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ABSTRACT

In recent years, local community detection algorithms have developed rapidly because of their nearly linear com-
puting time and the convenience of obtaining the local information of real-world networks. However, there are
still some issues that need to be further studied. First, there is no local community detection algorithm dedicated
to detecting a seed-oriented local community, that is, the local community with the seed as the core. The second
and third issues are that the quality of local communities detected by the previous local community detection
algorithms are largely dependent on the position of the seed and predefined parameters, respectively. To solve the
existing problems, we propose a seed-oriented local community detection algorithm, named SOLCD, that is based
on influence spreading. First, we propose a novel measure of node influence named k-core centrality that is based
on the k-core value of adjacent nodes. Second, we obtain the seed-oriented local community, which is composed
of the may-members and the must-member chain of the seed, by detecting the influence scope of the seed. The
may-members and the must-members of the seed are determined by judging the influence relationship between
the node and the seed. Five state-of-art algorithms are compared to SOLCD on six real-world networks and three
groups of artificial networks. The experimental results show that SOLCD can achieve a high-quality seed-oriented
local community for various real-world networks and artificial networks with different parameters. In addition,
when taking nodes with different influence as seeds, SOLCD can stably obtain high-quality seed-oriented local
communities.

KEYWORDS
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1 Introduction

In recent years, complex networks have been prevalent in various domains, such as social
media, bioengineering, computer networks and e-commerce shopping [1]. An important property
of complex networks is the community structure, which can be defined as a group in which
entities are tightly connected [2]. Community structures, in which the entities are represented by
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the nodes and the relationship between entities are represented by the links, widely exist in the
real world [3]. In addition, nodes within the same community are more similar than those between
different communities. In other words, a community is in some fashion separated from the other
communities [4].

Research on community detection has attracted extensive attention in the last two decades. As
an important branch of community detection, local community detection has rapidly developed
because of its nearly linear computing time and the convenience of obtaining the local information
of real-world networks. Most of the existing local community detection algorithms concentrate
on detecting the community with the optimal quality function where a seed is located [5–9]. The
community with the optimal quality function is the closest to the community in the real world,
and its core members are also the closest to the core members of the real-world community but
not necessarily the given nodes. It is also of practical significance to obtain the local members
that can be influenced by an individual in the community. Sometimes, we just want to know who
has the ability to influence the network, not which community this person is located. In addition,
this person may not be important in the community, but there may be others who will be affected
by him. Therefore, this paper proposes an algorithm aimed at detecting the local community with
the seed as the core for the first time.

Many excellent local community detection algorithms have been proposed. However, some
problems still hinder the development of local community detection algorithms. First, as men-
tioned above, the communities detected by previous local community detection algorithms do not
take the seed as the core. This leads to the seed deviation problem. Second, the quality of the
detected communities depends on the location of the seed. This leads to the seed dependence
problem. Third, the quality of the detected communities depends on the predefined parameter.
This leads to the parameter dependence problem. In addition, the predefined parameter makes it
difficult and time-consuming to obtain the most reasonable parameter.

This paper proposes a seed-oriented local community detection algorithm, named SOLCD,
based on influence spreading to solve the three problems mentioned above. In order to solve
the seed deviation problem and the seed dependence problem, SOLCD expands the community
by constantly exploring the influence scope of the seed so the seed is always in the influence
center of the detected community. This ensures that the seed is in the core position in the
resulting community and the quality of the resulting community. In order to measure the node
influence, we propose k-core centrality based on the k-core decomposition algorithm [10]. In order
to solve the parameter dependence problem, SOLCD uses the influence spreading method that
needs no parameter. In order to verify the quality of the resulting community, we propose a local
community effectiveness index (LCE) and a local community uniqueness index (LCU) to evaluate
the quality of the seed-oriented local community. The main contributions of this paper can be
summarized as follows:

• We propose a seed-oriented local community detection algorithm for the first time, named
SOLCD, based on influence spreading. SOLCD has the capacity to detect the local commu-
nities with seeds as the core, which not only enables people to obtain the seed-oriented local
communities, but also makes obtaining the information of the target node more quickly and
effectively.

• We propose a new measure of node influence, named k-core centrality, based on the k-core
decomposition algorithm. Empirical evaluations on artificial and real-world networks show that
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the proposed algorithm based on k-core centrality is robust and efficient in detecting seed-oriented
local communities.

• We propose two indices that can effectively evaluate the quality of seed-oriented commu-
nities: a local community effectiveness index (LCE) and a local community uniqueness (LCU)
index.

• The experimental results on both artificial and real-world networks show that the SOLCD
has the capacity to detect high quality seed-oriented local communities with stronger robustness
than some of the latest algorithms. In addition, SOLCD can effectively solve the three problems
existing in the research of local community detection: the seed deviation, the seed dependence and
the parameter dependence problem.

The rest of this paper is organized as follows. Section 2 reviews the related works on local
community detection. In Section 3, we describe the proposed algorithm in detail, and introduce
a new node influence measure based on k-core centrality. In Section 4, we introduce a local
community effectiveness index and a local community uniqueness index to estimate the quality of
the detected local communities, then we test the proposed algorithm and compare it with some
latest algorithms. Section 5 summarizes our work.

2 Related Works

Most of the existing local community detection algorithms based on the local expansion
method consist of two major components: seed selection and community expansion. In the seed
selection process, the algorithms select an appropriate node or node set as the seeds to replace
the given node so as to be more suitable for community expansion. In the community expansion
process, the algorithms expand the community, composed of seeds originally, by running a variety
of expansion mechanisms. This section outlines the current research on the local expansion
method and describes the dilemma of the current research.

2.1 Seed Selection
Seed selection is widely concerned because of its importance to the local expansion

method [11], and various seed selection methods have been proposed. Lancichinetti et al. [12]
randomly selected a node as the seed, which makes the results of this algorithm uncertain and
leads to a weakness of this algorithm. Similarly, Baumes et al. [13] proposed an algorithm
randomly selects edge as the seed. However, in the searching seeds process, this algorithm produces
multiple duplicate communities, which consumes considerable time. Lee et al. [14] took a set of k
nodes, in which each pair of nodes had an edge, namely, k-clique, as the seeds. Whang et al. [15]
proposed a new seed selection strategy based on the personal PageRank clustering scheme. The
key to this algorithm is neighborhood inflation, in which seeds are modified to represent their
entire node neighborhood. Ding et al. [16] proposed a robust two-stage local community detection
algorithm (RTLCD) to detect the core member of the real-world community as a substitute for the
given node based on the node relation strength. Cheng et al. [17] scored the nodes in a network
using the technique for order of preference by similarity to ideal solution (TOPSIS) and took the
node with the highest score as the seed. In order to reduce the impact of the seed dependence
problem, Guo et al. [18] take the core area which is detected by adding neighboring nodes with
the maximum optimized local modularity density, as the seeds. Ni et al. [19] took the nodes whose
fuzzy relationship with their NGC nodes was greater than the threshold as the seeds. An NGC
node [20] is the nearest node with greater centrality.
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These excellent seed selection methods mentioned above can effectively improve the quality of
the detected community, but there are still two dilemmas that have not received much attention.
First, some seed selection methods, such as the random seed selection method, directly take the
given node as the seed [12–15,21]. This leads to the quality of the detected community depending
heavily on the location of the seed, which greatly affects the accuracy of the community detection
algorithm. Second, some seed selection methods, such as RTLCD, TOPSIS [16,17,19,20], select
the nodes that are more suitable for community expansion as substitutes for the given node, which
effectively alleviates the dependence of the algorithm on seed location. However, the replacement
of the given node by the seed selection method will cause the given node to deviate from the result
community, which makes the existing local community detection algorithms unable to effectively
detect the community dominated by the given node.

2.2 Community Expansion
The function of community expansion is to expand the initial community into a local com-

munity by adding adjacent nodes to the detected community. Common community expansion
methods include the quality function [5–9] and the influence spreading [22–26].

The quality function defines the community structure in a network, which can be used to
evaluate the community division quality [27]. Yang et al. [28] studied 13 quality functions and
tested their sensitivity, robustness and performance on 230 large real-world networks. Based on
this research, Yang et al. [28] classify quality functions into four categories: (1) links within a
community, (2) links outside a community, (3) links within and outside a community, and (4)
modularity.

