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ABSTRACT

This paper deals with the fixed-time adaptive time-varying matrix projective synchronization (ATVMPS) of
different dimensional chaotic systems (DDCSs) with time delays and unknown parameters. Firstly, to estimate the
unknown parameters, adaptive parameter updated laws are designed. Secondly, to realize the fixed-time ATVMPS
of the time-delayed DDCSs, an adaptive delay-unrelated controller is designed, where time delays of chaotic
systems are known or unknown. Thirdly, some simple fixed-time ATVMPS criteria are deduced, and the rigorous
proof is provided by employing the inequality technique and Lyapunov theory. Furthermore, the settling time
of fixed-time synchronization (Fix-TS) is obtained, which depends only on controller parameters and system
parameters and is independent of the system’s initial states. Finally, simulation examples are presented to validate
the theoretical analysis.
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1 Introduction

Since Pecora et al. [1] introduced the concept of chaotic synchronization, chaotic synchro-
nization, as a significant dynamical behavior of chaotic systems, has gained much attention in
varieties of fields such as chemical reactions, image processing, secure communications, etc. So
far, various forms of synchronization in chaotic systems have been observed and developed,
including complete synchronization [2,3], lag synchronization [4,5], generalized synchronization
[6,7], function projective synchronization [8] and matrix projective synchronization [9,10].

It is well noticed that most of synchronization problems are studied between two identical
dimensional systems. However, in practice, the synchronization often occurs in different dimen-
sional systems, especially systems in biological or social science. For instance, the synchronization
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behavior between circulatory system and respiratory system [11] is a typical application. Thus,
it is essential and significant to study synchronization topic in DDCSs. Up to now, in regard
to synchronization of DDCSs, numerous remarkable results have been reported in [12–16]. For
example, the matrix projective synchronization was studied in [17,18], where the scaling matrices
can be time-varying or time-invariant. In addition, Cai et al. [14–16] studied finite-time generalized
synchronization of DDCSs.

It is universally acknowledged that time delays are frequently inevitable for a number of
nonlinear dynamics systems such as physical and biological systems, which can lead to oscillations
or instability in systems. So, it is difficult to reach the synchronization of TDCSs. Hence, the syn-
chronization of TDCSs has become a hot issue and lots of related literature have been published
[17–19]. Nevertheless, as far as the authors know, there exist few works for the synchronization
of DDCSs with time delays up to now. Moreover, it is observed that all above aforementioned
results of synchronization of TDCSs mainly consider that the parameters in master-slave systems
are known with certainty. However, in practical applications, due to the influence of environment
noises and limitations of equipment, it is often impossible to precisely acquire the system’s param-
eters in advance. These parametric uncertainties may cause performance degradation or instability
of real systems. Thus, it can be reasonable to investigate the chaotic systems’ synchronization
with unknown parameters via adaptive control strategies. Recently, some studies considered the
synchronization of identical dimensional chaotic systems only with uncertainty parameters or
only with time delays [15,20,21]. It means that previous studies did not deal with both the time
delays and the parametric uncertainties simultaneously for identical dimensional chaotic systems,
especially for DDCSs.

In practical applications, convergence rate is significantly important to reflect the synchroniza-
tion effectiveness, that is to say, for the purpose of meeting specific requirements, it is preferable
to realize synchronization in a limited time. Considering this point, various types of finite-time
control strategies have been developed [22–26]. But, the settling time of finite-time synchronization
(Fin-TS) relies on systems’ initial states which are required to be known in advance. In fact, in
real-word systems, the initial conditions are usually nonadjustable or even unavailable sometimes
which means the settling time is imprecise. To break through these limitations, the fixed-time
stabilization of nonlinear dynamic systems was proposed by [27]. From then, various literature
[28–31] have studied the Fix-TS. In contrast to Fin-TS, the Fix-TS contributes to a more precise
estimation of the settling time. In other words, the settling time can be estimated by some
constants which are simply relevant to the parameters design in control strategies, regardless
of initial states. For the sake of realizing the Fix-TS, some control methods have been put
forward, for example, sliding model control [32,33], impulsive control [34], pining control [35,36],
adaptive control [37], Kalman filter [38,39] and, etc. Among them, adaptive control has the
characteristics of fast and real-time response, which can adjust the controller parameters to realize
synchronization of systems. But, as far as authors know, these results are most for chaotic systems
with the same dimensions and there are few results for the Fin-TS or Fix-TS of DDCSs. In
[40], the authors first studied the generalized Fin-TS of DDCS. Then the Fin-TS of DDCS with
uncertain parameters was studied in [41]. Recently, in [42], the authors investigated global Fix-TS
of DDCSs. However, up to now, the fixed-time strategies are still not present in the research of
adaptive TVMPS of time-delayed DDCSs.

