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ABSTRACT

In this work, an acoustic topology optimization method for structural surface design covered by porous materials is
proposed. The analysis of acoustic problems is performed using the isogeometric boundary element method. Taking
the element density of porous materials as the design variable, the volume of porous materials as the constraint, and
the minimum sound pressure or maximum scattered sound power as the design goal, the topology optimization
is carried out by solid isotropic material with penalization (SIMP) method. To get a limpid 0–1 distribution, a
smoothing Heaviside-like function is proposed. To obtain the gradient value of the objective function, a sensitivity
analysis method based on the adjoint variable method (AVM) is proposed. To find the optimal solution, the
optimization problems are solved by the method of moving asymptotes (MMA) based on gradient information.
Numerical examples verify the effectiveness of the proposed topology optimization method in the optimization
process of two-dimensional acoustic problems. Furthermore, the optimal distribution of sound-absorbing materials
is highly frequency-dependent and usually needs to be performed within a frequency band.
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1 Introduction

With the rapid development of road and railway construction and the rapid increase in car
ownership, noise pollution is increasingly affecting our lives and health, which has become a worldwide
problem. Researchers have introduced several methods for optimizing design, including a range of
work on sound barriers [1–3], automobiles [4–6], buildings [7,8] and mufflers [9,10]. At present,
porous materials have been widely used in the field of noise control because of their excellent sound
absorption characteristics [11–15]. Considering various constraints, including economy, laying porous
materials in certain areas is an effective method. Therefore, it is necessary to obtain the partial optimal
distribution of porous materials under given constraints. This leads to a series of problems about
topology optimization [16–18]. Since Bendsøe et al. [19] proposed the topology optimization method,
which has become an important engineering tool. Many researchers have also introduced topology
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optimization techniques into acoustic analysis [20–23]. Topology optimization of the distribution of
porous materials in two-dimensional muffler models using the finite element method (FEM) was
first proposed by Yoon et al. [24], and the framework was extended to the topology optimization of
acoustic barrier surfaces composed of both rigid and porous materials by Kim et al. [1]. However, it is
a typical semi-infinite domain external sound field problem, and it is difficult to numerically simulate
the performance of the noise barrier by the FEM. As we all know, the boundary element method
(BEM) is superior to the FEM when solving sound field problems in infinite/semi-infinite domains
because of its advantages such as high accuracy and automatic mesh generation [25–28]. However, as
the amount of computation increases, the process of meshing will consume a lot of costs, which makes
the transition process from CAD to CAE very cumbersome. When encountering dynamic computation
processes, the mesh needs to be constantly reconstructed. In isogeometric analysis (IGA) [29,30], the
spline basis function commonly used in CAD is used to replace the Lagrangian basis function in the
traditional interpolation form, which successfully eliminates the transformation process from CAD
to CAE [31,32]. At the same time, geometric errors are eliminated and therefore the accuracy of the
calculation is significantly improved. The BEM can be well combined with IGA due to the discrete
nature of BEM, that is, the isogeometric boundary element method (IGABEM) [33–35]. IGABEM not
only retains the advantages of the BEM such as dimensionality reduction and high accuracy but also
enables numerical analysis to be carried out directly from CAD, which greatly improves calculation
efficiency [36–39]. Therefore, IGABEM is chosen for the optimal analysis of acoustic problems in
this work.

As we all know, the solution methods of optimization problems are mainly the non-gradient
method and the gradient method. The non-gradient method has no use for gradient information, i.e.,
the derivatives of the objective and constraint function in regard to the design variables. Moreover, the
non-gradient algorithm can achieve better solutions for problems with fewer degrees of freedom such
as dimensional optimization, while the solution efficiency is very low for problems with a large number
of degrees of freedom such as topology optimization. However, the gradient algorithm is well-efficient
for large-scale problems, thereby, most extension optimization problems are solved by the gradient
algorithm. From an engineering point of view, the gradient method is obviously more practical because
it can save the cost. In addition, the gradient algorithm requires gradient information (i.e., sensitivity
information) of the objective function and constraints in regard to the design variables to guide the
iterative update of the design variables during optimization. Therefore, it is necessary to solve the
gradient value of the objective function. The finite difference method (FDM) [40–42] performs a
differential operation on each design variable to get complete gradient information. Therefore, its
computational efficiency is highly dependent on the number of design variables. In addition, the
accuracy of FDM depends largely on the step length and the computational accuracy of the objective
function itself. Too large or too small a step length will affect the results of the calculation, and
the stability is difficult to be guaranteed in the actual calculation. Compared with FDM, the direct
differentiation method (DDM) [43–45] uses chain differentiation rules to get the gradient value for the
objective function on the basis of intermediate gradient values. The DDM is easy to understand and
highly stable, so this method is widely used for sensitivity analysis. However, as the number of design
variables increases, DDM requires a computer with high storage capacity. In summary, neither FDM
nor DDM applies to problems with a large number of degrees of freedom. Compare with DDM, the
adjoint variable method (AVM) [46,47] can avoid the calculation of gradient values for intermediate
variables by introducing adjoint equations. And the adjoint equations are independent of the design
variables. Therefore, AVM tends to be less costly and more suitable for solving optimization problems
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with a large number of design variables. Numerous scholars have introduced the AVM into structural-
acoustic sensitivity analysis, and have achieved remarkable results [48–50].