The main idea of the influence spreading method is to score each node with an influence
evaluation mechanism and spread it to the entire network. Raghavan et al. [29] proposed the
label propagation algorithm (LPA) based on the epidemic spreading model. LPA assigns each
node in the network a unique label, and then updates the node label to be consistent with the
label of its majority neighbors until the label no longer changes. Because of the convenience and
efficiency of LPA, researchers have successively proposed a series of algorithms based on LPA.
Xu et al. [30] proposed an improved LPA algorithm based on a two-level neighborhood similarity
measure named TNS, which could help to further divide a network into communities accurately.
Inspired by LPA, Wu et al. [31] merged communities whose size was smaller than a threshold,
where the threshold was based on a reasonable communities’ scale, into reasonable communities
to increase the community division accuracy. Based on LPA, Gregory et al. [32] proposed a
method with the ability to detect overlapping communities, named COPRA (community overlap
propagation algorithm). Tang et al. [33] revealed the overlapping nodes and proposed an algorithm
based on the k-lowest-influence.

The community expansion methods described above can obtain high-quality local communi-
ties, but there are still some problems that need to be addressed vigorously. First, some community
expansion methods need to set parameters before their execution [34,35], which make methods
difficult and time-consuming to obtain the most reasonable parameter. Second, existing expansion
methods are dedicated to expanding the seed to a community which is the most similar to the
real-world community. However, in the community expansion process, the given node may be
at the edge of the community, or even be removed from the community. That is, there are no
expansion methods that focus on the local community with seeds as the core.
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3 Motivations and Basic Definitions

3.1 Motivation
As discussed in Section 2, local community detection algorithms have made excellent achieve-

ments in terms of the local expansion method, but there are still three problems hindering the
development of community detection research: the seed deviation problem, the seed dependence
problem and the parameter dependence problem.

The motivation of solving the three problems is as follows. In order to solve the seed
deviation problem and the seed dependence problem, we propose a seed-oriented algorithm, which
will always take the given node as the seed, and always take the seed as the influence core
in the process of community expansion. In order to solve the parameter dependence problem,
we propose a local community detection algorithm based on influence spreading without any
parameters.

3.1.1 Motivation for Seed-Oriented Local Community
Traditional local community detection algorithms aim to expand from the seed node to the

community that is the most similar to the real community. We call these algorithms community
quality-oriented local community detection algorithms. However, in the real world, every indi-
vidual should have the opportunity to build its own local community that takes the individual
as the center. For example, different departments with students can be considered as different
communities from the perspective of a college. Every student should have the opportunity to
build his own local friendship-community consisting of the members from multiple departments.
In addition, every student should have the opportunity to become the center of his own local
friendship-community. In this paper, we call this type of local community a seed-oriented local
community. Different from traditional algorithms, this paper proposes a seed-oriented local
community detection algorithm aiming to build the seed-oriented local community of a given
node.

The research value of detecting seed-oriented local communities is as follows. First, when
the goal is to measure the influence of a person on the other individuals, we only need to
detect the seed-oriented local community where this person is located rather than the quality local
community, which helps to improve the efficiency of an algorithm. Second, even if an individual
is marginalized in a quality oriented community, this individual influences other individuals in
a seed-oriented community. In contrast, in a seed-oriented community, the influence of this
individual on the other individuals may be greater than that of the core members of a quality
oriented community. Third, as a marginal individual in a quality oriented community, the local
influence in a seed-oriented community may be greater than that of the core members in the
quality-oriented community.

In a community, core members are described as members at the center of the community, hub
members are members in close contact with members outside the community, and outlier members
are members on the boundary of the community. In fact, core members have higher influence
than hub members, and hub members have higher influence than outlier members. Based on this
fact, this paper proposes a seed-oriented local community detection algorithm based on influence
spreading. The proposed algorithm is guided by the following: a node tends to become a member
of the community that is generated by an adjacent node with higher influence.

A sample of the seed-oriented local community detected by the proposed algorithm is shown
in Fig. 1. We show a seed-oriented local community C and its neighboring subnetwork N . The
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figure shows that all the may-members of C have an influence not lower than that of the seed
node. In addition, all the must-members of C, which are connected with the seed node using
must-member chains, have an influence lower than the seed node.

Figure 1: A sample of seed-oriented local community detected by the proposed algorithm. C
denotes the seed-oriented local community, N denotes the neighbor sub-network of C. The nodes
colored yellow are the must-members of C, the nodes colored blue are the may-members of C,
the node colored red is the seed node. The number inside the node is the node influence. Solid
lines connect the nodes within C, dotted lines connect the nodes between C and N

3.2 Problem Definition
This paper considers an unweighted graph G= (V, E), where V denotes the set of nodes and

E denotes the set of links between nodes. The adjacent matrix A is a two-dimensional array which
stores the connectivity Aij between nodes in graph G, where Aij = 1 denotes node i and node j
are connected, otherwise Aij = 0. The communities exist in the graph G can be represented as C
= {C1, C2, . . ., Ci}(C1∪ C2, . . .,∪ Ci ⊆ V). A community C consists of a set of nodes, where
C = {v1, v2, . . ., vj}(C∈ C, vi ∈ V). The seed-oriented local community detection aims to detect
a cover C of the graph, C = C1, C2, . . ., Ck (C1∪ C2∪, . . ., ∪ Ck ⊆ V), where ∀vk ∈ V, ∃vk ∈
Ck and ∀vj ∈ Ck,

∑
vi∈Ck l

vi
vk ≤

∑
vi∈Ck l

vi
vj where

∑
vi∈Ck l

vi
vk denotes the sum of length between each

node in Ck and vk.

3.3 Basic Definitions
In this paper, we detect the seed-oriented local communities by detecting the influence scope

of the seed in a network. To facilitate readers following along with this paper, we display the
research path of this paper in Fig. 2, and the subsection will provide the related definitions of
this paper.
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Figure 2: The research path of this paper

Definition 1 (Node neighbors). The node neighbors of node v are defined as follows:

N(v)= {u|u ∈V ,Auv= 1}, v ∈V (1)

where A is the adjacent matrix of graph G, and Auv = 1 denotes that there is a link between node
v and node u.

Definition 2 (Natural community). The natural community of node v is defined as follows:

Γ (v)=N(v)∪{v}, v ∈V (2)

The natural community of node v is a node set composed of node v and its neighbors.

Definition 3 (Must-member). The must-members of node v are defined as follows:

Must(v)= {u|u ∈N(v), Inf (u) < Inf (v)}, v ∈V (3)

The must-members of node v is a node set composed of node v’s neighbors that have lower
node influence than that of node v.

Definition 4 (May-member). The may-members of node v are defined as follows:

May(v)= {u|u ∈N(v), Inf (u) ≥ Inf (v)}, v∈V (4)

The may-members of node v is a node set composed of node v’s neighbors that do not have
lower node influence than that of node v.

Property 1 (Transitivity of influence relationship between must-members). Suppose node B is
a must-member of node A, and node C is a must-member of node B. Then, the conclusion we
can obtain is that there must be a path from node C to node A, that is node C must be reachable
to node A, and node A must have no lower influence than node C.

Proof 1. According to the Definition 3, we can know that node A is a neighbor of node B
and node B is a neighbor of node C, so there must be a path from node A to node B to node
C. In addition, node B has lower node influence than that of node A and node C owns lower
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node influence than that of node B. Therefore, we can conclude that node C must be reachable
for node A, and node C must have lower node influence than that of node A.

Definition 5 (Must-member chain). The must-member chain from node A to node B is defined
as follows:

Mustchain(A,B)= {v1, v2, . . . , vi}, vi+1 ∈Must(vi), i≤ |V |, vi ∈V (5)

The must-member chain can be regarded as a queue composed of nodes in the network. The
members in the queue are arranged in descending order according to their node influence, and
each member in the queue must be a must-member of the previous member.

Definition 6 (Reachable must-member). A reachable must-member of node v is defined as
follows:

Remust(v)= {u1,u2, . . . ,ui}, ∀sPath(ui)⊆Mustchain(v,ui), i≤ |V |, ui ∈V , v∈V (6)

where sPath(v, ui) denotes the nodes on the shortest path from node u to node v.

A reachable must-member of node v is a node which is reachable from node v, and each
shortest path from node v to this node must be a must-member chain.

Definition 7 (Seed-oriented local community). The seed-oriented local community of seed node
v is defined as follows:

SOLCD(v)= {v}∪May(v)∪Remust(v), v∈V (7)

The seed-oriented local community of the seed node is a node set composed of the seed, the
may-members and all the reachable must-members of the seed node.

