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ABSTRACT

Personal protective equipment (PPE) donning detection for medical staff is a key link of medical operation safety
guarantee and is of great significance to combat COVID-19. However, the lack of dedicated datasets makes the
scarce research on intelligence monitoring of workers’ PPE use in the field of healthcare. In this paper, we construct
a dress codes dataset for medical staff under the epidemic. And based on this, we propose a PPE donning automatic
detection approach using deep learning. With the participation of health care personnel, we organize 6 volunteers
dressed in different combinations of PPE to simulate more dress situations in the preset structured environment,
and an effective and robust dataset is constructed with a total of 5233 preprocessed images. Starting from the task’s
dual requirements for speed and accuracy, we use the YOLOv4 convolutional neural network as our learning model
to judge whether the donning of different PPE classes corresponds to the body parts of the medical staff meets the
dress codes to ensure their self-protection safety. Experimental results show that compared with three typical deep-
learning-based detection models, our method achieves a relatively optimal balance while ensuring high detection
accuracy (84.14%), with faster processing time (42.02 ms) after the average analysis of 17 classes of PPE donning
situation. Overall, this research focuses on the automatic detection of worker safety protection for the first time in
healthcare, which will help to improve its technical level of risk management and the ability to respond to potentially
hazardous events.
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1 Introduction

As the most serious global public health emergency in 2020, Coronavirus disease 2019 (COVID-
19) posed a great threat to the safety of the public [1], especially the health care personnel in
the areas with the highest risk of infection [2,3]. Since SARS-CoV-2 transmits primarily through
respiratory droplets and contact, proper use of personal protective equipment (PPE) can significantly
reduce the risk of cross-transmission. According to the Guidelines on the Use Scope of Common
Medical Protective Equipment in the Prevention and Control of Coronavirus Infection Pneumonia
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(Trial) [4], a complete dataset of PPE in a medical operating environment should include a medical
headcover, medical goggles, inner medical mask, outer medical mask, medical protective clothing,
medical protective gloves, and medical protective foot covers. Due to the high incidence of infection
caused by exposure in protective medical operations, improper use of PPE is highly likely to lead to
infection and even death [5]. Therefore, medical staff in epidemic prevention and control operations
must wear PPE correctly before they are allowed to enter the medical site to carry out operations.

However, working for a long time will cause a great consumption of the medical staff’s energy, even
after professional protection training, it is impossible to guarantee that donning multiple types of PPE
is completely correct. Therefore, it is very necessary to take some measures to increase the risk response
capacity of healthcare [6], such as the implementation of monitoring and management [7] of the results
of medical staff donning PPE. The main problem of the PPE detection is to identify whether each body
part of the medical staff is correctly donning protective equipment as required so that errors in use can
be corrected in time to ensure safety. Examples of correct donning and some incorrect donning of
PPE are shown in Fig. 1. Currently, there are few research results on intelligent detection of PPE using
monitoring for medical staff, mainly by the personnel of the infection prevention and control group
for manual inspection 24 h a day [8]. But such a monitoring model has many problems, Chen et al. used
the visual monitoring system of “4G network transmission and a cloud call platform” to realize 24 h
real-time monitoring, although its real-time detection is strong, the whole work is easily affected by
the subjective consciousness of personnel, and long-term monitoring will bring very unstable detection
results.

Figure 1: Samples of PPE donning images (a) Correct (b) Hand part error (no medical protective
gloves) (c) Head, hands, and feet part errors (no medical headcover, protective gloves, and foot covers)

With the development of intelligent video, deep learning-based target detection algorithms in the
field of computer vision show better performance than traditional manual methods in various practical
application scenarios [9]. In particular, a one-stage algorithm known for its processing time and a two-
stage algorithm known for its detection accuracy is applied according to the different requirements
of detection tasks, respectively [10]. Different detection tasks need target detectors with different
properties for learning [11–13]. For example, vehicle anti-collision detection task needs to use fast but
low-precision detectors, while searching for parking spaces requires a slow but high-precision model.
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PPE donning detection for medical staff has high requirements for detection accuracy and speed.
Therefore, to propose an automated detection model to assist or even replace supervisors to monitor
the situation of medical staff donning multiple PPE under COVID-19, to help that medical staff are
in a safe protective state continuously, the main work and contributions of this study are as follows:

(1) A Medical Staff Dress Code Dataset (MSDCD) is constructed in a structured scenario to
solve the problem of lack of data in the COVID-19 risk environment. Randomly combine
different PPE classes to simulate possible donning errors for automatic detection of PPE used
by medical staff. Each image in the dataset is annotated with multiple labels and bounding
boxes. Data augmentation makes the data more effective and robust and prevents the model
from overfitting. The protection rules are visualized by images.