Inspired by the aforementioned concerns, the fixed-time ATVMPS of DDCSs with time
delays and unknown parameters is addressed in this paper. The main contributions can be found
as following: Firstly, compared with the synchronization problem of TDCSs with known and



CMES, 2022, vol.131, no.3 1453

certainty parameters [17–19], this paper designs the adaptive parameter updated laws to iden-
tify the unknown parameters. Secondly, on the basis of the time delays of chaotic systems
are unknown, an adaptive delay-unrelated controller is designed to realize fixed-time ATVMPS
of time-delayed DDCSs. Thirdly, some simple fixed-time ATVMPS criteria are deduced, and
the rigorous proof is given by utilizing inequality technique and Lyapunov theory. Fourthly,
compared with finte-time synchronization [40,41], the settling time for fixed-time ATVMPS is
obtained, which is regardless of initial states but only depends on controller parameters and
system parameters. Finally, simulations demonstrate the effectiveness of main results.

This paper is structured as following: The model description and preliminaries are briefly
presented in Section 2. Based on the unknown delays, a novel adaptive delay-unrelated controller
is designed in Section 3. Section 4 shows illustrative examples. Section 5 gives some conclusions
and future extension of this paper.

Notations: R
r represents the real space with dimension r. R

+ and R
r×l denote a space

composed of all nonnegative real numbers and r× l real matrices, respectively. Let ‖x‖ = (xT x)1/2,
for x ∈R

r. Let AT stand for matrix transpose of A. Let I denote the identity matrix.

2 Problem Formulation and Preliminaries

Consider the time-delayed DDCSs (1) and (2) with unknown parameters. The master system
is described by:

ẋ(t)= G(x(t))+ g1(x(t))ϕ1 + g2(x(t− τ1))ϕ2, (1)

in which x(t) ∈ R
r denotes the state vector; G : R

r → R
r, g1 : R

r → R
r×m1 , g2 : R

r → R
r×n1 are all

continuous functions; ϕ1 ∈ R
m1 and ϕ2 ∈ R

n1 are unknown parameters; τ1 > 0 is the delay of the
master system. Similarly the slave system is given by:

ẏ(t)= H(y(t))+ h1(y(t))ψ1 + h2(y(t− τ2))ψ2 + u(t), (2)

in which y(t) ∈ R
l denotes the state vector; H : R

l → R
l, h1 : R

l → R
l×m2 , h2 : R

l → R
l×n2 are

continuous functions; ψ1 ∈R
m2 and ψ2 ∈R

n2 are unknown parameters; τ2 > 0 is the delay of slave
system; u(t) ∈R

l denotes control input designed to achieve Fix-TPS of systems (1) and (2).

Remark 1. (1) and (2) are the same dimensions when r = l. The time delays τi(i = 1, 2) are
positive constants which can exist in the well-known chaotic and hyperchaotic systems, including
Chen system, Lorenz system, Lü system, hyperchaotic Lozenz system, etc. Then, the synchro-
nization problem for the delayed chaotic systems also has been studied [43–45]. However, up to
now, there is no paper to investigate the adaptive TVMP synchronization of TDCSs with different
dimensions within a fixed time.

Assumption 2.1. In this paper, we assume the dimensions r and l of master and slave systems
satisfy that l ≤ r.

