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ABSTRACT

In this paper, the evaluations of metal ablation processes under high temperature, i.e., the Al plate ablated by a
laser and a heat carrier and the reactor pressure vessel ablated by a core melt, are studied by a novel peridynamic
method. Above all, the peridynamic formulation for the heat conduction problem is obtained by Taylor’s expansion
technique. Then, a simple and efficient moving boundary model in the peridynamic framework is proposed to
handle the variable geometries, in which the ablated states of material points are described by an additional scalar
field. Next, due to the automatic non-interpenetration properties of peridynamic method, a contact algorithm is
established to determine the contact relationship between the ablated system and the additional heat carrier. In
addition, the corresponding computational procedure is listed in detail. Finally, several numerical examples are
carried out and the results verify the validity and accuracy of the present method.
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1 Introduction

The metal ablation under high temperature is ubiquitous in many engineering problems, such as
the welding of the steels, the laser strengthening of the aluminum alloys, and the ablation of the reactor
pressure vessels (RPVs) caused by a core melt in serious accidents, etc. Importantly, the properties
of these metal materials and structures may change dramatically after the thermal ablation, which
could eventually improve or reduce the levels of strength, stability, workability, safety of the materials
and structures, and so on. Therefore, it is very essential to study metal ablation problems. During the
past several decades, studies of metal ablation problems have been conducted by many researchers
from the aspects of theories, experiments and simulations. For instance, the characteristics of the
thermal ablation, such as the microtopologies, the thermal boundaries and the thermal damages, were
investigated by the experimental and numerical methods [1–4]. The welding methods were studied for
different metal materials, such as laser welding and friction stir welding methods [5–7]. Further, the
surface and toughness hardenings of metal materials through laser ablation were researched by the
theoretical, experimental and numerical methods [8–11]. In addition, Anderson et al. [12] investigated
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the heat transfer experimentally within the AP600 containment under postulated accident conditions.
Theofanous et al. [13] and Guan et al. [14] studied the heat distributions and convective boundaries of
the RPV based on a two-layer structure of core melt. Zhan et al. [15] analyzed the ablation and thermal
stresses of the RPV under heating by core melt on the basis of a moving boundary scheme in the finite
element framework. Although these works mentioned above have provided reliable approaches or
routes for the evaluations of the metal ablation problems, novel and efficient computational methods
are still of great importance for the more complex metal ablation problems, such as the coupling heat
conduction, ablation and contact problems.

In the last twenty years, nonlocal peridynamics proposed by Silling [16] has attracted a lot of
researchers’ interests due to its natural advantages in dealing with discontinuous and contact problems.
The peridynamic method is expressed by an integral motion equation and mainly contains two kinds
of forms, i.e., the bond-based peridynamics and the state-based peridynamics. Since the proposal of
the peridynamic method, its basic theories have been deeply developed from several perspectives [17–
26]. Meanwhile, the peridynamic method has been widely extended to many fields. For example, an
improved peridynamic fracture model for the analyses of brittle fracture problems was developed by
Huang et al. [27] and Hu et al. [28]. A peridynamic contact algorithm was proposed by Ye et al. [29] for
the propeller-ice contact problems and Xue et al. [30] for the thermal contact problems. A peridynamic
formulation for transient heat conduction was presented by Oerkus et al. [31–33] to simulate the
heat conduction problems in bodies with evolving discontinuities. Wang et al. [34] developed a dual
horizon peridynamic method for the thermal diffusion analysis. Further, Ouchi et al. [35–37] proposed
a coupling peridynamic approach for the consolidation and dynamic analyses of saturated porous
media. Silling et al. [38] and Li et al. [39] developed a peridynamic model for the nonlinear analyses
of bimodular truss structures, tensegrity structures and membranes. In addition, the peridynamic
theory was also used to simulate the chemical corrosion, damage and fracture problems [40–44]. As
demonstrated by these successful applications of the peridynamic method to commendably deal with
the heat conduction problems, contact problems and discontinuous problems, the method shows great
promise for the simulation of the thermal ablation problems in metals.

