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ABSTRACT

In this paper, we considered the improved element-free Galerkin (IEFG) method for solving 2D anisotropic steady-
state heat conduction problems. The improved moving least-squares (IMLS) approximation is used to establish
the trial function, and the penalty method is applied to enforce the boundary conditions, thus the final discretized
equations of the IEFG method for anisotropic steady-state heat conduction problems can be obtained by combining
with the corresponding Galerkin weak form. The influences of node distribution, weight functions, scale parameters
and penalty factors on the computational accuracy of the IEFG method are analyzed respectively, and these
numerical solutions show that less computational resources are spent when using the IEFG method.
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improved moving least-squares approximation

1 Introduction

Heat conduction in anisotropic material has been widely applied in various branches of science
and engineering. Unlike those of isotropic materials, the thermal conductivity of anisotropic materials
varies with direction. Due to the complexity of such problems, analytical solutions are limited to only
a few idealized cases. Therefore, how to obtain the internal temperature distribution of anisotropic
materials effectively and accurately is one of the significant directions in scientific research.

Currently, lots of meshless methods have been applied for researching heat conduction in
anisotropic materials, such as local meshless method [1], regularized meshless method [2], radial basis
integral equation method [3], meshless singular boundary method [4], radial basis function method
[5], and so on. Compared with the traditional finite element method, a meshless method [6–9] needs
only the distribution of discrete nodes, which can avoid the meshing-related drawbacks. Thus, the great
precision of numerical solutions can be obtained.
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As an important meshless method, the EFG method [10] was studied in 1994, in this method, the
shape function was constructed by using the MLS approximation [11]. However, the disadvantage of
the singular matrix often occurs in this method.

In order to eliminate the singular matrices, Cheng et al. studied the IMLS approximation [12]
in 2003, thus the IEFG method was applied for many problems, such as advection-diffusion [13],
elastoplasticity [14], diffusional drug release [15] problems, and so on. Under the similar computational
accuracy, the IEFG method has the advantage of higher calculation speed.

By introducing the singular weight function into the MLS approximation, Lancaster et al.
studied the interpolating MLS method [11], thus the boundary condition can be enforced directly
in corresponding meshless method. Ren et al. improved the interpolating MLS method [16], thus the
corresponding interpolating EFG method was presented [17]. Additionally, some mechanics problems
[18–20] were analyzed by using this method. Qin et al. developed the interpolating smoothed particle
method [21].

Using the nonsingular weight function, Wang et al. developed the improved interpolating MLS
method, using this method to construct the trial function, thus the improved interpolating EFG
method are presented [22], and some large deformation problems [23–25] were analyzed by using this
method.

By combining the traditional finite difference method with various kinds of meshless methods,
thus the hybrid EFG method [26–29], the dimensional splitting complex variable EFG method [30–34],
the dimension split reproducing kernel particle method [35–38] and the hybrid generalized interpolated
EFG method [39] are proposed respectively, these methods can solve the multi-dimensional problems
efficiently.

In this study, the IEFG method is used for solving anisotropic steady-state heat conduction
problem. The shape functions are established by using the IMLS approximation, using the penalty
method to enforce the boundary condition, thus the final formulae of discretized equations of the
IEFG method for anisotropic steady-state heat conduction problem can be derived by combining with
the corresponding Galerkin weak form.

The influences of nodes number, weight functions, scale parameters and penalty factors on
computational accuracy of the IEFG method are discussed by given examples, and numerical solutions
show that the IEFG method for anisotropic steady-state heat conduction problems is convergent,
compared with the traditional EFG method, less computational resources are spent when using the
IEFG method.

2 The IMLS Approximation

For an arbitrary function u(x), the approximation is

uh(x) =
m∑

i=1

pi(x) · ai(x) = pT(x) · a(x), (x ∈ �), (1)

where pT(x) is basis function vector, m is basis function number, and

aT(x) = (a1(x), a2(x), · · · , am(x)) (2)

is coefficient vector of pT(x).
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In general,

pT(x) = (1, x1, x2, x3), (3)

pT(x) = (1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x2x3, x1x3). (4)

The local approximation is

uh(x, x̂) =
m∑

i=1

pi(x̂) · ai(x) = pT(x̂) · a(x). (5)

Define

J =
n∑

I=1

w(x − xI)[uh(x, xI) − uI ]2 =
n∑

I=1

w(x − xI)

[
m∑

i=1

pi(xI) · ai(x) − uI

]2

, (6)

where w(x − xI) is a weighting function, and xI (I = 1, 2, · · · , n) are the nodes with influence domains
covering the point x.