To consider fixed-time ATVMPS of time-delayed DDCSs, some crucial lemmas and definitions
are described as follows:

Definition 2.1. [13] Suppose there is a time-varying full row rank scaling function matrix
M(t) = (mij(t)) ∈ R

l×r, then, the synchronization error between (1) and (2) is defined as ε(t) =
y(t) − M(t)x(t). If there is a function T : U\{0} → (0,+∞) in which U ⊂ R

l is an open
neighborhood of the origin satisfying ε0 = y(0)−M(0)x(0) ∈ U and

lim
t→T(ε0)

‖ε(t)‖ = lim
t→T(ε0)

‖y(t)−M(t)x(t)‖ = 0, (3)
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‖ε(t)‖ ≡0, t > T(ε0), (4)

the finite-time TVMPS for the (1) and (2) can be realized. If U = R
l, then the global finite-time

TVMPS for the systems (1) and (2) can be realized.

Remark 2. In Definition 2.1, it is not allowed that the element in each row of the time-varying
matrix M(t) cannot be equal to zero

εi(t)= yi − (0 0 · · · 0)

⎛
⎜⎜⎜⎜⎜⎝

x1

x2

...

xr

⎞
⎟⎟⎟⎟⎟⎠= yi,

then it is meaningless for chaotic system’s synchronization. Additionally, the time-varying matrix
M(t) is a full row rank which ensures the existence of solutions of (3).

Definition 2.2. [27] The master system (1) reaches fixed-time TVMPS with slave system (2),
if their error system ε(t) = y(t) − M(t)x(t) is globally finite-time stable, and there is a positive
constant Tmax so that the settling time T(ε0) satisfies T(ε0) � Tmax for any initial values.

Definition 2.3. Definite the vector functions φ1(x) and φ2(x) as:

φ1(x)=
{
‖x‖−1x, ifx 	= 0

0, ifx = 0
, φ2(x)=

{
‖x‖−2x, ifx 	= 0

0, ifx = 0
.

Lemma 2.1. [46] Let χ1,χ2, · · · ,χN ≥ 0. Then,

N∑
i=1

χ
p
i �

(
N∑

i=1

χi

)p

, when 0 < p � 1; and
N∑

i=1

χ
p
i � N1−p

(
N∑

i=1

χi

)p

, when p > 1.

Lemma 2.2. [27] Given the differential equation:

ẋ(t)= f (x, t), x(0)= x0, (5)

where f (t, x(t)) : R
+ × R

N → R
N is continuous. Let V(t) be a positive definite and continuous

radially unbounded function. If the following inequality for any solution x(t) of (5) holds,

V̇(x(t))≤−αVm(x(t))−βVn(x(t)),

with constants α,β > 0, 0 < m < 1 and n > 1, then Eq. (5) is fixed-time stable, and the settling time
holds

T(x)≤ Tmax := 1
α(1−m)

+ 1
β(n− 1)

.

3 Main Results

This part addresses the fixed-time TVMPS for time-delayed DDCSs (1) and (2) by designing
the adaptive controller. Then, an adaptive controller will be designed for slave system (2) based
on the unknown time delays. Furthermore, the rigorous proof will also be given. To get the
theoretical results, we suppose that the following conditions are satisfied:



CMES, 2022, vol.131, no.3 1455

Assumption 3.1. The unknown parameter vectors are norm bounded, i.e., ‖ϕ1‖ ≤ θϕ1 , ‖ϕ2‖ ≤
θϕ2 , ‖ψ1‖ ≤ θψ1 , ‖ψ2‖ ≤ θψ2 , where θϕ1 , θϕ2 , θψ1 , θψ2 are positive constants.

In this section, the synchronization problem of systems (1) and (2) with unknown time delays
τ1 and τ2 will be studied, where the proposed adaptive controller is independent of delays. In this
case, some assumptions shall be needed.

Assumption 3.2. Assume the matrix function M(t) is piecewise continuous, differentiable, and
norm bounded for any t, i.e., ‖M(t)‖ ≤ ρ, for any t, where ρ is a positive constant.