3.4 The Proposed Algorithm
In this subsection, we will show the flowchart of the proposed algorithm in Fig. 3, and the

pseudocode of the proposed algorithm in Algorithm 1. The proposed algorithm includes two
phases: obtaining the may-members phase and obtaining the must-members phase. The processes
of each phase are as follows:

Initialization (Line 1). Line 1 initializes list Listmay and list Listmust to empty to store the
may-members and must-members of seed node respectively. Line 1 assigns the seed vseed to the
queue Q.

Obtaining may-members (Lines 2–7). Phase 1 aims to obtain the may-members of the seed
node. M in line 4 denotes the node influence evaluation mechanism. Line 3 obtains all the
neighbors of the seed node. If the influence of the neighbor vi is higher than that of the seed
node (Line 4), then line 5 assigns vi to the may-member list Listmay.

Obtaining must-members (Lines 8–26). Phase 2 aims to obtain the must-members of the seed
node. When the queue Q is not empty (Line 9), Line 10 removes the first node vfirst of Q.

Line 11 obtains all the neighbors of vfirst. If the influence of the neighbor vi is lower than
that of vfirst and vi does not belong to the must-member list Listmust (Line 12), then line 16 sets
the flag to true (Line 16). The flag is a Boolean variable that is used to determine whether the
node is a must-member of the seed node. Line 14 obtains the node vn from the union of the
neighbors of the seed vi, Q and Listmust. If the influence of the neighbor vn is lower than that
of vi (Line 15), then Line 16 sets the flag to false. Lines 15–16 are to ensure that node vi is
the reachable must-member of node vfirst. If the flag is true, Line 20 assigns node vi to Q. Line
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24 assigns vfirst to the must-member list Listmust. Line 25 removes vfirst from Q, and repeats the
algorithm until the queue Q is empty.

Figure 3: The flowchart of SOLCD

Finally, the union of the seed, may-member list Listmay and must-member list Listmust is the
seed-oriented local community of the seed node vseed .

Algorithm 1: The seed-oriented local community detection algorithm (SOLCD)
Input: Graph G=<V ,E>, link set E, node set V, seed node vseed , Node influence measure Inf .
Output: Community C .
Process:
1: Initialize Listmay= φ,Listmust= φ,Q= vseed
2: Phase 1. Get may-members of vseed
3: for all vi ∈N(vseed) do
4: if Mvi ≥Mvseed then
5: Listmay=Listmay ∪ {vi}
6: end if
7: end for
8: Phase 2. Get must-members of vseed
9: while Q 	= φ do
10: Get the first element vfirst of Q

(Continued)
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Algorithm 1: (Continued)

11: for all vi ∈N(vfirst) do
12: if Infvi < Infvfirst&&vi /∈Listmust then
13: Flag = true.
14: for all vn ∈N(vi)∩ (Q∪Listmust) do
15: if Infvn < Infvi then
16: Flag = false
17: end if
18: end for
19: if Flag = true then
20: Q=Q∪ {vi}
21: end if
22: end if
23: end for
24: Listmust=Listmust ∪ {vfirst}
25: Q=Q−{vfirst}
26: end while
27: return C = {vseed ∪Listmay ∪Listmust}

3.5 Time Complexity Analysis
The time complexity analysis of the proposed algorithm is on a network G, in where the aver-

age degree is d̄ and the number of node set is N . In Phase 1, it takes O(d̄) to scan the neighbors
of the seed node. Phase 2 has three nested iterations: Iteration 1 (Lines 14–18), Iteration 2 (Lines
11–23) and Iteration 3 (Lines 9–26). For Iteration 1, it takes O(d̄+ a) to scan the union of Q,
the must-member list Listmust and the neighbors of node vi, where a is a constant. For Iteration
2, it takes O(log|N|) to add or remove node from Q respectively. So the time complexity of

Iteration 2 is O(max{d̄ 2
, d̄log|N|}). The time complexity of Iteration 3 is O(max{d̄ 2

, d̄|N|log|N|}).
In summary, the time complexity of the proposed algorithm is O(max{d̄ 2

, d̄|N|log|N|}).
The time complexity of proposed algorithm and comparison algorithms is displayed in

Table 1, in where k denotes the mean degree; C denotes the detected community; S denotes the
shell sub-network of C; N denotes the neighbor sub-network of C.

Table 1: The time complexity of proposed algorithm and comparison algorithms

Algorithms Time complexity References

SOLCD O(max{d̄ 2
, d̄|N|log|N|}) [-]

Clauset O(kd̄|C|2) [36]

LWP O(d̄|C|2) [37]

Chen O(d̄|C|2|N|) [38]
LS O(max{d̄|N||S|, d̄|N|log|N|) [39]

LCD O(max{|S|3 d/3, |S||C|2) [40]

RTLCD O(rmax{d̄|C|log|C|, |C|(d̄log|C|)+ d
4
) [16]
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4 Experiments and Analyses

The experimental environment of this paper is as follows: the proposed algorithm and the
comparison algorithms are programmed in JAVA; all the programs involved in this paper are
running in a computer with Intel (R) Core (TM) i5-4590 CPU, 3.3 GHz, 16GB RAM. The experi-
ments are implemented in the proposed algorithm and six comparison algorithms on six real-world
networks and three groups of different parameters artificial networks, and the experimental results
are verified by four commonly used local community indicators and two proposed by this paper
seed-oriented community indicators. Table 2 displays related symbols and their explanations.

Table 2: Symbols and descriptions

Symbols Descriptions (for network G)

n The number of nodes
m The number of links
d̄ The mean degree
dmax The maximum degree of node
|C|min The minimum size of the community
|C|max The maximum size of the community
|C| The average size of the community
μ The mixing parameter
On The number of overlapping nodes
Om The average number of node overlaps
nC The number of communities

4.1 Measures of Node Influence
K-core centrality. This paper proposes a new measure, the k-core centrality, which is based on

the k-core decomposition algorithm [10], for node influence.

Ki =
∑

j ∈Ni

cj (8)

where Ki is the k-core centrality of node i, Ni is the neighbors of node i, and cj is the core value
of node j.

K-core. K-core [1,41] is a subgraph of network G in which the smallest degree of nodes is k.
In k-core decomposition algorithms [42–44], the k-core is defined as a subgraph of the network
where all nodes have a degree not less than k, and a (k + 1)-core must be a subgraph of the
k-core. If we say a node has a core value k, it means that the node belongs to a k-core so that the
node’s core value is the maximum value. In addition, when node A has a higher influence than
B, both of the core values and the k-core centrality of node A are higher than those of node B.

4.2 Simple Test of SOLCD
In order to illustrate the proposed algorithm, we make simple tests on the core members, the

hub members and the outlier members of Karate Club Network [45]. In the analysis, we use the
inner-links to represent the links within a community and the outer-links to represent the links
connecting different communities. It is worth noting that the tests do not mean to compare the
seed-oriented local communities detected by the proposed algorithm with the real communities in
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a global sense, but to show the regularities of the distribution of the nodes of seed-oriented local
communities. Fig. 4 shows the distribution of Karate Club Network, in which node 1 and node 34
represent the administrator and the instructor respectively.

Figure 4: The distribution of karate club network

4.2.1 Tests of the SOLCD on Core Members
From the real network of Karate Club Network, we choose node 1 and node 34 which own

the greatest number of inner-links as the core members. From Fig. 5, we can observe that most
of the inner-members of the seed-oriented communities are also the inner-members of the real
communities.

Figure 5: Tests of SOLCD on core members. (a) and (b) are the seed-oriented local communities
of nodes 1 and 34 generated by SOLCD. Nodes colored yellow are the must-members, nodes
colored blue are the may-members and nodes colored red are the seed nodes

4.2.2 Tests of the SOLCD on Hub Members
From the real network of Karate Club Network, we choose node 3 and node 9 which have

some outer-links as the hub members. From Fig. 6, we can see that the seed-oriented local
communities generated from hub members prefer to take the core members (nodes 1 and 34) as
may-members. This phenomenon is because hub members connect different communities and have
lower influence than core members. Besides that the communities generated from hub members
have smaller size than the communities generated from core members.
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Figure 6: Tests of SOLCD on hub members. (a) and (b) are the seed-oriented local communities
of nodes 3 and 9 generated by SOLCD. Nodes colored yellow are the must-members, nodes
colored blue are the may-members and nodes colored red are the seed nodes

4.2.3 Tests of the SOLCD on Outlier Members
From the real network of Karate Club Network, we choose node 12 and node 27 with a

few of inner-links as the outlier members. From Fig. 7, we can observe that the seed-oriented
local communities generated by the outlier members tend to have more may-members than must-
members. This is because outlier members are peripheral members of communities and have lower
influence value than that of the core members (nodes 1 and 34) and that of the hub members
(nodes 3 and 9).