This paper aims to develop a nonlocal peridynamic method for the evaluation of the metal
ablation under high temperature. In the method, the peridynamic formulation for the heat conduction
problem is obtained by Taylor’s expansion technique. To describe the moving boundary of the system
caused by the thermal ablation, a simple and efficient moving boundary model in the peridynamic
framework is proposed, in which the ablated states of the material points are represented by an
additional scalar field. It is worth mentioning that due to the introduction of the scalar field, there
is no need to update the computational domain and the horizon of material points during the whole
computational process, which can reduce computational costs. Furthermore, a peridynamic contact
algorithm is presented to determine the contact relationship between the ablated system and the heat
carrier, which can be simply and conveniently achieved because of the automatic non-interpenetration
properties of the peridynamic method. It is noted that during the calculation, all the material points,
that is, the boundary material points (BMP), internal material points (IMP) and ablated material
points (AMP), will change types due to the occurrence of the thermal ablation. In addition, the
computational procedure of the present method is given out in detail and the effectiveness of the
method is demonstrated by several representative numerical examples.

The remaining sections of this paper are organized as follows. Section 2 shows the peridynamic
formulation for the transient heat conduction problem and the derivation of the micro-conductivity
on the basis of the Taylor’s expansion technique. The moving boundary model in the peridynamics is
established in Section 3 and the peridynamic contact algorithm is presented in Section 4. In Section 5,
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the computational implementation of the present method is described in detail. Moreover, several
representative numerical examples are illustrated in Section 6 and the results verify the validity and
accuracy of the present method. Finally, some concluding remarks are presented in Section 7.

2 Peridynamic Formulation for the Transient Heat Conduction Problem

On the basis of the non-local peridynamic model and the corresponding spatial uniform discretiza-
tion as shown in Fig. 1, the peridynamic formulation for the transient heat conduction problem can
be expressed as [33]:

ρc
∂T(xi, t)

∂t
=

∫
Hxi

(
J(xi, xj, t) − J(xj, xi, t)∥∥ξ

ij
∥∥

)
dVxj (1)

where ρ and c are the mass density and the specific thermal capacity of the material, respectively.
ξ

ij = xj − xi, in which xi and xj indicate the coordinates of the i-th and j-th material points. Vxi is the
volume and Hxi is the neighborhood of the material point xi with a certain horizon δ. T(xi, t) presents
the temperature of the material point xi at time t. J(xi, xj, t) is the heat flow density that the material
point xj operates on the material point xi and it can be expressed as

J
(
xi, xj, t

) =
⎧⎨
⎩

1
2

K [δ] ω
(∥∥ξ

ij
∥∥) T (xj, t) − T (xi, t)∥∥ξ

ij
∥∥ ,

∥∥ξ
ij
∥∥ ≤ δ

0,
∥∥ξ

ij
∥∥ > δ

(2)

where K [δ] is the micro-conductivity for the isotropic and homogeneous materials, and it can be
obtained according to the local thermal conductivity k in the classical heat transfer model. It is noted
that the micro-conductivity K [δ] is a variable value determined by the non-local effects of the material.
ω(

∥∥ξ
ij
∥∥) is the weight function that indicates the range and degree of the long-range effects of the heat

diffusion between the material points xi and xj. Moreover, on the basis of the expression of J (xj, xi, t), it
yields that J (xi, xj, t) = −J (xj, xi, t). Next, in order to obtain the micro-conductivity K [δ], substituting
the expressions of J (xi, xj, t) and J (xj, xi, t) into Eq. (1) yields that

ρc
∂T(xi, t)

∂t
=

∫
Hxi

K [δ] ω
(∥∥ξ

ij
∥∥) T (xj, t) − T (xi, t)∥∥ξ

ij
∥∥2 dVxj (3)

Figure 1: Schematic diagram of (a) a non-local peridynamic model and (b) a spatial discretization for
evaluation
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In addition, based on Taylor’s expansion technique, the temperature T (xi, t) can be approximately
expressed as a function expanded at the material point xj, that is

T
(
xi, t

) = T
(
xj, t

) + (
ξ

ij · ∇)
T

(
xi, t

) + 1
2

(
ξ

ij · ∇) (
ξ

ij · ∇)
T

(
xi, t

) + O(
∥∥ξ

ij
∥∥2

) (4)

Substituting Eq. (4) into Eq. (3) yields

ρc
∂T (xi, t)

∂t
∼=

∫
Hxi

K [δ] ω
(∥∥ξ

ij
∥∥)

((
ξ

ij · ∇) + 1
2

(
ξ

ij · ∇) (
ξ

ij · ∇))
T (xi, t)∥∥ξ

ij
∥∥2 dVxj (5)

