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ABSTRACT

By introducing the radial basis functions (RBFs) into the reproducing kernel particle method (RKPM), the cal-
culating accuracy and stability of the RKPM can be improved, and a novel meshfree method of the radial basis
RKPM (meshfree RRKPM) is proposed. Meanwhile, the meshfree RRKPM is applied to transient heat conduction
problems (THCP), and the corresponding equations of the meshfree RRKPM for the THCP are derived. The two-
point time difference scheme is selected to discretize the time of the THCP. Finally, the numerical results illustrate
the effectiveness of the meshfree RRKPM for the THCP.
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1 Introduction

Many practical engineering structures run in high temperature, such as steam turbines, high-
speed diesel engines and nuclear power plants, etc. The temperature field can change the properties
of material structure. Therefore, it is an important subject to study the THCP of the structure in
the condition of being heated [1,2].

Numerical simulation is an important analysis tool to research the THCP [3]. Finite element
method (FEM) is one of the main numerical simulation methods. Many complex and difficult
mechanical problems can be solved by the FEM, and valuable results can be derived [4,5].
However, due to the limitation of the correlation conditions between elements in the FEM, it
is difficult to deal with the discontinuous problem in practical engineering problems, such as
the formation of cracks and their mechanical behavior, the discontinuity in jointed rock mass
and the crack propagation with moving boundary [6,7]. In order to improve the restriction of
correlation conditions between elements, many novel methods have been proposed in recent years,
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such as meshfree (or meshless, element-free) method [8,9], numerical manifold method (NMM)
[10–12], boundary element method (BEM) [13,14], and numerical method based on least square
method [15–17], etc.

The meshfree approximating technique is adopted in the meshfree method, which makes the
approximating function free from the constraints of elements and greatly simplifies the analysis
and calculation of pretreatment and crack propagation. Meshfree method has attracted attention
in mechanics and practical engineering, and been widely used in the study of the THCP. At
present, many meshfree methods have been developed, such as smooth particle hydrodymics
(Abbreviation: SPH, proposed by Lucyt and Gingold in 1977) [18,19], element-free Galerkin
method (Abbreviation: EFGM, proposed by Belytschko in 1994) [20–22], meshfree local Petrov-
Galerkin method (Abbreviation: MLPG, proposed by Atluri in 1998) [23–26], reproducing kernel
particle method (Abbreviation: RKPM, proposed by Liu in 2005) [27–30], radial basis func-
tions method (Abbreviation: RBF, proposed by Žilinskas in 2010) [31,32], complex variable
meshfree manifold method (Abbreviation: CVMMM, proposed by Gao in 2010) [33], the finite
point method (Abbreviation: FPM, proposed by Tatari in 2011) [34,35], Hermit-type reproducing
kernel particle method (Abbreviation: Hermit-type RKPM, proposed by Ma in 2017) [36–39]
and boundary integral equation method (Abbreviation: BIE, proposed by Mantegh in 2010)
[40,41], etc.

Because of the advantages of simple form and fast calculation speed, the RKPM is one of the
meshfree methods which are widely applied and researched [42–44]. The RKPM is first proposed
based on the SPH and the integral reconstruction theory of functions. The RKPM solves the
boundary inconsistency, and eliminates the tensile instability of the SPH method. The method has
some advantages, such as variable time frequency characteristics and multi-resolution character-
istics. Therefore, the RKPM has been widely used in many practical engineering problems, such
as large deformation analysis problems, structural dynamics problems, micro-electromechanical
system analysis problems, nonlinear problem of hyperelastic rubber materials, high-speed impact
problems and so on [45–47].

However, different kernel functions have different effects on the calculating accuracy and
computational stability in the analysis of solving the THCP. In order to improve the calculating
accuracy and stability of the RKPM, the RBF is introduced into the RKPM, and the meshfree
RRKPM is proposed in this paper. Meanwhile, the meshfree RRKPM is applied to the THCP,
and the corresponding equations of the meshfree RRKPM for THCP are derived. The numerical
results illustrated the effectiveness of the meshfree RRKPM for the THCP.