Figure 7: Tests of SOLCD on outlier members. (a) and (b) are the seed-oriented local communities
of nodes 12 and 27 generated by SOLCD. Nodes colored yellow are the must-members, nodes
colored blue are the may-members and nodes colored red are the seed nodes

4.2.4 Characteristics of SOLCD
According to samples on core members, hub members and outlier members, we could

summarize some characteristics of SOLCD as follows:

• SOLCD is a self-adaptive algorithm without any help of pre-defined parameters. This
avoids the parameter-dependent problem.
• Regardless of the seed node’s attributes (core member, hub member or outlier member),
the detected seed-oriented local community always take the seed node as core member.
This solves the seed-deviation problem.
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4.3 Evaluation Criteria
Two common used community detection algorithm evaluation criteria are adopted in this

paper to verify the performance of SOLCD: the Normalized Mutual Information [46] (NMI) and
F-score [47].

4.3.1 Normalized Mutual Information
Danon et al. [46] used information entropy as the measurement of the similarity between real-

world communities and the resulting communities, which is named normal mutual information
(NMI). The basis of NMI is a confusion matrix N in which the rows represent the information
of real-world communities and columns represent the information of the resulting communities.
That is, the intersection of real-world communities and resulting communities are represented by
element Nij of matrix N, which denotes the numbers of nodes that exist in both communities.
NMI [46] is defined as follows:

NMI(CA,CB)=
−2

∑|CA|
i=1

∑|CB|
j=1 Nijlog(NijN/Ni.N.j)

∑|CA|
i=1 Ni.log(Ni./N)

∑|CB|
j=1 N.j log(N.j/N)

(9)

where |CA| represents the number of real-world communities and |CB| represents the number of
resulting communities. Ni. and N.j denote the sums of the elements in Row i and Column j,
respectively.

NMI is an evaluation index commonly used to assess the community division quality. The
better community division quality, the higher the value of NMI. The maximum value of NMI is
1 when the resulting community is the same as the real-world community.

4.3.2 F-Score
F-score [47] is widely used in classification methods to evaluate the quality of the model. The

formula of F-score is as follows:

F = 2× Precision × Recall
Precision+Recall

(10)

Recall= CR ∩CD
CG

(11)

Precision= CR ∩CD
CD

(12)

where CR represents the nodes of real-world communities and CD represents the nodes of detected
communities.

Recall is the ratio of the number of correctly found nodes to the number of nodes in the real-
world community. Precision is the ratio of the number of correctly found nodes to the number of
nodes in detected community. F-score is the weighted harmonic average of Recall and Precision.

4.3.3 LCE
In this paper, we propose a local community effectiveness index (LCE) to measure the quality

of seed-oriented local communities. High-quality seed-oriented local communities should satisfy
the condition that the seed node is the center of the detected community. In other words, the
sum of the shortest path lengths from the seed node to each node of the seed-oriented local
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community should be smaller than that from other nodes in the rest of the community. LCE is
defined as follows:

LCEseed = 1, if ∀k ∈Cl,
∑

i ∈Cl
l iseed ≤

∑

i ∈Cl
l ik (13)

LCEseed = 0, if ∀k ∈Cl,
∑

i ∈Cl
l iseed >

∑

i ∈Cl
l ik (14)

LCE=
∑

i ∈Cl LCEseed
|Cl|

(15)

where LCEseed denotes LCE value of the seed node seed-oriented local community; Cl denotes
the detected local community, and l ik denotes the length of the shortest path from node k to node
i. We define LCE =1 when the sum of the shortest path lengths from the seed node to the other
nodes among all the nodes of the community is the maximum; otherwise, LCEseed = 0.

4.3.4 LCU
This paper proposes a local community uniqueness index (LCU) to estimate the uniqueness

of seed-oriented local communities. A high quality seed-oriented local community should satisfy
the condition of having a unique distribution of nodes. LCU is defined as follows:

LCU = |Cdistintct |
|Cvalid |

(16)

where |Cdistintct| denotes the number of distinct valid local communities, and |Cvalid | denotes the
number of all valid local communities.

4.4 Datasets
4.4.1 Artificial Networks

This paper used Lancichinetti et al. [48] (LFR) benchmark networks to generate various types
of artificial networks to evaluate the performance of the proposed algorithm. The LFR benchmark
network is widely used in the research of complex networks to generate artificial networks that
have the same properties as real-world networks. The significance of the parameters affecting the
properties of the generated artificial network is as follows. The mixing parameter μ determines the
difficulty of detecting the communities for the algorithm. The higher the value of μ is, the harder
it is to detect the community structure. |C|min and |C|max determine the maximum and minimum
size of the communities within the artificial network, respectively; d̄ determines the mean degree
of the nodes within the network and dmax determines the maximum degree of the nodes within
the network; and On and Om determine the overlapping degree of communities in the network.
On denotes the number of overlapping nodes between communities and Om denotes the number
of overlapping communities of overlapping nodes.

In order to generate different types of artificial networks, we set the parameters of the
LFR benchmark network as displayed in Table 3, where the expression [a : b : c] represents the
value of parameter value ranges from a to c with a spanning of b. As shown in Table 3, we
generate artificial networks in three groups of parameters: LFR-μ, LFR-αsize and LFR-αdegree.
These three parameters are used to test the performance of the proposed algorithm in community
structure identification, community diversity and node diversity. In order to avoid the influence
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of the randomness of the generated artificial networks, we generate 10 artificial networks for each
parameter and take the average value as the experimental results.

Table 3: The parameter configuration for LFR benchmark network

Network n d̄ dmax |C|min |C|max μ On Om

LFR-μ 1000 5 25 10 50 [0.1:0.1:0.8] 0 0
LFR-αsize 1000 5 25 5× [1:1:5] 50× [1:1:5] 0.2 0 0
LFR-αdegree 1000 [5:1:15] 5× [5:1:15] 10 50 0.2 0 0

4.4.2 Real-World Networks
This paper used 6 real-world networks to test the performance of the proposed algorithm.

The characteristics of the real-world networks are listed in Table 4. By observing the relationship
between 34 members of a karate club at an American university, Zachary et al. proposed the
karate club network [45] in which nodes represent the members of the club and the links between
nodes represent the relationships between nodes. By observing the habits of 62 bottlenose dolphins
living in New Zealand, Lusseau et al. [49] found that the communication of these dolphins
showed a specific pattern and proposed the dolphin network, in which each node represents a
bottlenose dolphin and the link between two dolphins represents that these two dolphins are in
frequent contact. The books network is a network of the purchasing records of political books on
Amazon [50]. In the network, the nodes represent political books and a link between two books
indicates that they are purchased together frequently. The football network is the records among
the college teams that participated in the 2000 American football season [51]. In the network, each
node represents a participating university and a link means that there was a match between two
colleges. The Amazon network is a network of purchasing records on Amazon [28]. The DBLP
network is a network of a scientific collaboration network where nodes denote authors and edges
denote that the connected authors have corporations [28]. In addition, in order to obtain more
detailed experimental results, we divide DBLP into 11 subnetworks according to the community
size. The characteristics of DBLP after processing are displayed in Table 5.