Due to the symmetric property of the integral domain, e.g., Hxi is circular for two-dimensional
problems and spherical for three-dimensional problems, the odd-ordered terms in Eq. (5) can be
omitted. Then we can obtain that

ρc
∂T (xi, t)

∂t
=

∫
Hxi

K [δ] ω
(∥∥ξ

ij
∥∥) (

ξ
ij · ∇) (

ξ
ij · ∇)

T (xi, t)

2
∥∥ξ

ij
∥∥2 dVxj

= K̃ :
(∇ (∇T

(
xi, t

)))
(6)

in which the second order tensor K̃ indicates the nonlocal thermal conductivity in the peridynamics
and it is given by

K̃ =
∫
Hxi

1
2

K [δ] ω
(∥∥ξ

ij
∥∥) ξ

ij ⊗ ξ
ij∥∥ξ

ij
∥∥2 dVxj

K̃mn =

⎧⎪⎨
⎪⎩

∫
Hxi

1
2

K [δ] ω
(∥∥ξ

ij
∥∥) ξ ij

mξ ij
n∥∥ξ

ij
∥∥2 dVxj , m = n

0, m �= n
(7)

where ξ ij
m and ξ ij

n are the components of the vector ξ
ij. It can be seen from Eq. (7) that K̃ is a diagonal

matrix and it can be expressed as K̃ = diag
(
K̃11, K̃22

)
for the two-dimensional problems. Then, Eq. (6)

can be rewritten as

ρc
∂T (xi, t)

∂t
= K̃mn

∂2T (xi, t)
∂xm∂xn

= K̃11

∂2T (xi, t)
∂x1∂x1

+ K̃22

∂2T (xi, t)
∂x2∂x2

= ∇ ·
(

K̃ · ∇T
(
xi, t

))
(8)

It is noted that Eq. (8) is similar to the governing equation of the classical heat transfer model.
Therefore, it is expected from Eq. (8) that the nonlocal thermal conductivities K̃11 and K̃22 in the
peridynamic model converge towards the local thermal conductivity k in the classical heat transfer
model. Therefore, we can obtain that

k =
∫
Hxi

1
2

K [δ] ω
(∥∥ξ

ij
∥∥) (

ξ ij
m

)2∥∥ξ
ij
∥∥2 dVxj (9)

Next, two kinds of weight functions are considered, i.e., ω
(∥∥ξ

ij
∥∥) = 1 for the constant weight

function and ω
(∥∥ξ

ij
∥∥) = 1 −

∥∥ξ
ij
∥∥

δ
for the triangular weight function. For one-dimensional problems,
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we have ξ ij
m = ∥∥ξ

ij
∥∥. Moreover, according to Eq. (9), we can set

∥∥ξ
ij
∥∥ = r and ξ

ij = [
r cos θ r sin θ

]T

for the two-dimensional circular integral domain. Then, the corresponding expression of the micro-
conductivity K [δ] can be written as [33]

K [δ] =

⎧⎪⎨
⎪⎩

k
δ

, ω
(∥∥ξ

ij
∥∥) = 1, 1D

4k
πδ2

, ω
(∥∥ξ

ij
∥∥) = 1, 2D

(10)

and

K [δ] =

⎧⎪⎪⎨
⎪⎪⎩

k
δ

, ω
(∥∥ξ

ij
∥∥) = 1 −

∥∥ξ
ij
∥∥

δ
, 1D

12k
πδ2

, ω
(∥∥ξ

ij
∥∥) = 1 −

∥∥ξ
ij
∥∥

δ
, 2D

(11)

Consequently, the peridynamic formulation of the one and two-dimensional transient heat
conduction problems with the triangular weight function, for example, can be expressed as

ρc
∂T(xi, t)

∂t
= ∫

Hxi

k
δ

(
1 −

∥∥ξ
ij
∥∥

δ

)
T (xj, t) − T (xi, t)∥∥ξ

ij
∥∥2 dVxj , 1D (12)

and

ρc
∂T(xi, t)

∂t
= ∫

Hxi

12k
πδ2

(
1 −

∥∥ξ
ij
∥∥

δ

)
T (xj, t) − T (xi, t)∥∥ξ

ij
∥∥2 dVxj , 2D (13)