Among the various methods of topology optimization of continuums, the variable density method
is the most widely used. Because this method makes the original 0−1 discrete design problem
into a continuous design problem, and then it is easier to solve it using mathematical methods.
Currently, the solid isotropic material with penalization (SIMP) and the rational approximation of
material properties (RAMP) are common interpolation methods in the variable density method. In
addition, topology optimization methods based on them have been widely used [51–53]. Bendsøe et
al. [54] utilized the SIMP method to achieve geometric parameterization and implemented topology
optimization of single and multi-material structural designs. Bendsøe [55] utilized the SIMP method
to eliminate the discreteness of elasticity problems for shape optimization. Li et al. [56] utilized the
RAMP method to eliminate numerical instability in the process of topology optimization and solve
the problem of the structural heat transfer design. Because the SIMP method has the advantages
of high computational efficiency and simple concept, this work proposes an optimization method
that combines the boundary element method and the SIMP method to optimize the distribution of
sound-absorbing materials. Design variables are then updated using the MMA method to find the
final optimal solution [2,57].

The rest of the work is arranged as follows. NURBS is briefly introduced into Section 2. Section 3
is the basic formulations for BEM. Section 4 describes the whole optimization process, including
the creation of the topology optimization model, material interpolation method, the analysis of the
acoustic sensitivity and updating schemes for design variables. Section 5 provides several numerical
examples to verify the availability of the proposed optimization procedure. Section 6 elaborates the
conclusions of this work.

2 B-splines and NURBS

Using the concept of the knot vector, the B-spline basis function Ni,s is defined as follows:

Ni,0(ξ) =
{

1 if ξi ≤ ξ < ξi+1

0 otherwise , (1)

Ni,s(ξ) = ξ − ξi

ξi+s − ξi

Ni,s−1(ξ) + ξi+s+1 − ξ

ξi+s+1 − ξi+1

Ni+1,s−1(ξ), (2)

where the knot vector is denoted as � = [ξ0, ξ1, · · · , ξm], ξi ∈ R is the i-th knot, m is the number of
nodes of the knot vector, m = n+s+1, s is the polynomial order, and n is the number of basis functions
or control points. Eqs. (1) and (2) are often referred to as the recursive formula.

Non-Uniform Rational B-Splines (NURBS) [2,31] developed from B-splines, is an important
geometric modeling technique in CAD and is considered as an industry standard. Therefore,
all geometries in this work are represented by NURBS. The NURBS curve x(ξ) takes the form
as Eqs. (3)–(5)

x(ξ) =
n∑

i=0

Ri,s(ξ)Si, (3)

where NURBS basis functions Ri,s(ξ) are defined as
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Ri,s(ξ) = Ni,s(ξ)wi

W(ξ)
, (4)

with

W(ξ) =
n∑

i=0

wiNi,s(ξ), (5)

where wi is the weight associated with the control point Si.

3 BEM for 2D Acoustic Analysis

The Helmholtz governing differential equation based on sound pressure is shown as Eq. (6)

∇2p(x) + k2p(x) = 0, (6)

where p(x) is the sound pressure, k is the wave number. To eliminate non-unique solutions at a series
of virtual eigenfrequency points, the linear combination [58] of the conventional boundary integral
equation (CBIE) and the hyper-singular boundary integral equation (HBIE) takes the form shown
below:

C(x)[p(x)+αq(x)] +
∫

s

[F(x, y) + αH(x, y)]p(y)dS(y) =
∫

s

[G(x, y) + αK(x, y)]q(y)dS(y)

+[pinc(x) + α
∂pinc(x)

∂n(x)
], (7)

where α is defined as i/k for k ≥ 1, and i otherwise. q(y) = ∂p(y)/∂n(y) is the unit outward normal
vector at point y, and the coefficient C(x) = 1/2 if the source point x lies on a smooth boundary S. pinc

is the sound pressure of the incident wave. The expression of the kernel functions presented in Eq. (7)
are as Eq. (8)