2 Construction of the Approximating Function of Meshfree RRKPM

The approximating function uh(z) of Meshfree RRKPM can be written as a combination of
the RKPM constructed by n nodes in the local problem domain and the RBFs constructed by m
terms.

uh(z)=
n∑
j=1

Snj (z)cj+
m∑
i=1

Smi (z)ai, z= (x,y)T (1)

where cj and ai represent the undetermined coefficients, n represents the number of the local
influence domain, m represents the number of RBFs, Smi and Snj represent the RBFs and the

reproducing kernel function (RKF), respectively.
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The RBF Smi is the function of the distance ri from calculating point z to the node zi, ri =
||z− zi||

Smi (z)= (1−ri
δ

)6(3+ 18
ri
δ
+ 35

ri2

δ2
) (2)

with δ denoting the scaling parameter.

The RKF Snj can be expressed as

Snj (z)=C(z, zj)w(z−zj)Snj (zj)�Vj (3)

where Snj (zj) is the parameter of node zj, �Vj is the area or volume of domain of influence, w is

kernel function.

C(z, zj)= bT(z)p(z−zj) (4)

The coefficient matrix b(z) can be given by

b(z)= [ b1(z), b2(z), · · · , bn(z) ]T (5)

The polynomial basis function p(z−zj) is expressed as

pT(z−zj)= [ 1, x−xj, y−yj, (x−xj)2, (x−xj)(y−yj), (y−yj)2, · · · ] (6)

The Eq. (1) can be rewritten as the following form:

uh(z)=
n∑
j=1

Snj (z)cj +
m∑
i=1

Smi (z)ai =
M∑
I=1

SI (z)aI (z)= S(z)a(z) (M =m+ n) (7)

in which SI(z) is basis function, aI(z) is corresponding coefficient, given by

S(z)= [Sm1 (z), · · · , Smm(z), Sn1(z), · · · , Snn(z)] (8)

a(z)= [a1, · · · , am, c1, · · · , cn]T (9)

The approximating function uh(z) can be locally approximated in the neighborhood of
calculating point z

uh(z, z̄)=
M∑
I=1

SI (z̄)aI(z)= S(z̄)a(z) (10)

in which z̄ is point of the neighborhood in calculating point z.

The weighted least squares method is used to obtain approximating functions uh(z) accurately
in this paper. The weighted least squares function J is defined as

J =
N∑

K=1
w(z− zK)[uh(z, zK)− u(zK)]2

=
N∑

K=1
w(z− zK)

[
M∑
I=1

SI (zK)aI(z)− u(zK)

]2 (11)
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where w(z − zK) is weighted function in the domain of influence, zK(K = 1, 2, · · · , N) are the
nodes in the domain of influence.

The Eq. (11) can be rewritten as the following form:

J = (Sa− u)TW(z)(Sa− u) (12)

where

uT = (u1, u2, · · · , uN) (13)

S =

⎡
⎢⎢⎢⎣
S1(z1) S2(z1) · · · SM(z1)
S1(z2) S2(z2) · · · SM(z2)

...
...

. . .
...

S1(zN) S2(zN) · · · SM(zN)

⎤
⎥⎥⎥⎦ (14)

W(x)=

⎡
⎢⎢⎢⎣
w(z− z1) 0 · · · 0
0 w(z− z2) · · · 0
...

...
. . .

...
0 0 · · · w(z− zN)

⎤
⎥⎥⎥⎦ (15)

Let J take the minimum, that is

∂J
∂a

= 0 (16)

The following form can be obtained

A(z)a(z)=B(z)u (17)

where

A(z)= STW(z)S (18)

B(z)= STW(z) (19)

The Eq. (17) can be given as

a(z)=A−1(z)B(z)u (20)

Substituting Eq. (20) into Eq. (7), the approximating function uh(z) is obtained

uh(z)=�(z)u=
N∑

K=1

�K(z)uK (21)

in which shaped function �(z) is expressed as

�(z)= (�1(z), �2(z), · · · , �N(z))= ST (z)A−1(z)B(z) (22)
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3 Governing Equation of the THCP for Meshfree RRKPM

3.1 Fundamental Equations for the THCP
From the theory of transient heat conduction, the differential equation of THCP in

orthotropic plane can be expressed as

∂

∂x

(
kx

∂T(z, t)
∂x

)
+ ∂

∂y

(
ky

∂T(z, t)
∂y

)
+ qv = ρcp

∂T(z, t)
∂t

(23)

where T(z, t) represents transient temperature, t denotes transient heat transfer time, kx and
ky represent thermal conductivities of material in plane principal axes, ρ represents density of
material, cp represents constant pressure specific heat and qv is internal heat source intensity.