(2) Considering that in the context of the epidemic, the identification task of medical staff donning
PPE has dual requirements for detection accuracy and speed, especially in real-time. This paper
proposes a PPE donning detection method for medical staff under COVID-19 based on the
YOLOv4 network (MSPPE-YOLOv4), by simultaneously locating and classifying the PPE
classes corresponding to the body parts of the medical staff in the image, the location and
category information of the target can be directly obtained to determine whether the use of
PPE complies with the protection rules.

(3) Different from the common tasks of automatic monitoring of PPE used by workers, this paper
focuses on the healthcare field for the first time, discussing the possibility of incorrect use
of multiple classes PPE, i.e., protective headcover, goggles, masks, clothing, gloves, and foot
covers. Compared with the typical two-stage and one-stage target detection algorithms, the
results prove that our method achieves a good balance between performance and efficiency on
MSDCD, and obtains relatively accurate predictions in real-time monitoring. Furthermore,
it strengthens the level of medical safety protection monitoring and improves the system’s
capability to respond to similar risk events at the technical level.

The following structure of the paper is organized as: Section 2 describes recent research on PPE
donning automatic detection, Section 3 introduces the details of the self-built dress code dataset and
the proposed PPE detection model. The experimental results and external validation are given in
Section 4. Conclusions and future work are presented in Section 5.

2 Related Works

Research on the donning detection of workers’ PPE in various high-risk fields is driven by the
urgency of demand. The widespread use of surveillance cameras in work scenes makes personal
safety protection monitoring based on computer vision instead of subjective human supervision. At
present, vision-based automatic identification methods for PPE donning are mainly divided into two
categories: traditional features methods and deep-learning-based methods.

In the first category of vision-based methods, some traditional manual selection features are
applied to detection tasks for PPE. Park et al. [14] used the histogram of oriented gradients feature
and background difference method to match the two parts of the human head part and the helmet
part to detect whether the worker is donning a helmet. Shrestha et al. [15] detected whether there was
an edge of a helmet in the head area of a construction worker, and used an edge detection algorithm
to recognize a single helmet based on facial features. Wu et al. [16] used the difference of the skin color
features and PPE color as basic information to explore the donning of equipment. However, since
various classes of PPE objects worn by workers may appear in different positions in different shapes
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and sizes, if a feature learning model is used, it may fail to be recognized in a complex multi-object
PPE donning scene. For example, for medical staff donning the correct facial area equipment, the face
is not visible and cannot be recognized using this type of method.

For vision-based deep learning methods, researchers currently mainly rely on two-stage and one-
stage object detection algorithms to locate and classify PPE used by workers. Two-stage, as the name
suggests, divides the entire PPE donning detection task into two stages: regional positioning and
equipment classification and identification. For example, the author in [17] proposed a method based
on Faster R-CNN to locate the target area of the personnel first, and then determine the use of
equipment in the area, to determine the helmets and masks worn by the workers engaged in the
pollution site remediation industry is it right or not. This type of algorithm can get excellent results
in the accuracy of model detection. Compared with it, the one-stage algorithm has a simple structure,
which concentrates positioning and classification in one stage. End-to-end learning can ensure more
efficient calculation efficiency while having good detection accuracy. It is often used for some tasks
with high real-time requirements. Such as face detection and public mask detection [18,19]. Guo et al.
[20] proposed a detection framework based on the SSD algorithm to meet the real-time requirements
of the intelligent safety supervision of the power system, it is used to judge the wearing of helmets,
goggles, and other equipment by the operators. The simple network framework provides them with
more real-time decision analysis.