Eq. (6) can be written as

J = (Pa − u)TW(x)(Pa − u), (7)

where

uT = (u1, u2, · · · , un), (8)

P =

⎡
⎢⎢⎣

p1(x1) p2(x1) · · · pm(x1)

p1(x2) p2(x2) · · · pm(x2)
...

...
. . .

...
p1(xn) p2(xn) · · · pm(xn)

⎤
⎥⎥⎦ , (9)

and

W(x) =

⎡
⎢⎢⎣

w(x − x1) 0 · · · 0
0 w(x − x2) · · · 0
...

...
. . .

...
0 0 · · · w(x − xn)

⎤
⎥⎥⎦ . (10)

From
∂J
∂a

= A(x)a(x) − B(x)u = 0, (11)

we have

A(x)a(x) = B(x)u, (12)

where

A(x) = PTW(x)P, (13)

B(x) = PTW(x). (14)

Eq. (12) sometimes forms singular or ill-conditional matrix. In order to make up for this
deficiency, for basis functions

q = (qi) = (1, x1, x2, x3, x2
1, x2

2, x2
3, x1x2, x2x3, x3x1, · · · ), (15)
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using Gram-Schmidt process, we can obtain

pi = qi −
i−1∑
k=1

(qi, pk)

(pk, pk)
pk, (i = 1, 2, 3, · · · ), (16)

and

(pi, pj) = 0, (i �= j). (17)

Then from Eq. (12), a(x) can be obtained

a(x) = A∗
(x)B(x)u, (18)

where

A∗
(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
(p1, p1)

0 · · · 0

0
1

(p2, p2)
0 0

...
...

. . .
...

0 0 · · · 1
(pn, pn)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

Substituting Eq. (18) into Eq. (5), we have

uh(x) = Φ
∗
(x)u =

n∑
I=1

Φ∗
I (x)uI , (20)

where

Φ
∗
(x) = (�∗

1(x), �∗
2(x), · · · , �∗

n(x)) = pT(x)A∗
(x)B(x) (21)

is the shape function.

This is the IMLS approximation [12].

3 The IEFG Method for 2D Anisotropic Steady-State Heat Conduction Problems

The governing equation is

k11

∂2u(x)

∂x2
1

+ k22

∂2u(x)

∂x2
2

+ k12

∂2u(x)

∂x1∂x2

+ k21

∂2u(x)

∂x2∂x1

+ f (x) = 0, (x = (x1,x2) ∈ �), (22)

the boundary conditions are

u(x) = ū(x), (x ∈ �u), (23)

q(x) = k11

∂u(x)

∂x1

n1 + k12

∂u(x)

∂x2

n1 + k22

∂u(x)

∂x2

n2 + k21

∂u(x)

∂x1

n2 = q̄(x), (x ∈ �q), (24)

where kij (i, j = 1, 2) are the thermal conductivity coefficients, u(x) is the unknown temperature
function, f (x) is the internal heat source generation rate, ū and q̄ are the given temperatures, � =
�u ∪�q, �u ∩�q = ∅, ni (i = 1, 2) is the unit outward normal to boundary � in direction xi. According to
the thermodynamic principles and Onsagar’s reciprocity relation [40,41], the conductivity coefficients
must satisfy

k11 > 0; k22 > 0; k12 = k21; k11k22 > k2
12.
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The equivalent functional of anisotropic steady-state heat conduction problems is

Π =
∫

�

1
2

[
k11

(
∂u
∂x1

)2

+ k22

(
∂u
∂x2

)2

+ 2k12

∂u
∂x1

∂u
∂x2

]
d� −

∫
�

uf d� −
∫

�q

uq̄d�. (25)

By applying the penalty method to enforce the boundary conditions, we can obtain

Π ∗ = Π + α

2

∫
�u

(u − ū)(u − ū)d�, (26)

where α refer to penalty factor.

Let

δΠ ∗ = 0, (27)

the following weak form can be obtained∫
�

δ(L1u)
T · (L2u)d� −

∫
�

δu · f d� −
∫

�q

δu · q̄d� + α

∫
�u

δu · ud� − α

∫
�u

δu · ūd� = 0, (28)

where

L1( · ) =
⎡
⎢⎣

√
k11 · ∂

∂x1√
k22 · ∂

∂x2√
2k12 · ∂

∂x1

⎤
⎥⎦ (·), (29)

L2( · ) =
⎡
⎢⎣

√
k11 · ∂

∂x1√
k22 · ∂

∂x2√
2k12 · ∂

∂x2

⎤
⎥⎦ (·). (30)