G(x, y) = i
4

H (1)

0 (kr),

F(x, y) = ∂G(x, y)

∂n(y)
= − ik

4
H (1)

1 (kr)
∂r

∂n(y)
,

K(x, y) = ∂G(x, y)

∂n(x)
= − ik

4
H (1)

1 (kr)
∂r

∂n(x)
,

H(x, y) = ∂2G(x, y)

∂n(x)∂n(y)
= ik

4r
H (1)

1 (kr)nj(x)nj(y) + ik2

4
H (1)

2 (kr)
∂r

∂n(x)

∂r
∂n(y)

, (8)

where r = |x − y| , H (1)

n is the n-th order Hankel function of the first kind.
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For 2D half space problems, the kernel functions can be expressed as Eq. (9)

G(x, y) = i
4

[H (1)

0 (kr) + H (1)

0 (kr′)],

F(x, y) = ∂G(x, y)

∂n(y)
= − ik

4
[H (1)

1 (kr)
∂r

∂n(y)
+ H (1)

1 (kr′)
∂r′

∂n(y)
],

K(x, y) = ∂G(x, y)

∂n(x)
= − ik

4
[H (1)

1 (kr)
∂r

∂n(x)
+ H (1)

1 (kr′)
∂r′

∂n(x)
],

H(x, y) = ∂2G(x, y)

∂n(x)∂n(y)
= ik

4
[
H (1)

1 (kr)nj(x)nj(y)

r
+ H (1)

1 (kr′)nj(x′)nj(y)

r′ ]

+ ik2

4
[H (1)

2 (kr)
∂r

∂n(x)

∂r
∂n(y)

+ H (1)

2 (kr′)
∂r′

∂n(x)

∂r′

∂n(y)
], (9)

in which r′ is the distance from x′ to y, x′ is the symmetric node of source point x. H(x, y) and G(x, y)

have strong singularity and weak singularity, respectively, where the first term in the integral for H(x, y)

can be solved using the singular elimination technique based on the Guiggiani method and G(x, y) can
be solved using logarithmic Gaussian integration. While F(x, y) and K(x, y) have no singularities, this
work is solved using Gaussian integration.

In this work, we utilize NURBS to discretize the boudary of the structure. The Eq. (7) are
discretized into matrix form as Eq. (10)

Hp = Gq + pinc, (10)

where coefficient matrices H and G of the system equation are full rank, asymmetrical. After
introducing the boundary condition, the Eq. (10) can be simplified to

Az = b, (11)

where A is the coefficient matrix, z is the unknown vector, and b is the known vector. By solving
Eq. (11), we can obtain the unknown vector z. Therefore, using Eq. (7) with C(x) = 1, we obtain the
sound pressure vector at several points lying on the acoustic domain �, as Eq. (12)

pf = Gf q − Hf p + pinc
f , (12)

where coefficient matrices Hf and Gf belong to the acoustic domain �.

4 Topology Optimization Model Based on BEM
4.1 The Creation of Topology Optimization Model

The topology optimization problem that obeys the material volume constraint can generally be
expressed as Eq. (13)⎧⎪⎪⎨
⎪⎪⎩

min � = p∗
f pf

s.t.
n∑

i=1

ρivi − V0 ≤ 0, V0 = fv

n∑
i=1

vi

0 ≤ ρmin ≤ ρi ≤ 1, i = 1, · · · n

, (13)

where � is the objective function with respect to the sound pressure, pf is the sound pressure vector
for the field points, p∗

f is the conjugate transpose of pf . ρi and vi are the volumetric density and volume
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of element i (i = 1, · · · n), respectively, ρmin is the lower bound of the volume density to avoid the
occurrence of singular values during calculation, V0 is the volume constraint.

Taking into account the impedance boundary condition q (x) = ikβ (x) p (x), the Eq. (12) can be
expressed as Eq. (14)

pf = − [
Hf − Gf B

]
p + pinc

f , (14)

in which B is a diagonal matrix, which can be expressed as Eq. (15)

B = ik

⎡
⎢⎣

β1 · · · 0
...

. . .
...

0 · · · βn

⎤
⎥⎦ , (15)

where βi is the normalized admittance of the i-th element.