Assumption 3.3. The nonlinear continuous functions gi(·) and hi(·)(i = 1, 2) in systems (1) and
(2) satisfy gi(0)= fi(0)= 0 and Lipschitz conditions. That is to say, there exist constants Lgi , Lhi >

0 to ensure that following conditions hold:

‖gi(u1)− gi(v1)‖ ≤ Lgi‖u1 − v1‖, ‖hi(u2)− hi(v2)‖ ≤ Lhi‖u2 − v2‖,

where u1, v1 ∈R
r, u1 	= v1, u2, v2 ∈R

l, u2 	= v2.

Assumption 3.4. The state vector of master system (1) satisfies ‖x(t)‖ ≤ δ for any t > 0, where
δ is a positive constant.

Assumption 3.5. In this part, we suppose that the unknown delay τ2 is bounded, i.e., 0 ≤ τ2 ≤
τ̄ , τ̄ is known as a positive constant.

Remark 3. As is widely acknowledged, chaotic system has bounds, and its trajectory is always
confined to a certain region, that is, the domain of chaotic attraction. No matter how unstable
the interior of the chaotic system is, its orbit will not go out of the domain of chaotic attraction.
So, the Assumption 3.4 is reasonable.

To realize fixed-time ATVMPS of chaotic systems (1) and (2) with unknown delays, the
adaptive delay-unrelated controller is presented as follows:

u(t)=−H(y(t))− h1(y(t))ψ̂1 − h2(y(t))ψ̂2 + Ṁ(t)x(t)+M(t)G(x(t))

+M(t)g1(x(t))ϕ̂1 +M(t)g2(x(t))ϕ̂2 − σ1φ1(ε(t))− σ2ε(t)

− k1β1(t)− λ1�1φ2(ε(t))− η1

{∫ t

t−τ̄

εT(s)Qε(s)ds
} 1+μ1

2

φ2(ε(t))

− k2β2(t)− λ2�2φ2(ε(t))− η2

{∫ t

t−τ̄

εT(s)Qε(s)ds
} 1+μ2

2

φ2(ε(t)), (6)

where β1(t) = [sign(ε1(t))|ε1(t)|μ1 , . . . , sign(εl(t))|εl(t)|μ1 ]T ; β2(t) = [sign(ε1(t))|ε1(t)|μ2 , . . . , sign
(εl(t))|εl(t)|μ2 ]T ;σ1 = δLh2θψ2 + ρδLh2θψ2 + 2ρδLg2θϕ2 ;σ2 = 2Lh2θψ2 ; Q = Lh2θψ2I ;�1 = (‖ϕ̂1‖ +
θϕ1)

μ1+1 + (‖ϕ̂2‖ + θϕ2)
μ1+1 + (‖ψ̂1‖ + θψ1)

μ1+1 + (‖ψ̂2‖ + θψ2)
μ1+1;�2 = (‖ϕ̂1‖ + θϕ1)

μ2+1 +
(‖ϕ̂2‖ + θϕ2)

μ2+1 + (‖ψ̂1‖ + θψ1)
μ2+1 + (‖ψ̂2‖ + θψ2)

μ2+1; ϕ̂1, ϕ̂2, ψ̂1 and ψ̂2 denote the estimations
of unknown parameters ϕ1,ϕ2,ψ1 and ψ2, respectively; k1, k2, m1,λ1,λ2,η1, and η2 are arbitrary
positive constants; μ1,μ2 are constants satisfying 0 < μ1 < 1,μ2 > 1.
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To address the unknown parameters, the following updated laws are designed as:
˙̂ϕ1 =− (M(t)g1(x(t)))Tε(t), (7)

˙̂ϕ2 =− (M(t)g2(x(t)))Tε(t), (8)

˙̂
ψ1 = hT

1 (y(t))ε(t), (9)

˙̂
ψ2 = hT

2 (y(t))ε(t). (10)

Hence, the error system satisfies

ε̇(t)=ẏ(t)− Ṁ(t)x(t)−M(t)ẋ(t)

