs. 15 and 16,
respectively. The relationships between HCF life and partial uncertainties are quantified utterly in
Fig. 17. With the obtained Kriging-fitted LSF curves, the sensitivities and effect probability of input
variables on fatigue failure are revealed. According to Fig. 18 and Table 5, we find that the material
constants γ , β, aerodynamic torque τ and gas temperature T are the dominant factors affecting the
HCF failure of stator blade regulator.

4.4 Methods Comparison
To verify the advantages of the proposed AK-AIS method, we compare the failure probability

analysis results with MCS, FORM and AK-MCS. As shown in Table 6, the failure probability obtained
by AK-AIS is closer to the MCS reference value than that of FORM and AK-MCS. More importantly,
the proposed method only calls 484 times of the real LSF. On the contrary, MCS and AK-MCS
methods require 10,000 and 498 calls of the real LSF, respectively. Consequently, the proposed AK-
AIS method can achieve higher failure probability by fewer calls to the real LSF, which provides a way
to address the complex reliability and sensitivity analyses problems with high-nonlinearity, multiple
failure regions, and small failure probability.



1890 CMES, 2023, vol.134, no.3

(a) Component 1 (b) Component 2

Figure 15: Stress probability distribution of multiple components

(a) Component 1 (b) Component 2

Figure 16: HCF life probability distribution of multiple components

(a) Model material constant � (b) Model material constant �

Figure 17: Scatter correlation sketches of HCF life
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(a) Histogram (b) Pie graph
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Figure 18: Sensitivity analysis results of stator blade regulator HCF failure

Table 5: The PRS and GRS results for stator blade regulator

Indices Tu Tσ S ST

T 0.1580 −0.2157 0.0001 0.2424
mu 0.2766 −0.0637 0.0001 0.1933
ρ −0.0013 −0.1571 −0.0004 0.1624
α −0.1831 −0.0232 −0.0002 0.1266
u 0.0771 0.0290 −0.0001 0.0753
λ −0.0350 −0.0074 −0.0001 0.0347
E −0.1321 −0.0495 0.0001 0.0948
τ 0.5097 −0.4415 0.0021 0.4953
γ 2.4230 5.2505 0.1472 0.9386
β −1.3340 1.5346 0.0113 0.6886
S0 0.3230 0.0450 0.0004 0.2020

Table 6: The failure probability analysis results by different methods

Methods Ncall Pf Cov

Crude MCS 10000 0.0011 –
FORM 60 0.0778 –
AK-MCS 498 0.00085 0.077
AK-AIS 484 0.0010 0.085

5 Conclusions

To address the high-nonlinearity, multi-failure regions, and small failure probability problems in
reliability and sensitivity analyses of stator blade regulator, by combining the advantages of active
Kriging (AK), Markov chain Monte Carlo (MCMC), adaptive kernel density estimation (AKDE)
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and importance sampling (IS), a novel active Kriging-based adaptive importance sampling (AK-AIS)
method is developed. The proposed method is validated by two numerical examples with multiple
failure regions and then is applied to a typical reliability and sensitivity analysis of aero-engine stator
blade regulator. Some conclusions are summarized as follows:

(1) Numerical examples verify that the proposed AK-AIS method holds high accuracy and
efficiency in MPFRs identification and the Markov chain initial state determination.

(2) Application case indicates that the proposed method can efficiently and accurately accomplish
the reliability and sensitivity analysis of stator blade regulator. Moreover, it has been found that the
material constant γ , β, aerodynamic torque τ and gas temperature T poses the most impact on the
failure probability of stator blade regulator.

(3) The proposed method is suitable for the complex reliability and sensitivity analyses with
high-nonlinearity, multiple failure regions, and small failure probability, which provides theoretical
guidance for determining the initial state of Markov chain in complex engineering.

Although the study provides a feasible and efficient approach for the reliability and sensitivity
analyses of stator blade regulators, limitations do exist. Most deviations from expected solution can
be attributed to incomplete factors considered in this study. According to the present study and
the questions raised, the following problems require to be addressed for further application of the
proposed approach in future.

(1) To improve the computing quality of complex mechanism reliability analysis, more additional
factors (design tolerance, performance degradation, vibration mechanics, and so forth) should be
analyzed and investigated.

(2) To further improve the computational efficiency of reliability analysis with high-dimensional,
small failure probability problem, a more effective method to determine the initial state of Markov
chain needs to be further studied.

(3) An advanced kernel function should be adopted in high precision kernel sampling density
function, such as Gaussian linear mixture kernel function, ANOVA Kernel, and Sigmoid Kernel.
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