Table 4: The characteristics of real-world networks

Network n d̄ dmax |C|min |C|max μ On Om Reference

Karate 34 156 4.58 2 17.00 0.128 0 —– [45]
Dolphin 62 318 5.12 2 31.00 0.038 0 —– [51]
Football 115 1226 10.66 12 9.58 0.357 0 —– [50]
Books 105 440 8.38 3 35.0 0.159 0 —– [49]
Amazon 16716 97478 5.83 1163 15.16 0.005 867 2.06 [28]

4.5 Experimental Settings
We compared SOLCD to 6 state-of-the-art local community detection algorithms: RTLCD (a

robust two-stage local community detection algorithm) [16], Clauset et al. [36], LWP (Luo, Wang
and Promislow) [37], Chen et al. [38], LS (link similarity) [39] and LCD (local community detection
based on maximum cliques) [40].
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Table 5: The characteristics of DBLP sub-networks

Network (ID) |C| n m d̄ nc |C| μ On Om

DBLP(1) (0, 10] 24210 65650 5.42 3532 7.28 0.107 1311 2.11
DBLP(2) (10, 20] 14540 91872 6.31 1100 13.85 0.088 632 2.10
DBLP(3) (20, 30] 3240 21708 6.70 136 24.13 0.029 39 2.05
DBLP(4) (30, 40] 1338 10352 7.73 39 34.31 0.001 0 —
DBLP(5) (40, 50] 611 4204 6.88 14 43.64 0.000 0 —
DBLP(6) (50, 100] 583 3940 6.75 9 64.78 0.001 0 —
DBLP(7) (100, 200] 1492 9670 6.48 10 150.5 0.029 13 2.0
DBLP(8) (200, 300] 1341 6618 4.93 6 232.83 0.046 56 2.0
DBLP(9) (300, 400] 2133 9964 4.67 6 355.67 0.005 1 2.0
DBLP(10) (400, 500] 834 5670 6.79 2 417.0 0.004 0 —
DBLP(11) (500, 1000] 10705 70208 6.55 14 785.5 0.086 285 2.02

The RTLCD algorithm is a robust two-stage local community detection algorithm that detects
the core member of the target community to replace the seed node in the seed selection stage and
expands the community based on the relation strength in the community expansion stage [16]. The
Clauset algorithm extends the modularity [36] to the local community, and expands the community
by adding nodes that optimize the local community modularity �R [36]. The LWP algorithm
improves the local community modularity to the indegree divided by the outdegree and adds the
termination condition of the algorithm [37]. The Chen algorithm proposes a metric L=Lin/Lex
which is the internal relation divided by the external relation [38].

Based on the definition of NMI and F-score, the detected local community has a high value
of NMI and F-score is similar to the real community in a global sense. However, the goal of seed-
oriented local community detection is to detect a local community with the seed node as the core
member. In fact, some real-world networks have shown the power law distribution of the node
degree and the core member occupies only a small scale of the networks. Therefore, in the local
communities with a high NMI and F-score means the seed node cannot become the core member
in most cases which indicates that the seed-deviation problem occurs.

Based on the definitions of Precision and Recall, in a detected community with high Precision
and low Recall means most of the members of this detected community are also the members of
the real-world community in a global sense. It is common sense that most of the members of a
local community should be a subset of a global community. Therefore, high Precision and low
Recall means that an algorithm prefers to detect communities in a local sense rather than detect
communities in a global sense.

When the communities detected by the algorithm have high Precision and low Recall, which
means that the algorithm is more inclined to detect communities in the local sense rather than in
the global sense. When the detected communities have high precision and low recall, which means
that the algorithm is more inclined to detect communities in the local sense rather than in the
global sense. Based on the definition of LCE, the community results detected by an algorithm
have high LCE, which means that the unique local communities detected by the algorithm occupy
a higher proportion. Note that, we define a “seed-oriented” local community as a local community
in which the seed node must satisfy LCEseed=1 and have high LCE.
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The experiments are conducted on 6 real-world networks and 3 groups of LFR artificial
networks. Note that an algorithm running more than 24 h on a single dataset will be terminated.

4.6 Experimental Results on Real-World Networks
Table 6 lists the NMI, Recall, Precision, F-score, LCE, LCU and Time metrics of the proposed

algorithms and the other comparison algorithms on five real-world networks.

Table 6: The characteristics of the DBLP sub-networks

Network Criteria SOLCD RTLCD Clauset LWP Chen LS LCD

Karate

NMI 0.1658 1.0000 0.2992 0.5160 0.1552 0.1688 0.4093
Recall 0.3117 1.0000 0.5527 0.6912 0.2071 0.2339 0.6182
Precision 0.9172 1.0000 0.9088 0.8019 0.6345 0.5588 0.8449
F-Score 0.4261 1.0000 0.6474 0.7179 0.2949 0.3171 0.6918
LCE 0.97 0.06 0.21 0.12 0.50 0.21 0.07
LCU 1.00 0.06 0.21 0.18 0.29 0.21 0.15
Time (ms) 0 2 1 1 1 0 1

Dolphin

NMI 0.1191 0.4526 0.1857 0.2809 0.0959 0.0709 0.2616
Recall 0.2217 0.6399 0.3013 0.3696 0.1517 0.0980 0.3853
Precision 0.9346 0.9647 0.9694 0.5271 0.7043 0.4032 0.9546
F-Score 0.3351 0.7376 0.4287 0.4173 0.2364 0.1458 0.5086
LCE 0.92 0.06 0.35 0.08 0.35 0.21 0.12
LCU 1.00 0.06 0.34 0.21 0.34 0.18 0.16
Time (ms) 0 1 1 1 2 0 2

Football

NMI 0.4107 0.5146 0.5712 0.6023 0.5863 0.5714 0.5638
Recall 0.7660 0.9209 0.7133 0.6409 0.6665 0.5956 0.7280
Precision 0.5909 0.5568 0.6466 0.6257 0.6456 0.6461 0.6354
F-Score 0.6534 0.6639 0.6689 0.6301 0.6479 0.6180 0.6708
LCE 1.00 0.31 0.56 0.56 0.56 0.54 0.22
LCU 1.00 0.06 0.50 0.10 0.23 0.13 0.16
Time (ms) 0 6 3 0 5 0 3

Books

NMI 0.1110 0.4881 0.2687 0.2925 0.0905 0.0106 0.3594
Recall 0.2354 0.8681 0.4387 0.4710 0.1532 0.0195 0.6032
Precision 0.8162 0.7049 0.7656 0.4643 0.5720 0.1705 0.7554
F-Score 0.3234 0.7640 0.4982 0.4619 0.2219 0.0307 0.6210
LCE 0.91 0.02 0.18 0.05 0.27 0.13 0.06
LCU 1.00 0.02 0.34 0.09 0.30 0.10 0.09
Time (ms) 0 5 8 2 5 0 25

Amazon

NMI 0.4529 0.7254 0.5668 0.6261 0.4235 0.3918 0.6888
Recall 0.3954 0.6966 0.5192 0.5977 0.3772 0.3641 0.6551
Precision 0.9967 0.9914 0.9964 0.8783 0.8307 0.6776 0.9958
F-Score 0.4980 0.7570 0.6138 0.6531 0.4638 0.4122 0.7213
LCE 0.91 0.18 0.34 0.23 0.36 0.31 0.13
LCU 0.89 0.16 0.28 0.14 0.27 0.18 0.11
Time (ms) 2 0 1 0 1 0 4
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As shown in Table 6, we can observe that SOLCD achieves the highest LCE and LCU on
all the real-world networks, and the precision is also excellent among all algorithms, especially
on books and Amazon. Although NMI, Recall and F-score of these three indicators achieved by
SOLCD are not good enough, we know from the analysis in Section 4.5 that high-quality seed-
oriented local communities are mainly measured by LCE, LCU and precision of three indicators
rather than NMI, Recall and F-score. Therefore, SOLCD can achieve high-quality seed-oriented
local communities among real-world networks. RTLCD is excellent in NMI and F-Score on all the
real-world networks, which illustrates that RTLCD is an outstanding community quality-oriented
local community detection algorithm. However, RTLCD obtains the worst on LCE and LCU,
which proves that RTLCD is severely affected by the seed deviation problem. For the remaining
comparison algorithms, Clauset, Chen, LWP, LS and LCD, the performance on various indicators
is mediocre. That is, these algorithms have a certain ability to detect the seed-oriented local
community and community quality-oriented community, but they are not skilled at this.

As shown in Figs. 8a, 8d and 8f, the performance of all the algorithms worsens as the ID of
DBLP increases. As Table 6 shows, the average size of the community increases as the dataset ID
increases, which is the main factor that can affect the results of algorithms. The reason for this
is that the increase of community size makes the edge of community become more loose, which
makes algorithms more difficult to detect the community structure.

Figs. 8b, 8c and 8e show that SOLCD is stable and achieves the highest LCE, LCU and
Precision, which proves that SOLCD has the ability to detect high-quality seed-oriented local
communities. RTLCD is excellent in NMI and F-score, which illustrates that RTLCD is skilled at
detecting local communities in the global sense. However, RTLCD obtains the lowest LCE, which
indicates that it has a serious seed-deviation problem. Chen and LS have good LCE performance,
but they also have a seed-deviation problem to a certain extent.