In the problem domain, we select M nodes xI (I = 1, 2, · · · , M), and the corresponding function
is

uI = u(xI). (31)

From the IMLS approximation, we can obtain

uh(x) = Φ
∗
(x)u =

n∑
I=1

�∗
I (x)uI , (32)

where

u = (u1,u2, · · · , un)
T. (33)

From Eqs. (29), (30) and (32), we have

L1u(x) =
n∑

I=1

⎡
⎢⎣

√
k11 · ∂

∂x1√
k22 · ∂

∂x2√
2k12 · ∂

∂x1

⎤
⎥⎦�∗

I (x)uI =
n∑

I=1

B1I(x)uI = B1(x)u, (34)

L2u(x) =
n∑

I=1

⎡
⎢⎣

√
k11 · ∂

∂x1√
k22 · ∂

∂x2√
2k12 · ∂

∂x2

⎤
⎥⎦Φ∗

I (x)uI =
n∑

I=1

B2I(x)uI = B2(x)u, (35)
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where

B1(x) = (B11(x),B12(x), · · · ,B1n(x)), (36)

B2(x) = (B21(x),B22(x), · · · ,B2n(x)), (37)

B1I(x) =
⎡
⎣

√
k11 · �∗

I ,1(x)√
k22 · �∗

I ,2(x)√
2k12 · �∗

I ,1(x)

⎤
⎦ , (38)

B2I(x) =
⎡
⎣

√
k11 · �∗

I ,1(x)√
k22 · �∗

I ,2(x)√
2k12 · �∗

I ,2(x)

⎤
⎦ . (39)

Substituting Eqs. (32), (34) and (35) into Eq. (28) yields∫
�
δ[B1(x)u]T · [B2(x)u]d� − ∫

�
δ[Φ∗

(x)u]T · f d� − ∫
�q

δ[Φ∗
(x)u]T · q̄d�

+α
∫

�u
δ[Φ∗

(x)u]T · [Φ∗
(x)u]d� − α

∫
�u

δ[Φ∗
(x)u]T · ūd� = 0.

(40)

Analyzing all terms in Eq. (40), respectively, we can obtain∫
�

δ[B1(x)u]T · [B2(x)u]d� = δuT ·
[∫

�

BT
1 (x)B2(x)d�

]
· u, (41)∫

�

δ[Φ∗
(x)u]T · f d� = δuT ·

[∫
�

Φ
∗T

(x)f d�

]
, (42)

∫
�q

δ[Φ∗
(x)u]T · q̄d� = δuT ·

[∫
�q

Φ
∗T

(x)q̄d�

]
, (43)

α

∫
�u

δ[Φ∗
(x)u]T · [Φ∗

(x)u]d� = δuT ·
[
α

∫
�u

Φ
∗T

(x)Φ
∗
(x)d�

]
· u, (44)

α

∫
�u

δ[Φ∗
(x)u]T · ūd� = δuT ·

[
α

∫
�u

Φ
∗T

(x)ūd�

]
. (45)

Let

K =
∫

�

BT
1 (x)B2(x)d�, (46)

F1 =
∫

�

Φ
∗T

(x)f d�, (47)

F2 =
∫

�q

Φ
∗T

(x)q̄d�, (48)

Kα = α

∫
�u

Φ
∗T

(x)Φ
∗
(x)d�, (49)

Fα = α

∫
�u

Φ
∗T

(x)ūd�. (50)

Substituting Eqs. (41)–(45) into Eq. (40), we have

δuT · (Ku + Kαu − F1 − F2 − Fα) = 0, (51)
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the δuT is arbitrary, then we can obtain

K̂u = F̂, (52)

where

K̂ = K + Kα, (53)

F̂ = F1 + F2 + Fα. (54)

This is the IEFG method for 2D anisotropic steady-state heat conduction problem.

4 Numerical Examples

The formula of the relative error is

||u − uh||rel
L2(�)

= ||u − uh||L2(�)

||u||L2(�)

, (55)

where

||u − uh||L2(�) =
(∫

�

(u − uh)
2
d�

)1/2

. (56)

For simplicity, we select linear basis function in this section, and 4 × 4 Gaussian points are selected
in each integral grid. Fourth numerical examples are presented, and the IEFG and the EFG methods
are used to solve them, respectively.