In addition, both the Dirichlet (temperature) and Neumann (heat-flux) boundary conditions
are considered in this paper. To impose these above boundary conditions, the fictitious material
points are added outside the corresponding boundaries. For the Dirichlet boundary condition, the
given temperature values are directly applied to the additional fictitious material points and remain
constant all the time. For the Neumann boundary conditions, the given heat-flux values are indirectly
imposed on the additional fictitious material points through the linear distributed temperatures as
shown in Fig. 2. That is, after obtaining the temperatures of actual material points at every time step,
the temperatures of fictitious material points are updated from the corresponding temperatures of
boundary material points adding a temperature gradient related to the boundary heat-flux. In other
words, for the Neumann boundary condition, the values of the temperatures of fictitious material
points can be obtained by a temperature extrapolated method at every time step. The material point
xi is imposed a given heat flux q, for example, the expression of the linear distributed temperatures on
the fictitious material points outside the material point xi as shown in Fig. 2 can be written as

T (xi,j, t) = T (xi, t) + jΔx
q
k

, j = 1, · · · , m (14)

where T (xi,j, t) represents the temperature on the j-th fictitious material point outside the material

point xi, Δx is the size of the uniform material points and m = δ

Δx
is related to the number of material

points inside the neighborhoods.
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Figure 2: Schematic diagram of the fictitious material points and imposing the Dirichlet and Neumann
boundary conditions

3 Moving Boundary Model
The thermal ablation is a common and direct way that may arise the serious failure for the metal

structure under high temperature. The material is ablated while the temperature of the material reaches
to its critical melting temperature of the material. Obviously, the geometry of the metal structure is
changing along with the thermal ablation process. Therefore, to evaluate the thermal ablation process
of the metal structure heated by a heat carrier with very high temperature, it is necessary to consider
the moving boundaries besides the heat diffusion in the structure. For the finite element method,
it is complex and uneconomical to deal with the problems with moving boundaries because the
corresponding heat transfer matrix of the system needs to be reassembled when its geometry is changed
during the numerical simulation. Fortunately, the peridynamics is a nonlocal method that expressed
by an integral equation and the structure is discretized into many material points while a meshless
method is adopted [17], which makes it convenient and prone to handle the moving boundaries. In
the peridynamic moving boundary model, the whole material points are divided into three categories
during the thermal ablation process of the metal structure as shown in Fig. 3. They are the internal
material point (IMP), the boundary material point (BMP) and the ablated material point (AMP),
respectively. During the calculation, we need to estimate whether the temperature T (xi, t) of the
material point xi reaches the critical melting temperature T̂ of the material. Meanwhile, during the
calculation, the three kinds of material points will change types due to the occurrence of the thermal
ablation. In addition, a scalar ϕ (xi, t) is introduced to describe the ablated state of the material point
xi, that is

ϕ
(
xi, t

) =
{

1, max {T (xi, t)} < T̂
0, max {T (xi, t)} ≥ T̂

(15)

in which, max {T (xi, t)} presents the maximum temperature of the material point xi during the time
history. It is noted that Eq. (15) can embody the irreversible features of the thermal ablation process.
In addition, it can be seen from Eq. (15) that ϕ (xi, t) = 1 presents the un-ablated state of the material
point xi while ϕ (xi, t) = 0 denotes the ablated state of the material point xi.
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Figure 3: Moving boundary model: (a) initial boundary, (b) interim boundary and (c) final boundary,
in which IMP is the internal material point, BMP is the boundary material point and AMP is the
ablated material point

Taking the moving boundaries into account and substituting Eq. (15) into Eq. (3), the peridy-
namic formulation for the thermal ablation problem under high temperature can be expressed as

ρc
∂T(xi, t)

∂t
=

∫
Hxi

K [δ] ϕ
(
xi, xj, t

)
ω

(∥∥ξ
ij
∥∥) T (xj, t) − T (xi, t)∥∥ξ

ij
∥∥2 dVxj (16)

in which,

ϕ
(
xi, xj, t

) = min
{
ϕ

(
xi, t

)
, ϕ

(
xj, t

)}
(17)

It is emphasized that the seeking of the neighborhood for each material point only needs to be
operated once at the initial time step due to the introducing of the scalar ϕ (xi, t) for the moving
boundary problems, which is a novel and economical technique to evaluate the thermal ablation
process in metal under high temperature.