=− h1(y(t))ψ̃1 − h2(y(t))ψ̃2 +M(t)g1(x(t))ϕ̃1 +M(t)g2(x(t))ϕ̃2

+ (h2(y(t− τ2))− h2(y(t)))ψ2 +M(t)(g2(x(t))− g2(x(t− τ1)))ϕ2

− σ1φ1(ε(t))− k1β1(t)− λ1�1φ2(ε(t))− η1

{∫ t

t−τ̄

εT(s)Qε(s)ds
} 1+μ1

2

φ2(ε(t))

− σ2ε(t)− k2β2(t)− λ2�2φ2(ε(t))− η2

{∫ t

t−τ̄

εT(s)Qε(s)ds
} 1+μ2

2

φ2(ε(t)), (11)

where ϕ̃1 = ϕ̂1 −ϕ1, ϕ̃2 = ϕ̂2 −ϕ2, ψ̃1 = ψ̂1 −ψ1, ψ̃2 = ψ̂2 −ψ2.

Remark 4. The controller (6) and updated laws (7)–(10) do not contain delays τ1 and τ2. It
implies that the controller (6) is independent of delays of systems (1) and (2), but is only related
with τ̄ .

Theorem 3.6. Supposing Assumptions 2.1, 3.1 and 3.2–3.5 hold, the master-slave systems (1)–
(2) can reach fixed-time adaptive TVMP synchronization using the proposed controller (6) and
parameters updated laws (7)–(10). Moreover, the settling time is bounded

T2 ≤ 1
α1(1−μ1)

+ 1
α2(μ2 − 1)

, (12)

where α1 = min {k1,λ1,η1}, α2 = 3
1−μ2

2 min
{

k2l
1−μ2

2 ,λ24
1−μ2

2 ,η2

}
, l is the dimension of the slave

system, μ1 and μ2 are positive constants and satisfy Lemma 2.2.

Proof: Let the Lyapunov-Krasovskii function:

V(t)= ε(t)Tε(t)+ ϕ̃1
T ϕ̃1 + ϕ̃2

T ϕ̃2 + ψ̃1
T
ψ̃1 + ψ̃2

T
ψ̃2 +

∫ t

t−τ2

εT(s)Qε(s)ds. (13)

The derivative of V(t) along (7)–(11) obeys with

V̇(t)=2εT(t)ε̇(t)+ 2ϕ̃1
T ˙̂ϕ1 + 2ϕ̃2

T ˙̂ϕ2 + 2ψ̃1
T ˙̂
ψ1 + 2ψ̃2

T ˙̂
ψ2

+ εT(t)Qε(t)− εT (t− τ2)Qε(t− τ2)

≤ 2ε(t)T M(t)[g2(x(t))− g2(x(t− τ1))]ϕ2 + 2ε(t)T [h2(y(t− τ2))− h2(y(t))]ψ2
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− 2σ1‖ε(t)‖− 2σ2ε
T(t)ε(t)+ εT (t)Qε(t)− εT (t− τ2)Qε(t− τ2)

− 2k1

l∑
i=1

εi(t)sign(εi(t))|εi(t)|μ1 − η1

{∫ t

t−τ2

εT(s)Qε(s)ds
} 1+μ1

2 1
‖ε(t)‖2

l∑
i=1

ε2
i (t)

− 2k2

l∑
i=1

εi(t)sign(εi(t))|εi(t)|μ2 − η2

{∫ t

t−τ2

εT(s)Qε(s)ds
} 1+μ2

2 1
‖ε(t)‖2

l∑
i=1

ε2
i (t)

− 2λ1�1
1

‖ε(t)‖2

l∑
i=1

ε2
i (t)− 2λ2�2

1
‖ε(t)‖2

l∑
i=1

ε2
i (t). (14)