According to the requirements of different detection tasks, some scholars study and apply one-
stage and two-stage detection algorithms respectively, bringing innovations to the actual monitoring
works. Nevertheless, there are still the following problems: (1) A monotonous focus area. Different
from other object detection tasks, the detection of PPE used by workers has specificity and particular-
ity in their field. Fields with urgent needs are studied first, and most of the research is devoted to the
field of civil engineering. For the healthcare field where daily urgency is not high, the above research
is rare. However, the outbreak of COVID-19 has given us a warning that under the background of
such a big risk of urgent need, the lack of a more efficient automatic monitoring management method
for PPE donning of medical staff has been exposed. (2) A small number of detected PPE objects.
Although the current research on the detection of a single type of PPE, such as helmets and masks, is
relatively mature, the research on multiple types of PPE detection is relatively rare. It is not a simple
superposition plan of the results of many single types of PPE detection, and other factors need to
be considered, for example, whether the capture of all PPE objects in the global scope is complete.
Medical staff under the epidemic need to use eight classes of PPE correctly, so such a detection
task is by no means as simple as the task of detecting whether workers wear safety helmets. (3) A
different task requirement. Some tasks have high requirements for detection accuracy, while others
pay more attention to real-time performance, which is determined according to the specific needs of
different tasks. Although the two types of algorithms based on deep learning each show better results in
detection accuracy and speed, as far as the task of this research is concerned, the real-time performance
is higher than the detection accuracy, so the one-stage algorithm with a simple network framework is
more considered by us.



CMES, 2022, vol.132, no.3 849

3 Proposed Methods
3.1 Medical Staff Dress Code Dataset
3.1.1 Data Collection

Because there is no public PPE donning dataset for medical staff, this paper builds a medical staff
dress code dataset—MSDCD in a structured scenario (preset and controlled environment). A total of
1500 images from six volunteers of different body types were collected. Different combinations of PPE
are used to simulate various possible donning situations. Considering that there are many detection
PPE objects in the medical staff’s body parts, to enhance the robustness of the model, MSDCD is
divided into Part A and Part B, in which the samples in Part A shows the whole-body images and
the samples in Part B shows the local-body images. Fig. 2 shows some samples of the different PPE
combinations donning images in MSDCD, including the whole-body and local-body images.

Figure 2: The different PPE combinations donning images in MSDCD (Part A is the whole-body
image set, including but not limited to all dressed, unhat, ungloves, unmask, etc. Part B is the local-
body image set, including but not limited to the head, mouth, hands, feet and so on)

In this paper, PPE donning is divided into 17 classes according to eight parts of the human
body, which intuitively reflects the donning situation of various equipment in different parts and is
convenient for model training. Based on the standard operating system of PPE for medical staff [21],
this paper defines the PPE dress code for medical staff and classifies the dress situation. In other words,
if and only if the PPE donning situation of 8 body parts for medical staff exactly meets class 1, medical
staff can be allowed to enter the worksite, otherwise, they are deemed to be unqualified. Table 1 shows
the classification of PPE usage in this paper.

Table 1: Classification of PPE usage in different body parts

Body parts Class 1 Class 2 Class 3

Head hat unhat
Eyes glasses unglasses
Mouth mask unmask_one unmask_two
Body cloth unzip
Left hand glove_l unglove_l

(Continued)
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Table 1 (continued)

Body parts Class 1 Class 2 Class 3

Right hand glove_r unglove_r
Left foot shoe_l unshoe_l
Right foot shoe_r unshoe_r
Note: Class 1 indicates the correct donning of PPE on all human body parts. Class 2 indicates that
each PPE is not or incorrectly donned in various parts of the body (for example, the protective clothing
is not donned or is donned but its zipper is not fastened). Class 3 indicates the third scenario for the
mask (with two masks, no outer mask, no inner and outer mask).

3.1.2 Data Preprocessing

To get a dataset with high availability, all data need to be preprocessed mainly from the following
three aspects after the preliminary data collection is completed:

(1) Data cleaning: Not all images taken are valid data, so duplicate and fuzzy data that have a
certain influence on model training will be deleted. In addition, to prevent the shortage or
redundancy of the model training for a certain target, the number of data samples of different
PPE combinations should reach equilibrium. After cleaning MSDCD, the total sample size is
1353.

(2) Data labeling: YOLOv4 uses the anchor frame as the basic detection mechanism, and the
anchor frame takes the anchor point as the center to obtain different windows to detect multiple
PPE objects. However, the anchor frame only refers to the effective area size of the image,
when the size of the boundary box is returned. This mechanism is suitable for the object
detection task with a small number of effective features in an image. Considering that under the
COVID-19 environment, there are high numbers of PPE categories used by medical staff, the
whole image contains a large number of effective target regions, so the dataset format needs
to be converted when making accurate annotations. To obtain a reliable and accurate dataset,
we adopted a three-step labeling method. First, three health care personnel who have expertise
in PPE use protection management for medical staff are invited to confirm the category and
label of PPE, which are manually labeled by computer professionals. By combining the whole
and local features of images, the label is converted into the Pascal VOC dataset format [22].
It mainly used two parts of format, JPEGImages: image dataset {xi}N

i=1; Annotations: labeling
dataset {yi}N

i=1. Second, two health care personnel carefully check the preliminary completed
annotations and corrected possible mislabeling. Third, to ensure consistency of classification, a
health care worker checked all annotations. In the end, high-quality annotations were obtained
through this method. Fig. 3 shows the label box information of each detection target.