The first example is

5
∂2u(x)

∂x2
1

+ ∂2u(x)

∂x2
2

+ 4
∂2u(x)

∂x1∂x2

= 0, (x = (x1,x2) ∈ �), (57)

the boundary conditions are

u(0, x2) = x3
2/3, (58)

u(1, x2) = 1/5 − x2 + x2
2 + x3

2/3, (59)

u(x1, 0) = x3
1/5, (60)

u(x1, 1) = x3
1/5 − x2

1 + x1 + 1/3. (61)

The problem domain is Ω = [0, 1] × [0, 1], and

u = x3
1/5 − x2

1x2 + x1x2
2 + x3

2/3 (62)

is the exact solution.

In order to illustrate the advantages of the IEFG method for 2D anisotropic steady-state heat
conduction problem, we should study the convergence of this method.

Using the IEFG method to solve it, the cubic spline weight function is selected, dmax =1.19,
α = 6.0 × 105, Fig. 1 shows the relationship between relative errors of numerical solutions and nodes
number. It is shown that, with the increase of nodes, the precision of numerical solutions will improve
as well. Thus, the numerical solution of the IEFG method in this paper is convergent.
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Figure 1: The error of numerical solutions of the IEFG method with the increase of nodes

The influences of weight function, scale parameter and penalty factor on solution of the IEFG
method will be discussed, respectively.

1) Weighting function

If we select the cubic spline function, 17 × 15 regular nodes and 16 × 14 integral grids are selected
respectively, α =6.0 × 105, dmax =1.19, thus the smaller relative error is 0.3292%. When the quartic
spline function is used, same nodes and integral grids are used respectively, α =4.0 × 105, dmax =1.15,
thus the smaller relative error is 0.3320%. It is shown that the relative error is slightly bigger when
using the quartic spline function. In this section, we select the cubic spline function.

2) Scale parameter dmax

The same nodes and integral grids are used respectively, α =4.0 × 105, and the cubic spline
function is used. Fig. 2 shows the relationship between dmax and relative error. It is shown that, when
dmax =1.19, the smaller relative error is obtained.
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Figure 2: The error of numerical solutions of the IEFG method with the increase of dmax
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3) Penalty factor α

The same nodes, integral grids and the weight function are used respectively, dmax =1.19, Fig. 3
shows the relationship between α and relative error. It is shown that, when α=1.0 × 105∼1.0 × 106, the
smaller relative error is obtained.

�
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0.008
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0.014

0.016

rorr
E

 IEFG

Figure 3: The error of numerical solutions of the IEFG method for different α

When the IEFG method is used to solve it, 17 × 15 regular nodes and 16 × 14 integral grids are
selected, dmax =1.19, α = 6.0 × 105, and the cubic spline weight function is used; when the EFG method
is used, keep all parameters consistent with the IEFG method, thus the same computational accuracy
can be obtained, and the relative errors of two methods are equal to 0.3292%.

Figs. 4–7 show the comparison of numerical results and analytical ones. It is shown that the
numerical solutions of two methods are in agreement very well with analytical one. The CPU times of
the EFG and the IEFG methods are 0.61 and 0.51 s, respectively. Compared with the EFG method,
the calculation speed of the IEFG method is slightly faster.
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Figure 4: The comparison of numerical solutions and analytical ones along x1-axis
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Figure 5: The comparison of numerical solutions and analytical ones along x1-axis
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Figure 6: The comparison of numerical solutions and analytical ones along x2-axis
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Figure 7: The comparison of numerical solutions and analytical ones along x2-axis
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The second example we considered is an orthotropic medium, and the problem domain is a semi-
circular ring, the outer and inner radii are 2 and 1, respectively. The governing equation is

∂2u(x)

∂x2
1

+ 2
∂2u(x)

∂x2
2

= 0, (x = (x1,x2) ∈ �), (63)

the boundary conditions are

∂u(x1, 0)

∂x2

= 0, (−2 ≤ x1 ≤ −1, 1 ≤ x1 ≤ 2); (64)

u(x1, x2) = −x2
1 + x2

2/2, (
√

x2
1 + x2

2 = 1,
√

x2
1 + x2

2 = 2). (65)

The problem domain is � = {(x1, x2) : 1 ≤ √
x2

1 + x2
2 ≤ 2, −2 ≤ x1 ≤ −1, 1 ≤ x1 ≤ 2}, and

u = −x2
1 + x2

2/2 (66)

is the exact solution.

Using the IEFG method to solve it, 21 × 11 nodes (see Fig. 8) and 20 × 10 integral grids are
selected respectively, dmax =1.7, α = 1.0 × 103, and the cubic weight function is used, thus the smaller
relative error is 0.0735%; when the EFG method is used to solve it, keep all parameters consistent with
the IEFG method, thus the same calculation accuracy is obtained. The CPU times of the EFG and
the IEFG methods are 1.5 and 1.1 s, respectively.