Based on Assumptions 3.1–3.4 as well as the fact 1
‖ε(t)‖2

l∑
i=1

ε2
i (t)= 1, we have

2ε(t)T M(t)[g2(x(t))− g2(x(t− τ1))]ϕ2

≤ 2‖ε(t)‖ ‖M(t)‖ ‖g2(x(t))− g2(x(t− τ1))‖‖ϕ2‖
≤ 2‖ε(t)‖ρθϕ2Lg2‖x(t)− x(t− τ1)‖
≤ 4ρδLg2θϕ2‖ε(t)‖, (15)

and

2ε(t)T [h2(y(t− τ2))− h2(y(t))]ψ2

≤ 2‖ε(t)‖ ‖h2(y(t− τ2))− h2(y(t))‖‖ψ2‖
≤ 2θψ2Lh2‖ε(t)‖ ‖y(t− τ2)− y(t)‖
= 2θψ2Lh2‖ε(t)‖‖ε(t− τ2)+M(t)x(t− τ2)− ε(t)−M(t)x(t)‖

≤ 2θψ2Lh2‖ε(t)‖‖ε(t− τ2)‖+ 2θψ2Lh2‖ε(t)‖2 + 2ρδLh2θψ2‖ε(t)‖+ 2δLh2θψ2‖ε(t)‖

≤ 3Lh2θψ2‖ε(t)‖2 +Lh2θψ2‖ε(t− τ2)‖2 + 2ρδLh2θψ2‖ε(t)‖+ 2δLh2θψ2‖ε(t)‖. (16)

Hence, (14) is rewritten as

V̇(t)≤(4ρδLg2θϕ2 + 2δLh2θψ2 + 2ρδLh2θψ2 − 2σ1)‖ε(t)‖+ (3Lh2θψ2 − 2σ2)‖ε(t)‖2

+Lh2θψ2‖ε(t− τ2)‖2 − 2k1

(
εT(t)ε(t)

) 1+μ1
2 − 2k2l

1−μ2
2

(
εT(t)ε(t)

) 1+μ2
2

− 2η1

{∫ t

t−τ2

εT(s)Qε(s)ds
} 1+μ1

2

− 2η2

{∫ t

t−τ2

εT(s)Qε(s)ds
} 1+μ2

2

− λ1�1 − λ2�2 + εT(t)Qε(t)− εT (t− τ2)Qε(t− τ2). (17)
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Substituting σ1,σ2 and Q into (17), there is

V̇(t)≤− 2k1

(
εT(t)ε(t)

) 1+μ1
2 − 2η1

{∫ t

t−τ2

εT(s)Qε(s)ds
} 1+μ1

2

− 2k2l
1−μ2

2

(
εT(t)ε(t)

) 1+μ2
2 − 2η2

{∫ t

t−τ2

εT(s)Qε(s)ds
} 1+μ2

2

− 2λ1(ϕ̃1
T ϕ̃1 + ϕ̃2

T ϕ̃2 + ψ̃1
T
ψ̃1 + ψ̃2

T
ψ̃2)

1+μ1
2

− 2λ24
1−μ2

2 (ϕ̃1
T ϕ̃1 + ϕ̃2

T ϕ̃2 + ψ̃1
T
ψ̃1 + ψ̃2

T
ψ̃2)

1+μ1
2

≤− 2α1V
1+μ1

2
2 (t)− 2α2V

1+μ2
2

2 (t), (18)

where α1 = min {k1,λ1,η1}, α2 = 3
1−μ2

2 min
{

k2l
1−μ2

2 ,λ24
1−μ2

2 ,η2

}
.

From Lemma 2.2, it follows V(t) ≡ 0 for t ≥ Tmax = 1
α1(1−μ1)

+ 1
α2(μ2−1)

. That is to say, the

global fixed-time stability of (11) can be guaranteed, then the fixed-time ATVMPS of systems (1)
and (2) is obtained with the aid of controller (6). Also, the settling time is estimated by (12).
Consequently, we finalize the derivation.

Remark 5. If we change the time-varying matrix M(t) = (mij(t)) ∈ R
l×r to a time-invariant

matrix which also satisfies all conditions of this paper. Then, all above results are still valid.

4 Simulation Results

To verify the correctness of Theorem 3.6, we here respectively select a four-dimensional
delayed hyperchaotic Lü system [47] and a three-dimensional delayed Lorenz system [48] as the
master and slave systems.