(3) Data augmentation: In the re-training and fine-tuning phases of the MSPPE-YOLOv4 model,
data augmentation is performed based on the original dataset to support better training of the
model. In particular, the original images are scaled up or down by ±20% randomly, rotated by a
certain angle around the center of the image within the range of [−20◦, +20◦], and horizontally
and vertically translated by ±20% as the first set of expansion methods. Additionally, the color
space of the image is changed, and its brightness and contrast are randomly changed within
the range of [−20%, +20%] and [−25%, +50%], respectively, as the second set of methods
to amplify the dataset. Based on the original dataset, the two sets of methods enhance the
diversity of images with single and double ratios, and generate multiple versions of similar
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images. The total amount of processed data is 5233 images. More data helps prevent the model
from overfitting. The sample sizes of each of the 17 classes of PPE objects in the MSDCD
dataset are shown in Fig. 4.

PPE donning correctly

hat

glasses

mask

shoe_l

shoe_r

glove_r

glove_l

cloth

PPE donning incorrectly

unhat
unglasses

unmask_one

unhat
unglasses

unmask_two

unzip

unglove_l
unglove_r

unshoe_r

unshoe_l

Figure 3: Examples of each labeling detection box in MSDCD (There are 8 cases of correct PPE
donning, represented by green, and 9 cases of wrong PPE donning, represented by red)

Figure 4: The number of samples for each PPE class in the MSDCD dataset

3.2 Detection Model Based on YOLOv4
In the PPE donning identification task, the convolutional neural network (CNN), as a deep

learning method that uses a multi-level structure network, directly uses the collected image as the
input of the network and obtains the spatial features through the receptive field, to determine whether
the workers use PPE, and give the category and location information of the existing equipment. It
avoids the dependence on manual feature extraction and the data reconstruction problem in traditional
detection algorithms. To automatically identify PPE objects in multiple categories and scales used by
medical staff in the epidemic, and at the same time consider the detection performance and efficiency
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of the model, we propose a deep learning-based YOLOv4 convolutional neural network [23] detection
method (MSPPE-YOLOv4), using regression analysis to directly predict the location and category of
the PPE objects, pursuing higher demand real-time performance while ensuring accuracy. The overall
framework is shown in Fig. 5.
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Figure 5: The overall framework of the proposed method

The automatic detection of PPE donning of medical staff has dual requirements in terms of
accuracy and speed, especially in real-time. Therefore, we chose YOLOv4, a classic one-stage object
detection algorithm, and applied it to MSDCD. YOLOv4 is not so much a pure algorithm, as it is a
multiple sub-technology fusion. Through experiments, Bochkovskiy et al. compared multiple universal
algorithms and modules and finally found a combination that can achieve the best balance between
accuracy and speed. It has been used in different applications by researchers in many fields [24–26],
and the verification of reliability is also an important reason why we chose it as the method of this
research. It is no secret that the constant update of the algorithm makes the task have better assistants
to perform. In contrast, YOLOv4 may be slightly inferior, but even so, their basic ideas are almost the
same (feature extraction and bounding box regression). As far as our research is concerned, we are
more focused on proposing the idea of automatic detection of PPE in the field of healthcare to arouse
people’s attention. Reliable, fast, and accurate YOLOv4, which combines multiple technologies, meets
our mission requirements. If the experimental results prove the feasibility of this approach, multiple
sub-modules in the model will be replaced and updated as needed.

Based on the PyTorch [27] dynamic learning framework, the PPE identification task based on
object detection execution benchmarks are divided into five structures: input, backbone network
responsible for pre-training, neck for collecting feature maps, head for prediction, and output. To
make the model more flexible calculation operation, the concept of transfer learning is applied to the
backbone network, and the pre-trained knowledge is transferred to MSDSD to learn new features,
which are used to detect the PPE donning for medical staff. The following details the various parts of
the system framework.