The experimental results on real-world networks show that SOLCD has a great ability to
achieve high-quality seed-oriented local communities among real-world networks, which proves
that SOLCD solves the seed-deviation problem. RTLCD can achieve the communities with the
best community quality, but it is poor at detecting seed-oriented local communities. The rest of
the comparison algorithms are more or less affected by the seed deviation problem.

4.7 Experimental Results on Artificial Networks
4.7.1 Experimental Results on LFR-μ

LFR-μ aims to verify the ability of algorithms to reveal the community structure in response
to changes in the difficulty of revealing the community structure. Fig. 9 shows the performance
of all the algorithms on the LFR-μ artificial networks. We observe that all the algorithms show
a downward trend on the metrics of NMI, Recall, Precision and F-score. This phenomenon
occurs because the community structure becomes increasingly more difficult to find as the mixed
parameter μ increases.

Figs. 9a and 9f show that LCD and RTLCD perform excellently in NMI and F-score, which
shows that these algorithms are good at detecting local communities in the global sense. However,
as shown in Figs. 9d and 9e, LCD and RTLCD have high Recalls and low Precisions, which
illustrate that these two algorithms have serious seed deviation problem. Fig. 9b in which LCD
performs the worst in LCE, confirms this matter. In contrary, SOLCD and Chen have low Recalls
and high Precisions, which indicate that although these two algorithms find only a small number
of neighbors of the seed node, these neighbors are the correct members of the seed-oriented
community. Fig. 9b affirms this statement. LCE of Chen is obviously higher than those of other
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algorithms and SOLCD achieves the optimal LCE value. As shown in Fig. 9c, SOLCD achieves
the highest LCU.

Figure 8: (a–h) The performance of algorithms on DBLP

The experimental results show that SOLCD can achieve high-quality seed-oriented local
communities as the mixed parameter μ changes, which solves the seed deviation problem.

4.7.2 Experimental Results on LFR-αsize
LFR-αsize aims to verify the ability of algorithms to reveal the community structure when the

community size changes. Fig. 10 shows the performance of all the algorithms on the LFR-αsize
artificial networks. The scale values of the x-axis at the top and bottom of the graph represent
the maximum and minimum of community sizes, respectively. As shown in Fig. 10, the results
of most of the algorithms on the NMI, Recall, Precision and F-score worsen as the maximum
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and minimum community size increase. The reason is as follows. As the maximum and minimum
community size increase, the community structure becomes more diverse, and the boundary of the
community becomes fuzzy, which makes it difficult for the algorithms to identify the community
structure. Fig. 10c shows that SOLCD is stable at the highest LCU.

Figure 9: (a–h) The performance of algorithms on LFR-μ

As shown in the Figs. 10b and 10f, SOLCD is stable at a high level on LCE, LCU and Pre-
cision regardless of whether the parameter αsize changes, which proves that SOLCD can effectively
detect seed-oriented local communities. RTLCD and LCD are stable on the indices of NMI and
F-score, which illustrates that these two algorithms are robust to the parameter αsize in detecting
local communities in the global sense. However, RTLCD and LCD perform extremely poorly on
LCE and LCU, which indicates that these methods have serious seed deviation problems. Chen
and Clauset have good performance on the index of Precision, and moderate performance on LCE
and LCU, which shows that these two algorithms have certain capabilities to detect seed-oriented
local communities, but they still have seed deviation problems to a certain extent.
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Figure 10: (a–h) The performance of algorithms on LFR-αsize

The experiments prove that SOLCD is robust to changes in the community size. As the
the maximum and minimum community size increase, SOLCD can still achieve high-quality
seed-oriented local communities which indicates that SOLCD solves the seed deviation problem.

4.7.3 Experimental Results on LFR-αdegree
LFR-αdegree aims to test the performance of algorithms on revealing the community structure

as the node degree changes. Fig. 11 displays the results of all the algorithms on the LFR-αdegree
artificial networks. The scale values of the x-axis at the top and bottom of the graph represent
the maximum and mean degree of nodes in the network respectively. Figs. 11a and 11f show
that the performance of most algorithms on NMI and Precision improve slightly as the parameter
αdegree increases. The reason for this outcome is as follows. Increasing the parameter αdegree makes
the relationship between nodes become more diverse, so it can provide more node information
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which makes the algorithms easier to detect the community structure; however, it also increases the
complexity of the network, which prevents algorithms from exploring the community structure.
Therefore, the curves fluctuate.

Figure 11: (a–h) The performance of algorithms on LFR-αdegree

Fig. 11 shows that LCE of SOLCD decreases slightly as the parameter αdegree increases, but
it remains at a high level. The LCU and Precision of SOLCD are outstanding. LCD and LWP
perform excellently on the indices of NMI and F-score, which indicates that these two algorithms
have great abilities to detect the local communities in the global sense. Unfortunately, LCD and
LWP obtain poor LCEs which proves that they experience the seed deviation problem. Clauset
and Chen have good performance on Precision, and low LCUs and LCEs, which proves that these
two algorithms have certain seed-oriented local community detection abilities but they are not
considerable. RTLCD underperforms in all indicators except Recall, which illustrates that RTLCD
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can neither effectively detect local community in global sense nor detect seed-oriented communities
in a local sense when the network has a high degree.

The results indicate that SOLCD has some seed-deviation problems as the mean and maxi-
mum node degree increase, but it can achieve a high-quality seed-oriented local community.

4.7.4 Experimental Results for the Seed Dependence Problem
To perform a detailed analysis of the seed dependence problem, this paper lists the valid

communities generated by seed nodes with different node influences. We take the degree centrality
as the node influence measure. We divide all the nodes into ten parts according to their node
influence in descending order. Taking Fig. 12 as an example, Fig. 12a is the distribution of the
valid seed-oriented local communities detected by the algorithms on the DBLP1 network, and so
on. The abscissa represents the ranking of the seed’s node influence among the node influences
of all nodes in the network (e.g., ‘0.1’ represents that the seed’s node influence is in the top 10%
of all nodes, and ‘1’ represents that the bottom 10% of seed nodes). The ordinate represents the
proportion of valid seed-oriented local communities in all communities detected by the algorithms.
Table 7 displays the standard deviation (SD), arithmetic mean and coefficient of variation (CV ) of
the proportion of valid seed-oriented local communities detected by all the comparison algorithms
on a group of DBLP networks. The standard deviation is a measure of the dispersion of the
data distribution, which is used to measure the deviation of data from the arithmetic mean. The
smaller the standard deviation is, the less these values deviate from the mean, and vice versa.
When comparing the dispersion of the two groups of data, the measurement scales of the two
groups of data are too different to be compared directly using the standard deviation. At this time,
the coefficient of variation is required, which is the ratio of the standard deviation and arithmetic
mean.

Fig. 12 shows that the curve of SOLCD is stable at the top of Figs. 12a–12f but fluctuates in
Figs. 12g–12k. The above figures show that the nodes in the middle ranking have more difficulty
obtaining local communities with them as the core than the nodes at the top of the ranking and
the nodes at the bottom of the ranking. There are three reasons for this phenomenon. First, the
nodes at the bottom of the ranking have a small influence scope, so it is easy to obtain local
communities with these nodes as the core. Second, although the nodes at the top of the ranking
have a large influence scope, they can easily attract adjacent nodes to their community because of
their strong node influence, so it is easy to obtain local communities with these nodes as the core.
Third, for the nodes at the middle of the ranking, there may be multiple adjacent nodes with the
same node influence. Therefore, these nodes with the same node influence will be bypassed in the
community expansion process, which leads to the irregularity of the resulting community, and it
fails to form a local community with these nodes at the middle of the ranking as the core. From
the Table 7 shows that SOLCD has the highest mean on all DBLP networks and the lowest CV
except on DBLP(1), which illustrates that compared with the other algorithms, SOLCD is more
stable in terms of the seed dependence problem. However, the SD of SOLCD on some networks
is high, which indicates that SOLCD still has a certain seed dependence problem. The other six
comparison algorithms show sharp fluctuations in all subfigures of Fig. 12 and have small SD
only on individual network in Table 7 which proves that all these algorithms have serious seed
dependence problems.
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Figure 12: (a–l) The distribution of the valid seed-oriented local communities detected by the
algorithms on a group of DBLP networks
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Table 7: The standard deviation (SD), arithmetic mean and coefficient of variation (CV) of the
proportion of the valid seed-oriented local communities detected by all the comparison algorithms
on a group of DBLP networks