The material is assumed to be isotropic with kx = ky = k, Eq. (23) can be simplified as

k

(
∂2T(z, t)

∂x2
+ ∂2T(z, t)

∂y2

)
+ qv = ρcp

∂T(z, t)
∂t

(24)

or

∇2T(z, t)+ qv/k= (1/αT)∂T(z, t)/∂t (25)

in which αT = k/ρcp represents thermal diffusivity, ∇2 denotes Laplace operator.

∇2 = ∂2/∂x2 + ∂2/∂y2 (26)

Assuming no heat source, the Eq. (25) is rewritten as the Fourier equation:

∇2T = (1/αT)∂T(z, t)/∂t (27)

In order to obtain the unique solution of the THCP, boundary conditions and initial
conditions must be applied. There are three kinds of boundary conditions as follows:

(1) The first kind of boundary condition is that the temperature on the boundary is known,
and the formula is

T(z, t)|�1 = T̄(z, t) (28)

or

T(x,y, t)|�1 = f (x, y, t) (29)

in which �1 represents the boundary of first kind, T̄(z, t) represents known boundary tem-
perature (constant), f (x, y, t) represents known boundary temperature function which changes
with time.

(2) The second kind of boundary condition is that the heat flux density on the boundary
is known. Because the direction of the heat flux is the exterior normal direction of the
boundary, the formula is as following:

−(∂T(z, t)/∂n)|�2 = h̄ (30)

or

−(∂T(x,y, t)/∂n)|�2 = h(x, y, t) (31)
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where �2 represents the boundary of second kind of boundary condition, h̄ represents known heat
flux (constants), h(x, y, t) represents known heat flux function which changes with time.

(3) The third kind of boundary condition is that the convection or radiant heat transfer on
the boundary is known. For convection heat transfer conditions

−k(∂T(z, t)/∂n)|�3 = g(T(z, t)−Tq(z, t))|�3 (32)

where �3 represents the boundary of third kind of boundary conditions, T represents temperature
of fluid medium, g represents heat transfer coefficient.

For radiant heat transfer conditions, it can be written as

−k(∂T(z, t)∂n)|�3 = ε f σ0(T4(z, t)−T4
r (z, t))|�3 (33)

with ε representing blackness coefficient, f denoting shaped factor, σ0 being Stefan-Bolzman
constant and Tr(z, t) representing temperature of radiant source.

The initial condition is the known value of the temperature at the beginning of the heat
transfer process, and the formula is

T(z, t)|t=0 = 0 (34)

or

T(z, t)|t=0 =T0(x, y) (35)

From the heat conduction equation and boundary conditions, it can be seen that there is
only one partial differential equation (PDE) and only one temperature as an unknown variable,
therefore, the THCP is actually solving the PDE.

3.2 Integral Weak Form of the THCP

In a certain instantaneous state, T(z, t) and ∂T(z,t)
∂t can be considered as deterministic functions

of plane coordinates. The THCP can be transformed to the elliptic equation of boundary value
problem, and the formula is

�=
∫

�

[
T(z, t)

(
ρc

∂T(z, t)
∂t

− qv

)]
d�+

∫
�

[
1
2
k1

(
∂T(z, t)

∂x

)2

+ 1
2
k2

(
∂T(z, t)

∂y

)2
]
d�

+ ∫
�2
T(z, t) · q̄d�+ ∫

�3
h

(
T2(z, t)

2
−T(z, t) ·Tα(z, t)

)
d�

(36)

The field function, which makes the variational of the function � equal zero, is the solution
which satisfies the governing differential Eq. (23) and boundary condition of this problem.

Taking the first kind of boundary problem as an example, the temperature function T(z, t)
must satisfy the essential boundary condition (29), which is T(z, t)− T̄(z, t)= 0 on the boundary
�1, so the function � is conditional function. Introducing the penalty function method into the
essential boundary conditions (28)–(32), and another modified function �∗ can be constructed as

�∗ =�+ 1
2

∫
�1

(T(z, t)− T̄(z, t))T ·β · (T(z, t)− T̄(z, t))d� (37)
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with β representing penalty factor of generally 103∼105 in the THCP. After introducing essential
boundary conditions, the conditional stationary value problem of original function � transforms
into the unconditional stationary value problem of modified function �∗. The first variation of
the stationary condition for modified function �∗ equals zero.