4.2 Material Interpolation Scheme
To solve the problems that the design variables between 0 and 1 are discrete, the relationship

between the normalized surface admittance value β0 and the material density f (ρi) at i-th element
is described to Eq. (16)

βi = β0f (ρi) , (16)

in which the admittance of the i-th element is marked as βi. And the SIMP interpolation function [54]
is introduced as Eq. (17)

f (ρi) = ργ

i , (17)

in which γ = 3 is the penalization factor, which can make the intermediate density close to 0 or 1.

4.3 The Analysis of Acoustic Sensitivity
In the previous section, the admittance has become a continuous function, therefore the optimiza-

tion problem can be solved using gradient-based algorithm. In this work, AVM is used for the analysis
of acoustic sensitivity. Firstly, the derivative of the objective function regarding the design variable is
divided into three parts as Eq. (18)

∂�

∂ρi

= �
{

zT
1

∂P
∂ρi

+ zT
2

∂Pf

∂ρi

+ z3

}
, (18)

where � represents the real part of the complex number, zT
1 , zT

2 and z3 are instrumental variables. After
the discrete forms of the boundary integral equation and the integral equation in the domain are
substituted into the objective function, the new objective function can be denoted as

�̄ = � + � {
λT

1 [(H − GB) p − pinc] + λT
2

[
pf + (

Hf − Gf B
)
p − pinc

f

]}
(19)
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where λT
1 and λT

2 are arbitrarily selected adjoint variables whose sizes are respectively equal to the
degree of freedom on the boundary and the number of points calculated in the domain. Performing
differential operations on Eq. (19) can be obtained

∂�̄

∂ρi

=∂�

∂ρi

+ �
{

∂λT
1

∂ρi

[(H − GB) p − pinc] + ∂λT
2

∂ρi

[
pf + (

Hf − Gf B
)
p − pinc

f

]}

+ �
{
λT

1

[(
∂H
∂ρi

− ∂G
∂ρi

B − G
∂B
∂ρi

)
P + (H − GB)

∂P
∂ρi

− ∂Pinc

∂ρi

]}

+ �
{
λT

2

[
∂Pf

∂ρi

+
(

∂Hf

∂ρi

− ∂Gf

∂ρi

B − Gf

∂B
∂ρi

)
P + (

Hf − Gf B
) ∂P

∂ρi

− ∂Pinc
f

∂ρi

]}
. (20)

Actually G, H, Gf and Hf have nothing to do with the design variables, thereby the derivative terms
of these coefficient matrices can be vanished directly. In addition, we also assume that the external
excitation remains unchanged during the optimization process, and then there are ∂pinc/∂ρi = 0 and
∂pinc

f /∂ρi = 0. Hence, the Eq. (20) can be simplified as

∂�̄

∂ρi

= ∂�

∂ρi

+ �
{
λT

1

[
(H − GB)

∂P
∂ρi

− G
∂B
∂ρi

P
]}

+ �
{
λT

2

[
∂Pf

∂ρi

+ (
Hf − Gf B

) ∂P
∂ρi

− Gf

∂B
∂ρi

P
]}

. (21)

Substituting the Eq. (21) into the Eq. (18) and letting the adjoint vector satisfy the following
adjoint equation:{

zT
2 + λT

2 = 0

zT
1 + λT

1 (H − GB) + λT
2

(
Hf − Gf B

) = 0.
(22)

After solving the Eq. (22) to obtain the adjoint vectors, the derivative of the objective function
regarding any design variable can be expressed as Eq. (23)

∂�

∂ρi

= ∂�̄

∂ρi

= �
{

z3 − λT
1 G

∂B
∂ρi

P + λT
2 Gf

∂B
∂ρi

P
}

. (23)

In acoustic optimization, a number of different objective functions can be chosen, including sound
pressure value, radiated power and transmission loss. In this work, two different objective functions
are used for the optimization analysis.

Objective function 1: To obtain the minimum sound pressure, the objective function is shown as
Eq. (24)

� = p∗
f pf . (24)

Objective function 2: To obtain the maximum the absorbed sound power of the sound-absorbing
materials, the objective function is shown as Eq. (25)

� = −10 log
W
W0

, (25)

where W0 = 1 × 10−12 is the reference the sound power, and W is the sound power absorbed by sound-
absorbing materials.
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4.4 Design Variable Updating Method
In this work, the topology optimization problem is solved using MMA [57]. The flowchart

of topology optimization process based on acoustic IGABEM is shown in Fig. 1, the convergence
condition is as Eq. (26)∣∣∣∣ �j+1 − �j

�j

∣∣∣∣ < τ , (26)

where �j is the objective function value of the j-th iteration step, τ represents the relative error of
convergence.

begin

Initialize the optimization model
Solve the boundary element equation and calculate 
the objective function and constraint function