(a) On the input terminal, this model will randomly read four images at once from each batch.
After random rotation, scaling, or color gamut changes are performed on them, the images are
combined and spliced according to the four position directions. Each batch needs to repeat batch_size
times of splicing operations. In this way, the basic data set is greatly enriched, and four images can
be calculated at a time when calculating batch normalization, which improves the robustness of the
model.
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(b) To obtain a dedicated model, it is necessary to train the model from scratch based on the
MSDCD, because there was no dataset centered on the PPE used by medical staff before. However,
such work is very time-consuming. The introduction of transfer learning [28] overcomes this challenge.
It allows the knowledge learned on some larger datasets (such as the ImageNet dataset [29] and
Microsoft COCO dataset [30]) to be transferred to a new dataset (MSDCD) that is related to it
according to the weight of the parameter. Train a dedicated model based on pre-learning features,
optimize and accelerate the training efficiency of the model. In this study, we migrated the YOLOv4
model pre-trained on the COCO dataset to the backbone network of this model trained on the
MSDCD dataset because it learned some targets (like person object) related to this research in advance.

When the input terminal sends the enhanced image to the backbone network, it first uses the mish
activation function to perform convolution operations on it. Due to its low cost, smoothness, no upper
bound, lower bound, etc., compared with other functions such as ReLU, it can reduce the amount of
calculation while ensuring accuracy. The calculation formula of the mish function is:

Mish(x) = x × tanh(ln(1 + ex)) (1)

CSPDarknet53 is based on the DarkNet-53 [31] network and introduces Cross-Stage-Partial
(CSP) [32] for optimization, which can prevent the information in the recursive computation from
being reused to update different block weights. To a certain extent, it strengthens the learning ability of
the network, eliminates computing bottlenecks, and reduces the hardware cost required for computing.
Each unit of CSPDarknet53 is composed of blocks and layers, and each block contains k convolutional
layers, and its output is determined by the connection operation between the layers and the weight of
each block itself (using the backpropagation algorithm to update the weight). CSP splits the stack of
the residual block into two routes: x0 = {x′

0, x′′
0} according to the network configuration parameter, x0

′

is directly connected to the end of the stage after a small amount of processing and x0
′′ continues to

stack the blocks. Fig. 6 shows the structure of the residual block after the introduction of CSPNet.
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Figure 6: The structure of Resblock

(c) The detector usually consists of a pre-trained backbone and a head responsible for predicting
target information. Recently, some new network layers have been inserted between the two to collect
feature maps at different stages to provide more accurate feature information for subsequent prediction
work, called neck. There are multiple PPE objects to be detected with different sizes in this research,
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such as protective masks, protective clothing, etc. It is difficult for the fully-connected layers commonly
used in ordinary CNN models to complete this task because it is limited to the classification of fixed-
size images. This is contrary to our research. In this regard, we add spatial pyramid pooling (SPP) [33]
to improve the receptive field. After convolution in the last feature layer of the backbone network, we
use three scales to perform maximum pooling processing on the head and collect effective features at
different scales.

When collecting features, some underlying information is likely to be lost due to parameter
adjustments. As an instance segmentation algorithm with the ability to repeatedly extract features,
Path Aggregation Network (PANet) [34] adds a path to transmit information from the lowest layer
to the highest layer, which can pass information to the upper layers to protect the information flow
that may be lost. Based on the feature pyramid network, it introduces adaptive feature pooling so that
each proposal aggregates the information of all layers in the pyramid, which is more beneficial for the
classification and location determination of multiple PPE objects. Its fusion method is replaced from
the original addition operation to concatenation to better improve the accuracy of head prediction.

(d) In the prediction part of the model, we continue to use the YOLOv3 head—a one-stage
detector to classify multiple PPE objects and determine the position coordinates. Taking into account
the limitations of computing resources and the high real-time requirements of the task, unified
classification and positioning is a task, and the region proposal stage is removed. Single testing can
directly obtain the positions and types of multiple PPE used by medical staff in an image, to judge
whether a medical staff donning PPE correctly according to the protection rules. The images are
mapped into n × n fixed grids, and each grid is responsible for detecting the probability of an object in
its center, using regression analysis. Specifically, we divide the 416 pixels × 416 pixels input image into
52 grids × 52 grids, 26 grids × 26 grids, and 13 grids × 13 grids to detect small, medium, and large PPE
objects, respectively. The prediction effect of the object information is represented by the intersection
over union (IoU), by considering the ground-truth bounding box (box (truth)) and the predicted
bounding box (box (pred)) at the same time, the center coordinates, width and height of the object
bounding box are taken as a 4-tuple (x, y, w, h) instead of independent variables for analysis. IoU
represents the percentage of overlap between the box (pred) and the box (truth), its specific meaning
and calculation method are shown in Fig. 7 and Eq. (2).