δ�∗ = δ�+
∫

�1

δ(T(z, t)− T̄(z, t))T ·β · (T(z, t)− T̄(z, t))d� = 0 (38)

Substituting Eq. (36) into Eq. (38), the integral weak form of the THCP is

∫
�

δT ·ρc · ∂T
∂t
d�+ ∫

�
δ(LT)T k̂(LT)d�− ∫

�
δT · qvd�− ∫

�2
δT · h̄d�

− ∫
�3

δT · g(Tα −T)d�+ ∫
�1

δT ·β ·Td� − ∫
�1

δT ·β · T̄d� = 0
(39)

where

L(·)=

⎛
⎜⎜⎝

∂

∂x
∂

∂y

⎞
⎟⎟⎠ (·) (40)

k̂=
[
k1 0
0 k2

]
(41)

3.3 The Meshfree RRKPM for the THCP
The THCP is a function in space domain � and in time domain t, and these two domains

are not coupled. Therefore, the meshfree RRKPM and finite difference method (FDM) can be
used to solve the problem, that is, the THCP is solved by the meshfree RRKPM in space domain
and by the FDM in time domain. Firstly, the domain � is discretized into a finite number of
nodes, and then the temperature of any point in the domain at any time t is approximated by the
node temperature TI(t) in its influence domain.

T(t)=TI (zI , t) (42)

It should be noted that T(zI , t) of any field point z in the domain is a scalar at any time, so
the temperature can be given as

T(z,t)=
N∑
J=1

�J(z)TJ(z, t)=�(z) ·T(t) (43)

in which �(z) represents a shaped function vector, which is just a function in the space domain.

T = (T1(t), T2(t), · · · , TN(t))T (44)

and

∂T(z, t)
∂t

= ∂

∂t

N∑
J=1

�J(z) ·TJ(t)=
N∑
J=1

�J(z) · ∂TJ(t)
∂t

=�(z) · Ṫ (t) (45)
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Ṫ =
(

∂T1(t)
∂t

,
∂T2(t)

∂t
, · · · , ∂TN(t)

∂t

)T
(46)

LT(z, t)=
N∑
J=1

⎛
⎜⎝

∂

∂x
∂

∂y

⎞
⎟⎠ · [�J(z) ·TJ (t)]=

N∑
J=1

BJ(z) ·TJ(t)=B(z) ·T (t) (47)

with

B(z)= (B1(z), B2(z), · · · , BN(z)) (48)

BJ(z)=

⎛
⎜⎝

∂

∂x
∂

∂y

⎞
⎟⎠ ·�J(z)=

[
�J,x(z)
�J,y(z)

]
(49)

Substituting Eqs. (43), (45) and (47) into Eq. (39), the following form can be obtained:∫
�

δ[�(z)T]T ·ρc · [�(z)Ṫ]d�+ ∫
�

δ(B(z)T)T k̂(B(z)T)d�− ∫
�

δ[�(z)T]T · qvd�

− ∫
�2

δ[�(z)T]T · h̄d� − ∫
�3

δ[�(z)T]T · g ·Tαd�+ ∫
�3

δ[�(z)T]T · g · [�(z)T]d�

+ ∫
�1

δ[�(z)T]T ·β · [�(z)T]d�− ∫
�1

δ[�(z)T]T ·β · T̄d� = 0

(50)

In order to solve the discrete system equations, the integral Eq. (50) is discussed separately
below.

The first term of Eq. (50) is∫
�

δ[�(z)T]T ·ρc · [�(z)Ṫ]d�= δTT
[∫

�

�T (z) ·ρc ·�(z)d�

]
· Ṫ = δTT ·C · Ṫ (51)

where C represents heat capacity matrix, and can be expressed as

C =

⎡
⎢⎢⎢⎣
C11 C12 · · · C1Nt

C21 C22 · · · C2Nt
...

...
. . .

...
CNt1 CNt2 · · · CNtNt

⎤
⎥⎥⎥⎦ (52)

CIJ =
∫

�

�T
I (z) ·ρc ·�J(z)d� (53)

The second term of Eq. (50) is∫
�

δ(B(z)T)T k̂(B(z)T)d�= δTT
[∫

�

BT (z) · k̂ ·B(z)d�

]
·T = δTT ·K ·T (54)
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where K represents heat conduction matrix

K =

⎡
⎢⎢⎢⎣
K11 K12 · · · K1Nt

K21 K22 · · · K2Nt
...

...
. . .