Isogemetric boundary element analysis
Solve the sysyem equation and calculate the objective
function and constraint function 

Sensitivity analysis
Solve the adjoint equation and calculate the sensitivity 
of the objective function and the constraint function

optimization solution
Update design variables by the method of moving 
asymptotes

convergence ? EndYesNo
iter iter 1

Figure 1: The flowchart of topology optimization process based on acoustic IGABEM

5 Numerical Example

To investigate the effectiveness and applicability of the proposed optimization method, this section
presents some numerical examples. In all examples, the boundary integral equations are discretized
with the constant element. In addition, this work implements the topology optimization algorithm
using Fortran 95 code. To improve computational efficiency, the OpenMP technique is employed to
parallelization. The following analysis of the acoustic problems is performed on a desktop computer
with an Intel Core i5-10400 CPU and 8 GB RAM. In this work, the number of Gaussian quadrature
points utilized for regular integrals is 6 and 10 Gaussian quadrature points are used for singular
integrals.
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5.1 Half-Y Shaped Sound Barrier
In this work, we consider a computational domain of the half-Y shaped sound barrier as shown

in Fig. 2. The width of the sound barrier is 0.2 m, the height of the upright part is 2.8 m, the height of
the inclined part is 2 m, and the inclination angle is 60°. The point excitation is located at (0 m, 1 m)

and the distance from the sound barrier is 10.4 m. The ground is simplified to a rigid surface, so
the problem can be simplified to a two-dimensional half-space problem, at which the basic solution is
shown in Eq. (9). The excitation frequency fp is set to 70 Hz. Relevant parameters are shown in Table 1.
In the following numerical study, we set the minimum value of design variables ρmin and the iterative
convergence condition τ to 0.001 and 1.0 × 10−4, respectively.

60�

x

y

Half-Y shaped

Source

Reference plane

(11,0.1) (20.5,0.1)

10.4m

2.8m 10 20�

2m

(20.5,2.8)(11,2.8)

Figure 2: The computational domain of the half-Y shaped sound barrier and reference plane

Table 1: Relevant parameters for the sound barrier design example

The density of the air ρair 1.2 kg/m3

The speed of the sound cair 340 m/s
The tickness of the barrier d 0.2 m

Firstly, the topology optimization analysis is performed with MMA to verify its effectiveness. The
initial values of design variables are set to 0.5, the volume ratio of sound-absorbing materials is bound
to 1 and the penalization factor γ is set to 3. Fig. 3 shows the trend of objective function values and
volume fraction of the sound-absorbing material over the iteration step during optimization iteration.
It can be seen that the final value of the optimized objective function is significantly lower than the
initial value, and the final convergent material volume fraction is much lower than the given constraint
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value (full coverage of sound-absorbing material). Furthermore, Fig. 3 demonstrates a steady decrease
of the objective function and the volume function in the iterative process. This phenomenon shows
that the more sound-absorbing materials, the lower the objective function is, and the optimized local
distribution of sound-absorbing materials has a better noise reduction effect than the full coverage
distribution of sound barrier surface for the objective function 1 defined in this example. The volume
constraint ratio obtained by using MMA is about 0.617. Therefore, the full coverage of sound-
absorbing materials fails to achieve the best noise reduction effect, which illustrates the necessity for
the optimal distribution of sound-absorbing materials on the surface of the sound barrier.

Figure 3: Objective function and volume fraction of half-Y shaped sound barrier at 70 Hz

It can be seen from Fig. 3 that the volume constraint changes very smoothly at the optimal
solution. To examine in detail the reasons for the appearance of this phenomenon, the values of
the sensitivity of all elements are given in Fig. 4 for the initial value, iteration step = 3 and iteration
step = 6. From Fig. 4, we can see that the values of the sensitivitiy can be either positive or negative.
When the values of the sensitivity are positive, increasing the number of design variables will increase
the values of the objective function. Otherwise, the values of the objective function will be reduced.
Fig. 5 shows the distribution of design variables and values of the sensitivity after optimization
convergence. It can be seen that the sensitivity values of many elements are zero after convergence,
but there are still some parts that are non-zero. The reason is that the range of variation between
the upper and lower bounds of the design variables makes it impossible for the sensitivity values to
converge to zero, which is also the difference between unconstrained and constrained optimization.