IoU = area(box(pred) ∩ box(truth))

area(box(pred) ∪ box(truth))
(2)

The ideal situation of IoU is that the two boxes completely overlap, that is, the ratio is 1. To
evaluate the performance of the MSPPE-YOLOv4 by calculating accuracy, precision, recall, etc., first
determine true positive (TP, the number of correctly detected PPE targets, IoU ≥ 50%), false positive
(FP, the number of incorrectly detected PPE targets, IoU < 50%), and false negative (FN, the number
of targets missed by the model, IoU = 0%) based on IoU. Confidence (in Eq. (3)) reflecting the
reliability of the recognition of a single PPE object is returned in the output layer. Pred (object) means
whether there is a PPE object falling into a certain grid of the image, if it has a value of 1, otherwise it
is 0.

Confidence(object) = pred(object) × IoU (3)
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Figure 7: The meaning of IoU between the box (truth) (a blue box) and box (pred) (a red box)

4 Results and Discussion
4.1 Evaluation Indexes of Model Test

It is necessary to ensure the complete detection of multiple PPE objects used in 8 parts of the
medical staff’s body while maintaining a high detection accuracy rate for medical staff donning PPE.
At the same time, the time cost of the model should be reduced as much as possible to pursue high-
demand real-time. After the MSPPE-YOLOv4 model training is completed, we use several different
performance indicators to measure the performance of the model detection, including precision (P),
recall (R), accuracy (A), F1-score (F1), and processing time. The calculation methods of several
evaluation indicators are as follows:

• P is a measure of how much of all the PPE objects given by the model are accurate in terms of
the predicted results. The calculation method is shown in Eq. (4).

P = TP
TP + FP

(4)

• R is to evaluate whether a model algorithm is complete to identify the PPE object based on the
original sample. The calculation method is shown in Eq. (5).

R = TP
TP + FN

(5)

• A represents the proportion of correctly detected PPE object types in the total predicted PPE
classes. The calculation method is shown in Eq. (6).

A = TP + TN
TP + FP + TN + FN

(6)

• To ensure that the value of R is stable under the premise of P stability, the concept of F1 is used
to make the weighted harmonic mean of P and R for unified overall evaluation. The calculation
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method is shown in Eq. (7).

F1 = 2 × P × R
P + R

(7)

• The model processing time is measured by the average processing time of a single image in the
testing set.

In this paper, we have multiple two-category confusion matrices. The P and R of n two-category
confusion matrices hope to be comprehensively evaluated. A straightforward approach is to calculate
the P and R and then calculate an average value on each confusion matrix, thus obtaining “macro-P”,
“macro-R”, and the corresponding “macro-F1”. The calculations are shown in Eq. (8).

macro-P = 1
n

n∑

i=1

Pi

macro-R = 1
n

n∑

i=1

Ri

macro-F1 = 2 × macro-P × macro-R
macro-P + macro-R

(8)

4.2 MSPPE-YOLOv4 Model Training and Results
The learning framework of model experiments is the famous deep learning platform called

PyTorch. The server is configured as Intel(R) Xeon(R) Gold 5218 @ 2.30 GHz CPU, Quadro
RTX 6000 GPU, and the operating system as Ubuntu64 as OS. For MSPPE-YOLOv4, the model
is trained in two stages: 100 cycles (Learning_Rate = 0.001, Batch_size = 12) and 200 cycles
(Learning_Rate ∼=∼ 0.0001, Batch_size = 8). Confidence = 0.5 is selected as the recognition
threshold of positive and negative cases, and the PPE objects in an image are classified as positive
cases with Confidence ≥ 0.5, Confidence < 0.5 are classified as negative cases.

The input image size is set to 416 pixels × 416 pixels to facilitate the detection of some small-
scale PPE objects, and the minimum bounding box information of various PPE in 5233 images is
labeled. In the experiment, the basic dataset MSDCD is split into two datasets Part A (the whole-body
images, 1333 images) and Part B (the local-body images, 3900 images). The training set, testing set, and
validation set are randomly divided at an 8:1:1 ratio of the total dataset, and the testing set is restricted
to be selected only from Part A, considering that our task ultimately requires the detection of the
medical staff’s overall clothing. The total number of three datasets is 4185, 524, and 524, respectively.
We use the validation set to dynamically adjust the training parameters in the iterative training of the
model to better find the features. Table 2 is general information of the splitting datasets.