...
KNt1 KNt2 · · · KNtNt

⎤
⎥⎥⎥⎦ (55)

KIJ =
∫

�

BI (z) · k̃IJ ·BJ(z)d� (56)

The third term of Eq. (50) is∫
�

δ[�(z)T]T · qvd�= δTT
∫

�

�T(z) · qvd�= δTT ·F(1) (57)

F(1) = (f (1)
1 , f (1)

2 , · · · , f (1)
Nt

)T (58)

f (1)
I =

∫
�

�I
T(z) · qvd� (59)

The fourth term of Eq. (50) is∫
�2

δ[�(z)T]T · h̄d� = δTT
∫

�2

�̃
T
(z) · h̄d� = δTT ·F(2) (60)

F(2) = (f (2)
1 , f (2)

2 , · · · , f (2)
Nt

)T (61)

f (2)
I =

∫
�2

�I
T (z) · h̄d� (62)

The fifth term of Eq. (50) is∫
�3

δ[�(z)T]T · g ·Tβd� = δTT
∫

�3

�T(z) · g ·Tβd� = δTT ·F(3) (63)

F(3) = (f (3)
1 , f (3)

2 , · · · , f (3)
Nt

)T (64)

f (3)
I =

∫
�3

�I
T (z) · g ·Tβd� (65)

where F(1), F(2) and F(3) represent thermal load vectors known as heat source, given heat flow
and heat exchange, respectively.

The sixth term of Eq. (50) is∫
�3

δ[�(z)T]T · g · [�(z)T]d� = δTT
∫

�3

�T(z) · g ·�(z)d� ·T = δTT ·G ·T (66)
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where

G =

⎡
⎢⎢⎢⎣
G11 G12 · · · G1Nt

G21 G22 · · · G2Nt
...

...
. . .

...
GNt1 GNt2 · · · GNtNt

⎤
⎥⎥⎥⎦ (67)

GIJ =
∫

�3

�I (z) · g ·�J(z)d� (68)

The seventh term of Eq. (50) is∫
�1

δ[�(z)T]T ·β · [�(z)T]d� = δTT
∫

�1

�T(z) ·β ·�(z)d� ·T = δTT ·Kβ ·T (69)

where

Kβ =

⎡
⎢⎢⎢⎢⎣
K

β

11 Kβ

12 · · · Kβ

1Nt

K
β

21 K
β

22 · · · Kβ

2Nt
...

...
. . .

...
Kβ

Nt1
Kβ

Nt2
· · · Kβ

NtNt

⎤
⎥⎥⎥⎥⎦ (70)

Kβ
IJ
=
∫

�1

�I(z) ·β ·�J(z)d� (71)

The eighth term of Eq. (50) is∫
�1

δ[�(z)T]T ·β · T̄d� = δTT
∫

�1

�T(z) ·β · T̄d� = δTT ·Fβ (72)

where

Fβ = (f β

1 , f
β

2 , · · · , f β
Nt

)T (73)

f β
I =

∫
�1

�I
T (z) ·β · T̄d� (74)

Substituting Eqs. (51), (54), (57), (60), (63), (66), (69) and (72) into Eq. (50), and the
following form can be given:

δTT(CṪ+KT +GT+KβT−F(1) −F(2) −F(3) −Fβ)= 0 (75)

From the arbitrariness of δTT , the final ordinary differential equations (ODE) can be given
as

CṪ+ K̂T − F̂ = 0 (76)

where

K̂ =K +H +Kβ (77)
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F̂ = F(1) +F(2) +F(3) +Fβ (78)

The PDE problems of the THCP have been discretized into initial value problems of the
ODE with nodal temperature T(t) in space domain �.

The above is the meshfree RRKPM for the THCP.

4 Time Integral Scheme

Eq. (76) is the linear ODE with time t being independent variable. In order to discretize the
time domain of the ODE, the traditional two-point difference method is used in this paper.

In space domain �, the temperature vector T is a function of time t, and can be divided into
several elements. In any element, T(z, t) is given as

T(z, t)≈ T̄(z, t)=
∑

Ni(z)T i(t) (79)

where T i(t)=T(ti) represents nodal temperature vector at time ti. The interpolating function Ni(z)
takes as same form for each component of the vector T(z, t).

When the ODE only contains the first-order derivative of time t, the interpolate function is
a linear polynomial, and the two-point first-order interpolation can be used.