Figure 4: Distribution of the sensitivity value in the optimization process
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Figure 5: Distribution of design variables and sensitivity values after optimization convergence

Fig. 6 shows the optimal distribution of sound-absorbing materials on the surface of the sound
barrier for different iteration steps during the optimization process, including the optimization
iteration step = 0, the optimization iteration step = 4, the optimization iteration step = 8, and final
optimization convergence. The dark part indicates that the element is covered with sound-absorbing
materials, and the design variable is 1. The light-colored part indicates that the element is rigid, and
the design variable is 0. When the design variable is between 0 and 1, it means that the element is in
an intermediate density state, namely the gray element. Grey element usually has no practical physical
significance and is only the intermediate value introduced when using the variable density method,
which should be avoided in topology optimization. To get a limpid 0 − 1 distribution, a smoothed
Heaviside-like function based on the SIMP method is used to punish the intermediate density. As can
be seen from the figure, there are almost no gray elements after convergence. Therefore, the proposed
objective function 1 can produce a clear layout.

Figure 6: Distribution of sound-absorbing materials on the surface of half-Y shaped sound barrier
under different iteration steps

As the optimization algorithm that we use iteratively updates the design variables with the
help of the first-order gradient values of the objective function 1, we can only find locally optimal
solutions, but there is no guarantee that the solution is a globally optimal solution. To ensure the
global optimization of the solution, several different initial values are usually selected to obtain
different optimization results, and the one with the best performance is selected as the final solution.
Although this method can not guarantee that the final result is the global optimal solution, it can
avoid some poor local optimal values to a great extent, and at least guarantee that the final result
is better. Fig. 7 shows the trend of the objective function and volume fraction with different initial
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values at 70 Hz. In the figure, nine different initial values are selected, namely design variables ρi =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9. Fig. 8 shows the optimized distribution of the corresponding
sound-absorbing materials.

(a) Objective Function (b) Material volume fraction

Figure 7: Objective functions and material volume fractions of sound barrier volumes for different
initial values at 70 Hz

As can be seen from Fig. 7b that the volume fraction of the final optimized distribution obtained
by using a relatively high initial value is correspondingly higher. As can be seen from Fig. 8 when the
initial values are chosen between 0.7 and 0.9, the final optimized distribution is very similar and the
corresponding volume fractions in Fig. 7b are very close to 0.6. However, when the initial values were
taken from 0.1 to 0.6, the optimized distribution was missing a piece in the lower right of the sound
barrier compared to other optimized distributions. The volume fraction is between 0.5 and 0.6, and
the corresponding objective function values are a little higher than other objective function values. It
means that if the initial value is too small, it is possible to converge to the extreme value where the
volume fraction is too small, and the original purpose of optimization cannot be achieved. In general,
it is recommended to choose a relatively large initial design variable. In addition, we find that the
optimized distribution obtained when the initial value is 0.9 is the highest volume fraction. However,
there is no advantage over the optimized distribution of the initial values of 0.7 and 0.8. Therefore,
different initial values lead to different optimization results.

To investigate the effect of frequency on the optimized distribution, we calculate the optimized
distribution of sound-absorbing materials on the surface of the sound barrier at 70, 140 and 210 Hz,
as shown in Fig. 9. As can be observed in the figure, the optimized distribution of sound-absorbing
materials obtained at three different frequencies is different. This suggests that the optimized distribu-
tion is frequency-dependent and varies as frequency increases. As the frequency rises, the wavelength
becomes shorter and the phase change period on the surface of the sound barrier becomes shorter.
The interference of scattered and incident waves will be more dramatic between the two states of phase
length and phase extinction interference, thereby the aggregated blocks of sound-absorbing materials
on the surface of the sound barrier will become shorter and periodically distributed.
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Figure 8: Optimized distribution of sound-absorbing materials for different initial design variables

Figure 9: Optimized distribution of sound-absorbing materials for different frequencies
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Since the optimized distribution is frequency-dependent, an optimized distribution at one fre-
quency point may simply be better or even worse at other frequencies. And the actual noise usually
contains components of different frequencies and intensities. Therefore, it is of engineering significance
to consider the objective function in a frequency band range. The new objective function can be defined
as Eq. (27)

�new = 1
fu − fl

∫ fu

fl

�
(
pf

)
df (27)

where fl and fu are the lower and upper limit of the frequency band, respectively. �new is the value of
the objective function at multiple frequency points. The sensitivity values of the objective function
regarding the design variables can be solved in the same way as the sensitivity values of a single
frequency point.