Figure 8: Nodes distributed on the problem domain

Figs. 9–12 show that the numerical results are in agreement very well with analytical one.
Obviously, the advantage of the IEFG method is its faster calculation speed.

The third example is a heat conduction problem in orthotropic material with internal heat source

∂2u(x)

∂x2
1

+ 4
∂2u(x)

∂x2
2

+ x1 = 0, (x = (x1,x2) ∈ �), (67)

the boundary conditions are

u(0, x2) = 7/6, (68)

u(1, x2) = 1, (69)
∂u(x1, 0)

∂x2

= ∂u(x1, 1)

∂x2

= 0. (70)

The problem domain is Ω = [0, 1] × [0, 1], and

u = 7/6 − x3
1/6 (71)

is the exact solution.
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Figure 9: The comparison of numerical solutions and analytical ones when θ = π /2
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Figure 10: The comparison of numerical solutions and analytical ones when θ = π /4
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Figure 11: The comparison of numerical solutions and analytical ones at the fifth node with the
direction of r
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Figure 12: The comparison of numerical solutions and analytical ones at the ninth node with the
direction of r

Using the IEFG method to solve it, 11 × 11 regular nodes and 10 × 10 integral grids are selected
respectively, dmax =1.2, α = 8.0 × 103, the cubic spline weight function is used; when the EFG method
is used, keep all parameters consistent with the IEFG method, thus the relative errors of both methods
are equal to 0.0019%.

Figs. 13–14 show the comparison of numerical solutions and analytical ones. It is shown that the
numerical results are in agreement very well with analytical one. The CPU times of the EFG and
the IEFG methods are 0.4 and 0.3 s, respectively. Obviously, the IEFG method has slightly faster
calculation speed than the EFG method.
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Figure 13: The comparison of numerical solutions and analytical ones along x1-axis
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Figure 14: The comparison of numerical solutions and analytical ones along x1-axis

The fourth example is

2
∂2u(x)

∂x2
1

+ 3
∂2u(x)

∂x2
2

+ 2
∂2u(x)

∂x1∂x2

= 0, (x = (x1,x2) ∈ �), (72)

the boundary conditions are

u(0, x2) = −x2
2, (73)

u(1, x2) = 1 − x2
2 + x2, (74)

u(x1, 0) = x2
1, (75)

u(x1, 1) = x2
1 − 1 + x1. (76)

The problem domain is Ω=[0, 1]×[0, 1], and

u = x2
1 − x2

2 + x1x2 (77)

is the exact solution.

When the IEFG method is used to solve it, 15 × 15 regular nodes and 14 × 14 integral grids are
selected, respectively, the cubic spline weight function is used, dmax =1.3, α = 6.0 × 103, thus the relative
error is 0.0517%; when the EFG method is used, keep all parameters consistent with the IEFG method,
thus the same calculation accuracy is obtained.

Figs. 15–18 show the comparison of numerical solutions and analytical ones, it is shown that the
numerical results are in agreement very well with analytical one. The CPU times of the EFG and
the IEFG methods are 0.53 and 0.47 s, respectively. Thus, the IEFG method can solve it with less
computational resources.
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Figure 15: The comparison of numerical solutions and analytical ones along x1-axis
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Figure 16: The comparison of numerical solutions and analytical ones along x1-axis
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Figure 17: The comparison of numerical solutions and analytical ones along x2-axis
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Figure 18: The comparison of numerical solutions and analytical ones along x2-axis

In order to compare the accuracy and efficiency of the IEFG and the EFG methods under
different node distributions, we only change the parameters of the EFG method. When the EFG
method is used, 8 × 8 regular nodes and 7 × 7 integral grids are selected, respectively, dmax =1.27, α

= 1.4 × 103, thus the smaller relative error is 0.2274%, and the CPU time is 0.23 s. Figs. 19–20 show
the comparison of numerical solutions and analytical ones. It is shown that the IEFG method has
higher numerical accuracy under the condition of more nodes distribution with more computational
resources.
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Figure 19: The comparison of numerical solutions and analytical ones along x1-axis
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Figure 20: The comparison of numerical solutions and analytical ones along x2-axis

5 Conclusions

In this paper, we considered the IEFG method for solving 2D anisotropic steady-state heat
conduction problems.

From Section 4, the good convergence of the solutions of the IEFG method is verified numerically.
Moreover, the IEFG method can solve anisotropic steady-state heat conduction problems with less
computational resources, and can be considered as a competitive alternative for solving science and
engineering problems.

Therefore, the study in this paper can broaden the scope of application of the IEFG method.
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