4 Contact Algorithm

In this paper, the thermal ablation process of the metal structure caused by a heat carrier with
high temperature is evaluated. Except for the heat diffusion problem, the contact problem should
also be considered in this simulation. Fortunately, the automatic non-interpenetration properties
of the peridynamic method can naturally deal with the contact problem [45]. On the basis of the
moving boundary model mentioned in Section 3, the contact algorithm for the peridynamic method
is presented in this section. Fig. 4 depicts the non-contact and the contact states between the ablated
metal structure and the heat carrier. For this thermal ablation problem, we consider that the contact
state of the metal structure and the heat carrier should be maintained all the time. Therefore, the
minimum distance d between these two bodies along the moving direction n should be calculated at
every time step. In addition, the distance di,j

H,M between the boundary material points of these two bodies
along the moving direction n can be expressed as

di,j
H,M = ‖(yi − yj) · n‖ , i ∈ BMPH , j ∈ BMPM (18)

where yi and yj present the current coordinates of the material points xi and xj, respectively. BMPM

and BMPH denotes the collections of the boundary material points of the metal structure and the heat
carrier, respectively.

Consequently, the displacement increment Δu of the heat carrier at the current time step can be
expressed as

Δu = max
{
0, di,j

H,M − di,j
0

}
, i ∈ BMPH , j ∈ BMPM (19)



2004 CMES, 2023, vol.134, no.3

in which, di,j
0 is the distance between the material points xi and xj when the representative spaces of these

two material points are contact critically. In addition, it is noted that the stresses and deformations of
the metal structure and the heat carrier are not considered in the present thermal ablation problem.
In other words, their contact states are maintained and their contact forces are zero all the time. In
our future work, the mechanical deformations of the metal structure and the heat carrier will be taken
into account for the analyses of the thermal ablation problem.

Figure 4: Illustrations of contact model: (a) non-contact state and (b) contact state

5 Computational Implementations

On the basis of the discretization in spatial and temporal, the discretized peridynamic formulation
for the thermal ablation problem in metal under high temperature can be expressed as

ρc
T (xi, n + 1) − T(xi, n)

Δt
=

Nxi∑
j=1

K [δ] ϕ
(
xi, xj, n

)
ω

(∥∥ξ
ij
∥∥) T (xj, n) − T (xi, n)∥∥ξ

ij
∥∥2 Vxj (20)

where n is the n-th time step and Nxi is the number of the material points in the horizon of material
point xi.

In addition, the computational procedure of the proposed peridynamic method for the thermal
ablation problem of the metal structures is listed in the following:

(1) Set the control parameters (size of material points Δx, horizon of material points δ, time
step Δt, total time tf , etc.), the material parameters (mass density ρ, thermal conductivity k,
thermal capacity c, critical melting temperature T̂ , etc.) and the geometrical and boundary
information.

(2) Set the initial variables, such as the initial temperature T0(xi, t), the initial state scalar
ϕ0 (xi, t) = 1, the initial coordinates x, etc.

(3) Loop for the time step (initialize n = 0).
(3.1) Set n = n + 1.
(3.2) Calculate the displacement increment Δu on the basis of Eq. (19), if Δu > 0, update the
coordinates of the heat carrier and the new neighborhood of the material points; otherwise,
go to Step (3.3).
(3.3) Calculate the current temperature field on the basis of Eq. (20).
(3.4) Update the ablated state scalar ϕ (xi, t) for each material point xi. if max {T (xi, t)} ≥ T̂ ,
ϕn (xi, t) = 0; otherwise, ϕn (xi, t) = 1.
(3.5) Update the classification of the material points, i.e., IMP, BMP and AMP.

(4) If t ≥ tf , go to Step (5); else, go to Step (3.1).
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(5) Finish the computations and output the results.

In addition, the thermal conductivity between the metal structure and the heat carrier can be
given by

k(xi, xj) = dHk (xi, t) + dMk (xj, t)∥∥ξ
ij
∥∥ , i ∈ BMPH , j ∈ BMPM (21)

in which, dH and dM are the distances from the material points xi and xj to the contact surface,
respectively. Moreover, Fig. 5 shows the definitions of the distances, the contact surface and the
interaction between the material points of the metal structure and heat carrier.