The optimized distributions of sound-absorbing materials are given in Fig. 10 for three different
frequency bands, including 70−210 Hz, 210−410 Hz and 410−610 Hz, which will be referred to
as “layouts 1”, “layouts 2” and “layouts 3” in the subsequent analysis. It can be found that these
three optimized distributions are significantly different from those obtained at 70, 140 and 210 Hz,
and the optimized distributions are also very different at different frequency bands. This means that
the optimized distribution in the sense of frequency band also depends on the selected frequency
band range. The optimized distribution at the frequency band has more overall significance within
the examined frequency band compared to the optimized distribution at a single frequency point.
Furthermore, due to the high-frequency range of the calculations, e.g., “layouts 3”, the optimized
distribution of sound-absorbing materials on the left side of the barrier is very fragmented. Finally,
it should be noted that the optimized distribution of sound-absorbing materials in the respective
frequency bands has been given in Fig. 10. But this does not mean that each of these frequency points
distributed within the frequency band performs best, and they perform the best only in the average
sense of the entire frequency band.

Figure 10: Optimized distribution of sound-absorbing materials in different frequency bands

5.2 One Circle
In this section, to further detect the feasibility and effectiveness of the proposed topology

optimization algorithm for different acoustic problems, a numerical analysis of a computational
domain consisting of a plane incident wave and an infinite cylinder is carried out. This can be simplified
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to a two-dimensional problem, as shown in Fig. 11. The circle is discretized using 4,000 elements,
thereby, the total degrees of freedom (DOF) is 4,000. Relevant physical parameters as shown in Table 2
and the volume constraint fv is 0.5. The iterative convergence condition τ is set to 10−5 and the excitation
frequency is 400 Hz.

Observation point
 Plane wave

( ,01.5m m)A
(0,0)O

1mr

0
ikP e x d

Figure 11: Computational domain of the optimization problem

Table 2: Related parameters for the circle design example

The density of the air ρair 1.2 kg/m3

The speed of the sound cair 340 m/s
The flow resistivity σ 104 N · s/m4

The tickness of the circle d 0.05 m

Subsequently, we consider the optimization problem under the action of a plane wave P0eikx·d. The
plane wave propagates along the x axis, the incident direction vector is d = (1, 0), and the amplitude
P0 is set to 1, as shown in Fig. 11. To minimize the sound pressure at point A and maximize the
absorbed sound power of sound-absorbing materials, it is necessary to topologically optimize the
distribution of the porous material. While more design variables lead to better solutions, they are
also more likely to lead to the checkerboard phenomenon that lacks practical engineering significance
in optimal solutions. Therefore, the circle is discretized using 4,000 elements in this work. At the same
time, the volume fraction constraint is set to 0.5 and the initial value of design variables is set to 1.
Fig. 12 shows the trend of two different objective functions and the corresponding volume fractions
of porous materials during the optimization process. Since the set volume fraction constraint is much
smaller than the given initial value, the volume fractions corresponding to the two objective functions
drop sharply in the second iteration step. And objective function 1 converges to a volume constraint
value equal to near 0.4 and objective function 2 converges to a volume constraint value equal to near
0.5. The objective function 1 has a significant increase in the second step, while the objective function
2 decreases sharply at the beginning of the optimization. The two different objective functions show
a steady decline and an increasing tendency, respectively, finally converging to the optimized value. In
addition, we observe that the optimized objective function 1 is lower than the initial objective function
1, while the optimized objective function 2 is similarly lower than the initial objective function 2.
This indicates that the optimized distribution of porous material performs better in terms of local
distribution compared to the initial value of full coverage. This phenomenon can also be observed in
the previous section for the optimized distribution of sound-absorbing materials on the surface of the
sound barrier. The main reason is that the physical quantities of the sound field are complex variables,
and the interference between the complex variables makes the contribution of the design variables to
the objective function bidirectional. The previous section confirmed this by observing the presence
of positive and negative values for sensitivity values during the optimization process. When applying
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a material-covered design, the objective function values for the inactive elements are higher than the
objective function values for the non-inactive elements. In this work, we demonstrate the existence of
inactive elements. Therefore, the distribution of porous materials needs to be optimized.