Table 2: General information of data sets

Type of dataset Part A set Part B set Total

Training set 678 3507 4185
Testing set 524 0 524
Validation set 131 393 524
Total 1333 3900 5233

The 8 parts of the human body (head, eyes, mouth, body, left hand, right hand, left foot, and right
foot) respectively contain 2–3 donning situations, and the sum of the donning situations corresponding
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to each body part is the number of samples in the testing set. The sample size of each PPE class and
their detection results (P, R, A, and F1) in 524 randomly selected images is shown in Table 3.

Table 3: Testing results of the MSPPE-YOLOv4 on testing set

No. Classes Number of samples P R A F1

1 hat 320 96.78% 98.69% 95.60% 97.73%
2 glasses 135 91.60% 96.77% 88.89% 94.12%
3 Mask 238 90.43% 90.87% 83.61% 90.65%
4 cloth 327 87.93% 90.11% 81.36% 89.01%
5 glove_l 206 88.24% 88.24% 81.59% 88.24%
6 glove_r 200 87.43% 87.91% 81.09% 87.67%
7 shoe_l 312 90.28% 89.66% 82.04% 89.97%
8 shoe_r 308 90.91% 91.23% 83.65% 91.07%
9 unhat 204 91.37% 96.77% 88.73% 93.99%
10 unglasses 389 92.39% 94.18% 87.40% 93.28%
11 unmask_one 102 88.42% 91.30% 84.55% 89.84%
12 unmask_two 184 89.39% 90.40% 83.18% 89.89%
13 unglove_l 318 87.84% 91.55% 81.25% 89.66%
14 unglove_r 324 87.84% 90.59% 81.08% 89.19%
15 unzip 197 86.49% 92.49% 82.08% 89.39%
16 unshoe_l 212 90.21% 88.38% 82.13% 89.29%
17 unshoe_r 216 89.74% 89.29% 82.10% 89.51%

After testing 524 images containing multiple classes of PPE, the P of MSPPE-YOLOv4 for 17
classes of PPE are all higher than 86%. Specifically, this model has the highest P and R for target 1 “hat”
because it has no additional shielding and there are more targets in the testing set. On the contrary, the
target 15 “unzip” has the lowest P, which is 86.49%. We speculate that this is due to the small opening
of the zipper or the high similarity between the color of the volunteer’s inner clothing and the outer
protective clothing. But its R is 92.49%, which means that the model can capture “unzip” well. For
some smaller targets, such as target 2 “glasses” and target 3 “mask”, the P are 91.60% and 90.43%,
respectively, which proves that it is effective to map the image to 3 grid forms in head prediction. The
detected accuracy of each PPE class is above 81%. Among them, the A of targets 5, 6, 13, and 14
are 81.59%, 81.09%, 81.25%, and 81.08%, respectively. This is because the characteristics of medical
gloves and hands are too similar, resulting in poor accuracy of model discrimination. In addition, we
performed an average analysis of the execution time of the model on 524 randomly selected testing
images, and the results proved that the processing time of a single image of MSPPE-YOLOv4 is about
42.02 ms.

Based on the comprehensive analysis of the detection experiment results of the above 17 PPE
classes, the detection performances of the proposed model are calculated according to Eq. (8). The
results show that the macro-P of MSPPE-YOLOv4 on MSDCD is 89.84%, the macro-R is 91.67%, and
the macro-F1 is 90.74%. On the premise of ensuring a stable detection precision, the target extraction is
also comprehensive. Fig. 8 visually analyzes the detection effect of MSPPE-YOLOv4 on three testing
images.
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Figure 8: Visualization results of MSPPE-YOLOv4. (a) A sample of correctly donning PPE images.
(b) A sample of not donning protective gloves images. (c) A sample of not donning medical headcover,
protective gloves, and foot cover images. (d) The detection result of (a). (e) The detection result of (b).
(f) The detection result of (c)

4.3 Model Comparison and External Validation
To validate the detection performance of the MSPPE-YOLOv4 model, three deep learning-based

models most commonly used in object detection tasks would be trained on MSDCD respectively, and
these would be compared and analyzed five evaluation indexes of P, R, A, F1, and processing time.
Among them, the two-stage typical algorithm Faster R-CNN [35] with higher detection accuracy and
the one-stage algorithms YOLOv3 [30] and SSD [36] with shorter processing time are involved in the
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experiment. We set up the same experimental environment and learning framework (PyTorch) for each
method involved in the experiment. The experimental results are shown in Fig. 9.