Figure 5: Illustrations of the interaction between the material points of the metal structure and heat
carrier

6 Numerical Examples

In this section, several representative numerical examples are considered to evaluate the validity
and accuracy of the proposed method. In addition, the relative errors of the temperature fields are
defined as

L2 =
√√√√∑N

i=1

(
TPD,i − TR,i

)2∑N

i=1 TR,i
2

(22)

where TPD is the results obtained by the present method, TR stands for the reference solutions and N
is the total number of the material points of the metal structure.

6.1 Heat Conduction in a Plate
Firstly, a simple transient heat conduction in a 2D plate is considered to investigate the validity

and accuracy of the present method. As shown in Fig. 6, the length and width of the plate are L =
H = 1.0 m. For simplicity, the material properties are chosen to be unit values, i.e., k = 1.0 W/(m ·°C)

and ρc = 1.0 J/(m3 · °C).

The initial and boundary conditions are as follows:

T (x, y, 0) = T0

T (0, y, t) = T (L, y, t) = T1

T (x, 0, t) = T (x, H, t) = T1 (23)
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where T0 = 0°C and T1 = 100°C. In addition, the corresponding analytical solutions for this problem
can be expressed as [46]

T (x, y, t) = T1 + 16 (T0 − T1)

π 2
×

∞∑
i=1,3,···

∞∑
j=1,3,···

exp
[
−π 2t

(
i2

L2
+ j2

H2

)]
ij

sin
(

iπx
L

)
sin

(
jπy
H

)
(24)

Figure 6: Sketch and boundary conditions of the 2D transient heat conduction problem

For the numerical simulation, three kinds of horizons of material points are taken into account,

i.e., δ = 13L
480

,
13L
360

and
13L
240

. Then, four kinds of discretization in spatial are considered, i.e., L = H =
100 
x, 160 
x, 200 
x and 250 
x, in which the corresponding numbers of the material points along

the radius of the neighborhood are m = δ

Δx
≈ 2.71, 4.33, 5.42 and 6.77 with δ = 13L

480
, respectively.

The time step is chosen as 1.0 × 10−6 s.

Fig. 7 depicts the relative errors changing with the horizons and sizes of the material points. It can
be seen from these curves that the horizon δ of the material points is smaller, and the relative errors
are smaller when m is fixed, which reveals that it is consistent with the δ-convergence. Moreover, the
relative errors are also consistent with the m-convergence, i.e., the relative errors should be smaller

when the value of m is smaller. It is also noted that the minimum relative error is 0.24% with δ = 13L
480

and m = 4.33 among these results obtained by different computational parameters, which is a result
of the numerical error and the difference between the nonlocal theory and the local theory. Based on

the convergence behavior of the results for the present method, L = H = 160 Δx and δ = 13L
480

are

selected in the following discussions. Fig. 8 shows the temperature history curves of points A, B and C
obtained by the present method and from the analytical solution. The temperature distributions along
the line of y = 0.5 m at time t = 0.03 s, 0.06 s and 0.09 s are plotted in Fig. 9, which demonstrates that
the results obtained by the present method fit well with the analytical solutions. In addition, Fig. 10
shows the temperature contours at time t = 0.03 s, which further verifies the validity and accuracy of
the present method for the heat conduction problems.
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Figure 7: The relative errors changing with the horizon and size of the material point

Figure 8: Temperature history curves at different points

Figure 9: Temperature distributions along the line of y = 0.5 m at time t = 0.03 s, 0.06 s and 0.09 s,
respectively
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Figure 10: Temperature contours obtained by different methods at time t = 0.03 s

6.2 An Al Plate Heated by a Laser
To investigate the validity and effectiveness of the present method for the evaluation of metal

ablation under high temperature, an Al plate heated with a laser is considered. As shown in Fig. 11,
the dimension of the Al plate is 0.1 × 0.1 m2. The heat source of the laser is simplified and the
corresponding laser intensity follows the exponential distribution [4], i.e., S = αI(x, y)S0, where
S0 = 2.376 × 107 KW/m2, α is a coefficient with initial value of 1.0. For the material properties of
the aluminum, k = 237.0 W/(m · °C), c = 880 J/(kg · °C) and ρ = 2700.0 kg/m3. The critical melting
temperature T̂ of the Al plate is 660°C. For the initial and boundary conditions, the initial temperature
is T0 = 0 for the whole Al plate and all of the edges are insulated. Then, the Al plate is discretized

into 160 × 160 uniform material points and the horizon of the material point is
13L
480