Network (ID) Criteria SOLCD RTLCD Clauset LWP Chen LS

DBLP(1)
SD 0.2271 0.2430 0.1121 0.2359 0.3429 0.2936
Mean 0.7990 0.4090 0.7470 0.6130 0.4430 0.4470
CV 0.2843 0.5942 0.1500 0.3848 0.7740 0.6569

DBLP(2)
SD 0.1310 0.3251 0.1564 0.1477 0.3008 0.1938
Mean 0.8490 0.4330 0.7590 0.5880 0.4780 0.5490
CV 0.1543 0.7508 0.2060 0.2512 0.6294 0.3530

DBLP(3)
SD 0.0914 0.3112 0.1567 0.2272 0.1767 0.2021
Mean 0.9040 0.2850 0.6860 0.4950 0.6980 0.5560
CV 0.1011 1.0918 0.2284 0.4589 0.2531 0.3635

DBLP(4)
SD 0.0667 0.1795 0.1654 0.2337 0.1851 0.2217
Mean 0.9250 0.2210 0.7680 0.4260 0.6760 0.5870
CV 0.0721 0.8124 0.2153 0.5486 0.2739 0.3777

DBLP(5)
SD 0.0967 0.2299 0.2294 0.2532 0.0974 0.2777
Mean 0.9080 0.1780 0.6350 0.6050 0.7270 0.5840
CV 0.1065 1.2914 0.3612 0.4185 0.1340 0.4754

DBLP(6)
SD 0.1387 0.1442 0.2172 0.2865 0.2680 0.2837
Mean 0.8760 0.1610 0.5860 0.4100 0.5240 0.4400
CV 0.1584 0.8955 0.3706 0.6988 0.5115 0.6447

DBLP(7)
SD 0.2060 0.1882 0.1953 0.1381 0.2977 0.2086
Mean 0.6850 0.1910 0.5100 0.3580 0.3940 0.3310
CV 0.3008 0.9855 0.3830 0.3859 0.7557 0.6301

DBLP(8)
SD 0.1931 0.2322 0.1512 0.2373 0.2578 0.1564
Mean 0.8210 0.2440 0.6460 0.5110 0.3020 0.3270
CV 0.2352 0.9518 0.2341 0.4644 0.8538 0.4781

DBLP(9)
SD 0.1724 0.2275 0.1717 0.2464 0.2101 0.0928
Mean 0.7480 0.2770 0.6500 0.5390 0.3030 0.3520
CV 0.2305 0.8215 0.2641 0.4571 0.6935 0.2637

DBLP(10)
SD 0.2150 0.2925 0.2213 0.2934 0.2098 0.2492
Mean 0.7800 0.2550 0.5910 0.5320 0.5500 0.4640
CV 0.2756 1.1471 0.3745 0.5516 0.3815 0.5370

DBLP(11)
SD 0.1820 0.1215 0.2020 0.1390 0.2277 0.1753
Mean 0.6330 0.1370 0.6420 0.4180 0.2070 0.1670
CV 0.2875 0.8867 0.3146 0.3326 1.1000 1.0498

Fig. 13 shows that the curves of each algorithm in different figures are basically consistent.
That is, the experimental results are not affected by parameter μ. The performance of SOLCD
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improves as the node ranking decreases, and the overall performance is excellent. Clauset has
perfect performance on the top node ranking, but its performance drops rapidly as the node
ranking decreases. The performance of LCD also drops rapidly as the node ranking decreases,
but the overall performance is not as good as that of Clauset. The curves of RTLCD, LWP and
LS are always at the bottom. The performance of Chen is very stable and does not fluctuate with
the node ranking. Table 8 shows that SOLCD achieves the highest mean and a slightly higher SD
and CV than Chen and LS. Chen achieves the lowest SD and CV, but its mean is much lower
than that of SOLCD. LS performs excellently on SD; however, its CV is high, and the mean
is low. The other algorithms have poor performance on the mean, SD or CV. The experimental
results show that SOLCD basically has no seed dependence problem on LFR-μ artificial networks.
Chen has no seed dependence problem, but its seed-oriented community detection ability is much
weaker than that of SOLCD. LS has no seed dependence problem, but has no ability to detect
the seed-oriented community. The other algorithms are seriously affected by seed dependence
problems.

Figure 13: (a–i) The distribution of the valid seed-oriented local communities detected by the
algorithms on a group of LFR-μ artificial networks
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Table 8: The standard deviation (SD), arithmetic mean and coefficient of variation (CV) of the
proportion of the valid seed-oriented local communities detected by all the comparison algorithms
on a group of LFR-μ artificial networks

Network Criteria SOLCD RTLCD Clauset LWP Chen LS LCD

LFR-μ=0.1
SD 0.0857 0.1157 0.1818 0.2576 0.0467 0.0792 0.2591
Mean 0.8287 0.1463 0.6632 0.3155 0.4828 0.2111 0.2910
CV 0.1034 0.7910 0.2741 0.8163 0.0968 0.3751 0.8906

LFR-μ=0.2
SD 0.1074 0.0910 0.1885 0.2405 0.0372 0.0795 0.2313
Mean 0.8157 0.1061 0.7058 0.3170 0.4745 0.1877 0.3040
CV 0.1316 0.8579 0.2671 0.7586 0.0783 0.4233 0.7608

LFR-μ=0.3
SD 0.1107 0.1055 0.2054 0.2027 0.0383 0.0670 0.2408
Mean 0.8055 0.0986 0.7548 0.2932 0.4735 0.1578 0.3347
CV 0.1374 1.0700 0.2721 0.6912 0.0809 0.4247 0.7193

LFR-μ=0.4
SD 0.1052 0.0915 0.2138 0.1403 0.0397 0.0280 0.2183
Mean 0.8103 0.0960 0.7722 0.2484 0.4588 0.1103 0.3566
CV 0.1299 0.9530 0.2768 0.5646 0.0866 0.2542 0.6122

LFR-μ=0.5
SD 0.1113 0.1046 0.2041 0.0791 0.0448 0.0335 0.2162
Mean 0.8079 0.0948 0.7826 0.2077 0.4559 0.0749 0.3564
CV 0.1378 1.1034 0.2608 0.3807 0.0982 0.4471 0.6065

LFR-μ=0.6
SD 0.1022 0.1066 0.2031 0.0593 0.0894 0.0364 0.1747
Mean 0.8211 0.0880 0.7759 0.1734 0.3881 0.0560 0.3363
CV 0.1245 1.2108 0.2618 0.3419 0.2304 0.6503 0.5196

LFR-μ=0.7
SD 0.0968 0.1181 0.2048 0.0454 0.1065 0.0362 0.1863
Mean 0.8384 0.0843 0.7744 0.1650 0.3676 0.0481 0.3287
CV 0.1155 1.4002 0.2645 0.2753 0.2899 0.7519 0.5666

LFR-μ=0.8
SD 0.1073 0.1138 0.2020 0.0482 0.1232 0.0348 0.1614
Mean 0.8500 0.0841 0.7733 0.1733 0.3535 0.0605 0.3255
CV 0.1262 1.3525 0.2612 0.2783 0.3484 0.5752 0.4959

Fig. 14 and Table 9 show that the curves and data are roughly the same as those in Fig. 13
and Table 8. Therefore, we can conclude that the performance of algorithms is similar on LFR-
αsize artificial networks and LFR-μ artificial networks.

Fig. 15 shows that SOLCD still performs stably, as in the above two groups of experiments.
That is, the performance of SOLCD does not change as the parameter αdegree increases. However,
the curves of the other algorithms decrease sharply as the parameter αdegree increases. The reason
for this phenomenon is as follows. Table 10 shows that SOLCD achieves the highest mean and
lowest CV on most networks and a slightly higher SD than RTLCD, Chen and LS. However, the
mean of RTLCD and LS is so low that the results have no reference value. Chen performs well
with a low parameter αdegree but worsens the parameter αdegree increases. The experimental results
show that SOLCD basically has no seed dependence problem on LFR-αdegree artificial networks.
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The other algorithms are seriously affected by seed dependence problems and are seriously affected
by parameter αdegree.