(a) Objective function 1 (b) Objective function 2

Figure 12: Objective function and volume fraction of the circle at 400 Hz

The optimized distributions of sound-absorbing materials after convergence are represented in
Fig. 13. The optimization results for objective function 1 are shown in Figs. 13a and 13b shows the
optimization results for objective function 2. The shade of color in the figure represents the relative
magnitude of the design variable, where dark color indicates that the design variable is 1 and light color
indicates that the design variable is 0. From the figure, it can be found that the optimized distribution
obtained by the two different objective functions is completely different. The purpose of the optimal
distribution of sound-absorbing materials is to find the optimal impedance boundary conditions so
that the incident and scattering waves achieve the optimal interference in the sense of optimizing the
target. When different objective functions are chosen, the corresponding optimal interference is often
different. Therefore, the final optimized results are usually different as well. It can be observed from
Fig. 13b that the vast majority of sound-absorbing materials are distributed in the left half-circle. This
is mainly because the plane wave is located on the left side of the circle, so the sound pressure value on
the left half-circle is higher than that on the right half circle. At this time, the sound-absorbing materials
are organized in the left half-circle to absorb energy more efficiently. In addition, as the optimized
area, the excitation and the examination point A are all symmetric about the x axis, the optimization
results are also symmetric about the x axis. There are almost no intermediate density elements in both
optimized distributions, which indicates that the adopted filtering function can effectively eliminate
the intermediate density.

(a) Objective function 1 (b) Objective function 2

Figure 13: Material topology optimization distribution of the circle at 400 Hz
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The sound field distribution on the boundary and in the region of an infinite cylinder is shown
in Figs. 14 and 15, respectively. The selection of the observation point is consistent with the location
of the observation point in Fig. 11, and the remaining parameters are the same as those in Table 2.
We consider several different frequencies of the incident plane wave, including f = 100, 150, 200,
250, 300, 350, 400, 450, 500, 600, 650, 700, 800 and 900 Hz. It can be seen from the figure that
the distribution of the sound pressure of porous materials is highly frequency-dependent, and its
spatial distribution becomes more complex with the increase of incident frequency. In addition, the
range of maximum and minimum sound pressure is not consistent for different objective functions.
The sound field distribution on the boundary and in the region of an infinite cylinder is symmetric
concerning the x axis. Subsequently, we similarly considered the topologically optimized distribution
of sound-absorbing materials for different frequencies, as shown in Fig. 16. It can be seen from the
figure that the distribution is different for different frequency points, which is consistent with the
previously observed frequency-dependent. Although there are differences in the optimized distribution
obtained at different frequency points, the basic distribution is very similar. Most porous materials are
distributed in the left half-circle, as shown in Fig. 16b. Fig. 16 shows that the optimized distribution
of the porous material is symmetric about the x axis.

100Hz 300Hz200Hz

400Hz 500Hz 600Hz

700Hz 900Hz800Hz

(a) Objective function 1

100Hz 200Hz 300Hz

400Hz 500Hz 600Hz

700Hz 800Hz 900Hz

(b) Objective function 2

Figure 14: Distribution of the sound pressure for different frequencies

In this work, the influence of the location of the observation point on the optimization result is
investigated, and only objective function 1 is affected by the observation point. First, we consider six
different observation points, as shown in Fig. 17. The computational frequency and other parameters
are kept the same as before. Fig. 18 shows the optimized distribution of porous materials obtained
by six different observation points when objective function 1 is selected. The optimized distribution
of the six different observation points is significantly different, which indicates that the optimized
distribution of sound-absorbing materials is very sensitive to the location of the selected observation
point. The sound pressure at the observation point is determined by the interference between the
incident and scattered waves, which in turn is influenced by the phase of the incident and scattered
waves. Therefore, when the position of the observation point changes, the sound propagation path
changes accordingly, which further results in a phase change. The final porous material needs to
be adjusted according to the phase, etc., thus the optimized distribution depends on the chosen
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observation point. In addition, it can be observed that five observation points deviate from the x axis,
so the corresponding optimized distribution is no longer symmetric about the x axis.

100Hz 150Hz 200Hz

250Hz 300Hz 350Hz

400Hz 450Hz 500Hz

(a) Objective function 1

100Hz 150Hz 200Hz

250Hz 300Hz 350Hz

400Hz 450Hz 500Hz

(b) Objective function 2

Figure 15: Optimized distribution of the sound pressure in the external sound field at different
frequencies
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Figure 16: Material topology optimization distribution of the circle for different frequencies

 Plane wave
r

O
c

d

a

b

e f

Figure 17: A model of the circle for different observation points
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Figure 18: Optimized distribution of porous materials for different observation points
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6 Conclusions

This work establishes a topology optimization method for porous sound-absorbing materials
based on the acoustic IGABEM. The effectiveness of the algorithm is verified by numerical examples
and the influence of frequency and location of the observation point on the optimization results is
discussed. By analyzing results of different studies, we can draw some conclusions as follows:

1. The optimal distribution of the sound-absorbing material usually depends on the objective
function chosen, so the optimized distribution is usually different for different objective
functions.

2. Since the optimization distribution is frequency-dependent and location-dependent of the
observation point, the optimization under the frequency band and the selection of multiple
points or certain areas for investigation become more necessary and more engineering.
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