. The step for the

time integration is 1.0×10−4 s and the total time is 40.0 s. Fig. 12 shows the temperature history curves
of points A, B and C obtained by the present method. Fig. 13 presents the temperature distributions
along the line of x = 0.5 m at time t = 4.0 s, 16.0 s, 24.0 s and 40.0 s, in which the horizontal segments
stand for the ablated maximum depths in the Al plate. In addition, three kinds of laser intensities are
considered to investigate the effect of laser intensity on the speed of ablation. Fig. 14 plots the history
curves of ablated depth when α = 0.8, 1.0 and 1.2, respectively. It can be seen from these curves that
the laser intensities are much stronger, the speeds of ablation are faster. While the speed of ablation
decreases with the increase of time since the laser intensity decreases exponentially. It also reveals that
the history curves of the ablated depths are smooth when the laser intensity is very strong, nevertheless,
those of the ablated depths are ladder-shaped when the laser intensity is weak. Moreover, Fig. 15 shows
the temperature contours and ablated shapes with α = 1.0 at time t = 2.0 s, 4.0 s, 8.0 s, 12.0 s, 20.0 s
and 40.0 s, respectively, which is consistent with those in reference [4] and presents qualitatively the
ablated shapes of the Al plate heated with a laser.
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Figure 11: Sketch of the square plate heated with a laser source

Figure 12: Temperature history curves at different points obtained by the present method

Figure 13: Temperature distributions along the line of x = 0.5 m when α = 1.0 at time t = 4.0 s, 16.0 s,
24.0 s and 40.0 s, respectively
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Figure 14: History curves of ablated depth for different laser intensities obtained by the present method

Figure 15: Temperature contours and ablated shapes when α = 1.0 at time t = 2.0 s, 4.0 s, 8.0 s, 12.0 s,
20.0 s and 40.0 s, respectively
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6.3 A Rectangle Al Plate Ablated by a Heat Carrier
Next, a rectangle Al plate ablated by a heat carrier is considered to examine the present contact

algorithm. As shown in Fig. 16, the length and width of the Al plate are 0.1 m and 0.05 m. Besides,
those of the heat carrier are 0.02 m and 0.01 m, respectively. The material parameters of the Al plate
are: kAl = 237.0 W/(m ·°C), cAl = 880 J/(kg ·°C) and ρAl = 2700.0 kg/m3. The material parameters of
the heat carrier are: kc = 300.0 W/(m · °C), cc = 1300 J/(kg · °C) and ρc = 8000.0 kg/m3. Further, the
critical melting temperature of the Al plate is T̂Al = 660°C. For the initial and boundary conditions,
the initial temperature is TAl0 = 0 for the whole Al plate. The temperature of the lower edge is fixed
as TAl1 = 0 and the heat flux of the other edges is kept open to flow. Three kinds of temperatures of
the heat carrier are taken into account, i.e., Tc0 = 1400°C, Tc0 = 1600°C and Tc0 = 1800°C. During
the simulation, the variation of the temperature of the heat carrier is changed hypothetically to be
uniform. In addition, the energy exchange between the Al plate and the heat carrier is achieved by heat
conduction and the effects of the thermal radiation of the heat carrier on the Al plate are neglected.
To perform numerical simulating, the Al plate is discretized into 160×80 uniform material points and

the horizon of the material point is
13L
480

. The step for the time integration is chosen as 1.0×10−4 s and

the total time is 1.0 s. Fig. 17 depicts the temperature history curves at point A when Tc0 = 1400°C,
Tc0 = 1600°C and Tc0 = 1800°C, respectively. Fig. 18 plots the temperature distributions along the line
of y = 0.5 m when Tc0 = 1800°C at time t = 0.1 s, 0.5 s and 1.0 s, respectively. The history curves of
ablated depth for Tc0 = 1400°C, Tc0 = 1600°C and Tc0 = 1800°C are presented in Fig. 19, from which it
can be seen that the speed of ablation is faster and the value of the final maximum ablated depth (Mad)
is much larger when the initial temperature Tc0 of the heat carrier is higher. Fig. 20 demonstrates the
corresponding configurations when the ablated depth achieves the maximum values for Tc0 = 1400°C,
Tc0 = 1600°C and Tc0 = 1800°C, respectively. The maximum ablated depths for these three cases are
Mad = 0.0081 m when t = 0.5 s, 0.0125 m when t = 0.5 s and 0.0175 m when t = 0.6 s, respectively.
In addition, Fig. 21 shows the temperature contours and ablated shapes when Tc0 = 1800°C at time
t = 0.02 s, 0.1 s, 0.2 s and 0.4 s, respectively.