The delayed hyperchaotic Lü system can be described as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1(t)=−a1x1(t)+ a1x2(t),

ẋ2(t)= b1x2(t)− x1(t)x3(t)+ h1x4(t− τ1),

ẋ3(t)= x1(t)x2(t)− c1x3(t),

ẋ4(t)=−d1x1(t)− e1x2(t),

(19)

and the delayed Lorenz system is given⎧⎪⎨
⎪⎩

ẏ1(t)= a2(y2(t)− y1(t))+ h2y1(t− τ2)+ u1(t),

ẏ2(t)= b2y1(t)+ c2y2(t)− y1(t)y3(t)+ u2(t),

ẏ3(t)= y1(t)2 − d2y3(t)+ u3(t).

(20)
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In this simulation, the parameters of master-slave systems are selected as a1 = 35, b1 = 20,
c1 = 3, d1 = 2, e1 = 2, h1 = 1, a2 = 20, b2 = 14, c2 = 10.6, d2 = 2.8, h2 = 3 and the values of delays
are chosen as τ1 = 1, τ2 = 0.001. In this case, the systems (19) and (20) show the hyperchaotic and
chaotic behaviors. Let ϕ1 = [a1, b1, c1, d1, e1]T , ϕ2 = h1, ψ1 = [a2, b2, c2, d2]T , ψ2 = h2. After some
calculations, the norm bounds of parameters can be obtained as ‖ϕ1‖ ≤ θϕ1 = 42, ‖ϕ2‖ ≤ θϕ2 = 1.5,
‖ψ1‖ ≤ θψ1 = 27, ‖ψ2‖ ≤ θψ2 = 4.5. Suppose the scaling function matrix is chosen as following:

M(t)=

⎡
⎢⎢⎣

0.2e−t
√

5et 0.1 0 e−t
√

7et

0.01 e−t
√

5et 0.01e−t
√

3et 0

−2e−t
√

et − 0.5 −e−t
√

5et − 1 e−2t
√

2et −0.002

⎤
⎥⎥⎦ .

Let the initial states of (19) and (20) as x(0)= (−2, 3, 0.4, 0.2)T , y(0)= (20, 20, 20)T . The initial

values of adaptive laws (7)–(10) of unknown parameters are chosen as â1(0) = b̂1(0) = ĉ1(0) =
d̂1(0) = ê1(0) = 0, ĥ1(0) = 2.4, â2(0) = 1.2, b̂2(0) = 1.2, ĉ2(0) = 1, d̂2(0) = 1, ê2(0) = −2, ĥ2(0) = −3.
Required parameters are selected as τ̄ = 0.002, Lh2 = 1, Lg2 = 0.9, ρ = 12, δ = 5, k1 = 0.0001,
k2 = 0.0001, λ1 = 0.0001, λ2 = 10.6, η1 = 0.001, η2 = 0.001, μ1 = 1.15, μ2 = 0.25. Fig. 1 shows
that the synchronization errors of systems (19) and (20) can tend to zero in a fixed time which
validates Theorem 3.6. Figs. 2–5 show the evolutions of systems parameters, from which the
system parameters also tend to fixed constants in a fixed time.

Figure 1: The trajectories of the errors εk(t)(k =
1, 2, 3)

Figure 2: The evolutions of parameters â1, b̂1, ĉ1,
d̂1, ê1
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Figure 3: The evolutions of parameter ĥ1
Figure 4: The evolutions of parameters
â2, b̂2, ĉ2, d̂2

Figure 5: The evolutions of parameter ĥ2

5 Conclusions

In this work, the issue with regard to the fixed-time ATVMPS of time-delayed DDCSs with
unknown parameters has been investigated. To realize fixed-time ATVMPS between two noniden-
tical chaotic systems, one the basis of the unknown delays, an adaptive controller and parameters’
updated laws have been designed. Then, from the perspective of practice, the estimation of settling
time in Fix-TS can be determined in advance, which is distinct from Fin-TS. In future work, we
will consider the fixed-time ATVMPS of time-delayed DDCSs under pinning control. In addition,
we will also consider Fix-TS of neural networks and complex networks with different dimensions
as well as lag synchronization of the time-delayed DDCSs.
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