Figure 14: (a–f) The distribution of the valid seed-oriented local communities detected by the
algorithms on a group of LFR-αsize artificial networks

Table 9: The standard deviation (SD), arithmetic mean and coefficient of variation (CV) of the
proportion of the valid seed-oriented local communities detected by all the comparison algorithms
on a group of LFR-αsize artificial networks

Network Criteria SOLCD RTLCD Clauset LWP Chen LS LCD

LFR-αsize = (5, 50)
SD 0.1090 0.0947 0.1933 0.2166 0.0506 0.0389 0.2243
Mean 0.8009 0.1223 0.7007 0.3286 0.4803 0.1694 0.3108
CV 0.1361 0.7746 0.2759 0.6593 0.1053 0.2295 0.7219

LFR-αsize = (10, 100)
SD 0.1091 0.1369 0.1941 0.1814 0.0757 0.0385 0.2355
Mean 0.8054 0.1327 0.7340 0.2853 0.4265 0.1136 0.3216
CV 0.1354 1.0320 0.2644 0.6357 0.1776 0.3387 0.7324

LFR-αsize = (15, 150)
SD 0.1168 0.1149 0.1971 0.1139 0.0728 0.0233 0.2029
Mean 0.7884 0.0999 0.7500 0.2013 0.3943 0.0825 0.3126
CV 0.1481 1.1507 0.2628 0.5660 0.1846 0.2827 0.6491

LFR-αsize = (20, 200)
SD 0.1262 0.1159 0.2126 0.1340 0.0842 0.0283 0.2108
Mean 0.7818 0.1021 0.7753 0.2459 0.3892 0.0652 0.3221
CV 0.1615 1.1358 0.2741 0.5450 0.2164 0.4344 0.6546

LFR-αsize = (25, 250)
SD 0.1077 0.1062 0.2059 0.0917 0.0924 0.0326 0.1622
Mean 0.8007 0.0996 0.7741 0.2017 0.3738 0.0632 0.3026
CV 0.1345 1.0668 0.2660 0.4549 0.2472 0.5155 0.5362
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Figure 15: (a–l) The distribution of the valid seed-oriented local communities detected by the
algorithms on a group of LFR-αdegree artificial networks
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Table 10: The standard deviation (SD), arithmetic mean and coefficient of variation (CV) of the
proportion of the valid seed-oriented local communities detected by all the comparison algorithms
on a group of LFR-αdegree artificial networks

Network Criteria SOLCD RTLCD Clauset LWP Chen LS LCD

LFR-αdegree = (5, 25)
SD 0.0973 0.0952 0.1990 0.2312 0.0348 0.0551 0.2545
Mean 0.8202 0.1183 0.7218 0.3235 0.4832 0.1652 0.3165
CV 0.1187 0.8049 0.2757 0.7145 0.0721 0.3338 0.8040

LFR-αdegree = (6, 30)
SD 0.1092 0.0985 0.1863 0.2847 0.0534 0.0229 0.2746
Mean 0.7924 0.0961 0.5651 0.2540 0.3219 0.1018 0.2491
CV 0.1378 1.0255 0.3296 1.1209 0.1659 0.2250 1.1021

LFR-αdegree = (7, 35)
SD 0.0797 0.0789 0.1631 0.2619 0.0769 0.0299 0.2587
Mean 0.8136 0.0860 0.5711 0.2620 0.3268 0.0884 0.2559
CV 0.0980 0.9168 0.2856 0.9994 0.2351 0.3380 1.0108

LFR-αdegree = (8, 40)
SD 0.0816 0.0566 0.1491 0.2468 0.0675 0.0225 0.2244
Mean 0.8255 0.0621 0.5378 0.2531 0.3065 0.0938 0.2362
CV 0.0989 0.9109 0.2772 0.9750 0.2201 0.2395 0.9503

LFR-αdegree = (9, 45)
SD 0.0759 0.0592 0.1362 0.1912 0.1446 0.0240 0.1848
Mean 0.8233 0.0470 0.3871 0.2093 0.2764 0.0660 0.1978
CV 0.0922 1.2604 0.3519 0.9135 0.5232 0.3643 0.9342

LFR-αdegree = (10, 50)
SD 0.0974 0.0501 0.1294 0.1933 0.1871 0.0172 0.1779
Mean 0.8368 0.0473 0.3837 0.2023 0.3071 0.0588 0.1950
CV 0.1164 1.0583 0.3371 0.9558 0.6092 0.2929 0.9125

LFR-αdegree = (11, 55)
SD 0.0893 0.0547 0.1216 0.1747 0.2347 0.0266 0.1668
Mean 0.8651 0.0373 0.3577 0.2115 0.3656 0.0586 0.2011
CV 0.1032 1.4652 0.3400 0.8257 0.6419 0.4540 0.8293

LFR-αdegree = (12, 60)
SD 0.0935 0.0578 0.1280 0.1613 0.2800 0.0219 0.1604
Mean 0.8739 0.0305 0.3000 0.1903 0.3202 0.0376 0.1842
CV 0.1070 1.8917 0.4265 0.8479 0.8743 0.5833 0.8707

LFR-αdegree = (13, 65)
SD 0.1155 0.0406 0.1364 0.2049 0.2941 0.0137 0.2105
Mean 0.8258 0.0322 0.3654 0.1985 0.3229 0.0204 0.2013
CV 0.1399 1.2601 0.3733 1.0324 0.9108 0.6720 1.0459

LFR-αdegree = (14, 70)
SD 0.1173 0.0477 0.1272 0.1795 0.3237 0.0125 0.1784
Mean 0.8533 0.0298 0.3644 0.1801 0.3567 0.0103 0.1791
CV 0.1375 1.5979 0.3491 0.9969 0.9076 1.2125 0.9962

LFR-αdegree = (15, 75)
SD 0.1173 0.0373 0.1099 0.1561 0.2959 0.0093 0.1565
Mean 0.8617 0.0275 0.3011 0.1612 0.2975 0.0055 0.1607
CV 0.1361 1.3549 0.3649 0.9688 0.9945 1.6973 0.9737
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4.8 The Discussion of the Experimental Results
Based on the above experimental results, we can obtain the following conclusions. First,

the proposed algorithm has a great ability to detect high-quality seed-oriented local communi-
ties among real-world networks, which proves that SOLCD solves the seed-deviation problem.
Second, the seed-oriented local community detection ability of the proposed algorithm is not
affected by parameters μ, αsize and αdegree. Third, SD and CV are the proportions of valid seed-
oriented local communities detected by SOLCD on real-world networks and artificial networks,
respectively. SOLCD achieves a low SD and CV, which proves that SOLCD can detect high-
quality seed-oriented local communities with nodes with different node influences as seeds. This
illustrates that SOLCD solves seed dependence problems. In addition, SOLCD achieves excellent
results on groups of artificial networks with different parameters, which shows that SOLCD
has strong robustness. However, there are still problems to be solved. SOLCD still does not
completely resolve the seed dependence problem, especially when taking the nodes with medium
node influence as the seed.

5 Conclusion

Research on local community detection has achieved excellent achievements. However, there
are still some problems to be solved, such as the seed deviation problem, the seed dependence
problem and the parameter dependence problem. In order to solve these problems, this paper
proposes a seed-oriented local community detection algorithm, named SOLCD, based on influence
spreading. To solve the seed deviation problem and the seed dependence problem, we propose
a seed-oriented algorithm, which always takes the given node as the seed, and always takes the
seed as the influence core in the community expansion process. To solve the parameter depen-
dence problem, we propose a local community detection algorithm based on influence spreading
without any parameters. In addition, we propose a local community effectiveness index (LCE)
and a local community uniqueness index (LCE) to estimate the quality of seed-oriented local
communities. Efficient and rapid detection of seed-oriented communities can improve the accuracy
of personalized recommendation of goods and information and help public opinion analysis.

This paper compares SOLCD with six other state-of-the-art local community detection algo-
rithms on LFR artificial networks and real-world networks. The experimental results show that
SOLCD has a great ability to detect high-quality seed-oriented local communities among real-
world networks, which proves that SOLCD solves the seed deviation problem. Taking nodes with
different node influences as seeds, SOLCD can detect high-quality seed-oriented local communities,
which illustrates that SOLCD solves the seed dependence problem. In addition, SOLCD achieves
excellent results on groups of artificial networks with different parameters, which shows that
SOLCD has strong robustness.

However, there are still problems to be solved. SOLCD still has not completely resolved the
seed dependence problem, especially when taking the nodes with medium node influence as the
seed. We will focus on solving the seed dependence problem completely in future research.
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