Figure 16: Illustration of the rectangle plate ablated by a heat carrier
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Figure 17: Temperature history curves at point A when Tc0 = 1400°C, 1600°C and 1800°C, respectively

Figure 18: Temperature distributions along the line of y = 0.025 m when Tc0 = 1800°C

Figure 19: History curves of ablated depth for Tc0 = 1400°C, 1600°C and 1800°C, respectively
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Figure 20: Temperature contours and ablated shapes when Tc0 = 1800°C at time t = 0.02 s, 0.1 s, 0.2 s
and 0.4 s, respectively

Figure 21: Temperature contours and ablated shapes with the maximum ablated depth (Mad) for Tc0 =
1400°C, 1600°C and 1800°C, respectively
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6.4 Lower Head of RPV Ablated by a Core Melt
Finally, the ablation process of the lower head of the RPV heated by core melt, which is simplified

from the nuclear engineering problems, is investigated [15]. Fig. 22a shows the two-layer structure of
melt core in the lower head of the RPV, in which the radius of the inwall is R = 2 m and the thickness
of the wall is δV = 0.2 m. The thicknesses of the molten UO2 and molten metal are HU = 1.325 m
and HM = 0.270 m, respectively. The material parameters of the RPV are: k = 25.5 W/(m · K),
c = 740 J/(kg · K), ρ = 6890.0 kg/m3 and the critical melting temperature is T̂ = 1600 K. For
the initial and boundary conditions, the initial temperature is T0 = 373 K and the temperature of
the outer wall is fixed by T1 = 373 K. Moreover, a non-uniform heat flux q (θ) is imposed on the
moving inwall of the RPV, in which the distribution of q(θ) is plotted in Fig. 22b. For the sake of the
computational cost, only half of the symmetric RPV is utilized for the numerical simulation. Then,
the RPV is discretized into many uniform material points, whose size is Δx = Δy = 0.0025 m. The
horizon of the material point is δ = 3.0Δx. The step for the time integration is chosen as 1.0 × 10−2 s
and the total time is 2000.0 s. Fig. 23 shows the profile of the moving inwall of the RPV caused by the
thermal ablation, from which it can be seen that the ablation occurs at the region imposed a larger heat
source and the minimum thickness of the RPV becomes smaller and smaller along with the thermal
ablation process. Moreover, Fig. 24 presents the temperature contours and ablated shapes of the RPV
at time t = 200 s, 600 s, 1000 s, 1200 s, 1600 s and 2000 s, respectively. The ablated shapes obtained by
the present method are similar with those obtained by the finite element method [15]. Consequently,
the present peridynamic method is valid and effective for the evaluation of the ablation of the RPV
heating by a core melt.

Figure 22: Illustration of the RPV model: (a) Two-layer structure of melt core and (b) heat flux imposed
on the inwall
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Figure 23: Profile of the moving inwall of the RPV caused by the thermal ablation

Figure 24: Temperature contours and ablated shapes of the RPV at time t = 200 s, 600 s, 1000 s, 1200 s,
1600 s and 2000 s, respectively
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7 Conclusions

This paper presents a nonlocal peridynamic method for the evaluation of the thermal ablation in
metal under high temperature. Firstly, the peridynamic formulation for the transient heat conduction
problem is derived based on Taylor’s expansion technique. To simulate the thermal ablation problem,
whose geometry is changed, a simple and efficient moving boundary model in the peridynamic
framework is proposed by introducing a scalar field to describe the ablated states of material points.
In addition, on the basis of the automatic non-interpenetration properties of the peridynamic method,
an effective contact algorithm is suggested to determine the contact relationship between the ablated
system and the additional heat carrier. Furthermore, the corresponding computational procedure is
given out in detail. Finally, several representative numerical examples are taken into account. These
results obtained by the present method fit well with the reference solutions, which demonstrates the
validity and accuracy of the present method. Moreover, the present peridynamic method can be
extended to analyze the coupling thermo-, deformation-, ablation- and fracture problems in the future.
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