Figure 9: Comparison of the performance of four methods on MSDCD

We convert the P and R results of the methods to detect each PPE class into a comprehensive
comparison of F1. The higher the F1 of the PPE object, the more stable the R is while the model
has good P. Faster R-CNN has F1 of 93.21%, 91.15%, 95.90%, and 90.81% for target 3 “mask”,
target 4 “cloth”, target 9 “unhat” and target 11 “unmask_one”, respectively. The corresponding A
also performed best among the four methods. Different from the other three types of one-stage
methods, when Faster R-CNN detects PPE objects, it first predicts proposals in the input image,
and then classifies the region, which can capture PPE object information more finely to a certain
extent. However, the excellent performance of a small amount of PPE objects cannot represent the
overall performance of the model, especially for the PPE detection task of medical staff. Although
MSPPE-YOLOv4 is not as good as Faster R-CNN in detecting the above four targets, it is better than
Faster R-CNN for F1 and A of other 13 classes of targets, such as targets 5, 6, 7, 8. MSPPE-YOLOv4
performs unbiased detection of 17 classes of targets with different sizes, with the introduction of SPP,
the F1 and A of the object to be detected are above 87% and 81%, respectively. For F1 of targets 6, 8,
and 14, YOLOv3 and SSD are basically the same as Faster R-CNN, but they are slightly inferior to
MSPPE-YOLOv4.

According to the data in Fig. 9 and Eq. (8), the four methods of P, R, F1, and A are calculated to
compare the overall performance of the model instead of the partial. In addition, the processing time of
the model testing images is regarded as an important reference for judging the real-time performance
of the model. The average testing time of the four methods on 524 images is calculated to obtain the
processing time of each method. Table 4 is a comprehensive analysis of each method on MSDCD.

Table 4: The comprehensive analysis of the selected methods in MSDCD

Method P R A F1 Processing time

Faster R-CNN 88.91% 91.19% 83.50% 90.04% 52.88 ms
SSD 87.02% 88.30% 80.16% 87.66% 45.54 ms

(Continued)
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Table 4 (continued)

Method P R A F1 Processing time

YOLOv3 87.41% 88.69% 80.72% 88.05% 43.94 ms
MSPPE-YOLOv4 89.84% 91.67% 84.14% 90.75% 42.02 ms

The results show that the A (80.16%) and F1 (87.66%) of SSD are the lowest, and the processing
time reached 45.54 ms. The Faster R-CNN model has a high detection accuracy (83.50%) and F1
score (90.04%), but it is also the most time-consuming, with an average processing time of 52.88 ms.
The A, F1, and processing time of YOLOv3 are relatively balanced, respectively 80.72%, 88.05%, and
43.94 ms. The F1 of MSPPE-YOLOv4 is 0.71% higher than that of Faster R-CNN, and the A is 0.64%
higher. At the same time, the processing time of a single image reaches 42.02 ms, achieving the best
balance between detection performance and efficiency. The end-to-end regression analysis makes the
detection efficiency of the model higher.

The structure of the detection model will change due to the different requirements of detection
tasks. In this study, to realize the possibility of automatic monitoring of the PPE donning of medical
staff in the field of healthcare, based on the actual needs of the task, YOLOv4 is selected as the model
basis, because it has a faster time under the premise of ensuring the detection accuracy deal with.
Of course, if we do not pursue real-time monitoring, but conduct some offline research to analyze
related issues, then Faster R-CNN will also be a good choice if we only consider the index of detection
accuracy.

5 Conclusions

This research proposes a PPE donning automatic detection model for medical staff (MSPPE-
YOLOv4) based on YOLOv4, which can use deep learning methods to carry out intelligent detection
of multiple PPE objects. On the basis of the results of our study, this model can be used to stably and
efficiently monitor the PPE donning situation for medical staff and help reduce the potential harm
caused by human subjective consciousness in the management process and save medical resources. The
MSPPE-YOLOv4 model is tested using the self-built dataset (MSDCD), and the detection accuracy
reaches 84.14%, while the running time of processing a single image is 42.02 ms. The life safety of
medical staff is the basis for fighting infectious diseases and the prerequisite for protecting public
health. High-efficiency monitoring of their PPE donning is very important to overcome the challenges
of future health crises and build a healthier medical team in the city. In future work, we will improve the
detection accuracy and processing speed of the model through further processing the dataset and
the model structure. The optimized model will be deployed in the hardware device, which can use
the images collected on the spot to display the PPE donning situation for medical staff in real-time,
complete the efficient real-time detection, and help to innovate the detection work of PPE in the
healthcare field.
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