For the time interval �t, T(z, t) can be obtained by interpolation of node values Tn(t) and
Tn+1(t) in an interval

T(z, t)=Nn(z)Tn(t)+Nn+1(z)Tn+1(t) (80)

The first-order derivative of T(z, t) is

Ṫ(z, t)= Ṅn(z)Tn(t)+ Ṅn+1(z)Tn+1(t) (81)

The interpolate function and the first-order derivative can be expressed by the local variable λ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ= t
�t

(0≤ λ≤ 1)

Nn = 1−λ, Ṅn=− 1
�t

Nn+1 = λ, Ṅn+1 = 1
�t

(82)

Using approximating interpolation of Eqs. (80) and (81), the Eq. (76) inevitably produces
residual in a time interval �t. A weighted residual expression is derived as∫ 1

0
w[C(ṄnTn+ Ṅn+1Tn+1)+ K̂(NnTn+Nn+1Tn+1)− F̂]dλ= 0 (83)

Substituting Eq. (82) into Eq. (83), the residual relation of two time intervals can be given
as(
K̂
∫ 1

0
wλdλ+C

∫ 1

0
w

1
�t

dλ

)
Tn+1+

(
K̂
∫ 1

0
w(1−λ)dλ−C

∫ 1

0
w

1
�t

dλ

)
Tn−

∫ 1

0
wF̂dλ= 0 (84)
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Eq. (84) can be seen as a general form applicable to any weighted function.(
C
�t

+ K̂ζ

)
Tn+1+

[
− C

�t
+ K̂(1− ζ )

]
Tn= F̄ (85)

F̄ is supposed to use the same interpolation as the unknown temperature function T(z, t).

F̄ = F̂n+1ζ + F̂n(1− ζ ) (86)

Substituting Eq. (86) into Eq. (85), the following form can be expressed(
C
�t

+ ζ K̂n+1

)
Tn+1 =

(
C
�t

− (1− ζ )K̂n

)
Tn+ ζ F̂n+1+ (1− ζ )F̂n (87)

here

ζ =
∫ 1
0 wλdλ∫ 1
0 wdλ

(88)

The above is the time difference scheme for the THCP.

5 Numerical Examples

5.1 Transient Temperature Field of the THCP in Rectangular Domain
The governing equation of the THCP in the rectangular domain is

∂T
∂t

− ∂2T
∂x2

− ∂2T
∂y2

= (1+ t2)T + (2π2− t2 − 2)e−t sin(πx) cos(πy), (x, y)∈ (0, 1) (89)

According to the boundary conditions, written as

T(x, y, t)|x=0 =T(x, y, t)|x=1 = 0 (90)

T(x, y, t)|y=0 =T(x, y, t)|y=1 = e−t sin(πx) (91)

and the initial condition, given by

T(x, y, t)|t=0 = sin(πx) cos(πy) (92)

The analytical solution of the THCP can be obtained as

T(x, y, t)= e−t sin(πx) cos(πy) (93)

As shown in Fig. 1, 11× 11 nodes are uniformly distributed in the rectangular THCP domain
�, and time interval �t = 0.001 s. The penalty factor is taken as α = 1.0× 108 and the scaling
parameter is taken as δ = 2.0. The regular quadrilateral background mesh is applied to the
governing equation of THCP, and 4× 4 Gauss integral scheme is used.

In order to discuss the influence of kernel functions on the calculation accuracy and stability,
the kernel function is taken as the following two forms:

w1(ri)=
{
1− 6r2i + 8r3i − 3r4i ri ≤ 1
0 ri > 1

(94)
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w2(ri)=
⎧⎨
⎩
2/3− 4r2i + 4r3i ri ≤ 1/2
4/3− 4ri+ 4r2i − 4r3i /3 1/2< ri ≤ 1
0 ri > 1

(95)

x

y

o

Figure 1: Distribution of nodes in rectangular domain for the THCP

In order to illustrate the validity of the proposed method, the temperature in x=0.5 and at
t=0.1 s is calculated by the analytical solution, RKPM and RRKPM, respectively. Fig. 2 gives
the comparison of the temperature between two methods using different kernel functions which
the kernel function of Eq. (94) is defined as the kernel function 1 and the kernel function of (95)
is defined as the kernel function 2. The relative error is defined as

erelative error =
|Tanalytical−Tnumerical|

|Tanalytical| (96)

where Tanalytical is the analytical solution and Tnumerical represents the numerical solution.
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Figure 2: The temperature of the THCP for the RRKPM and the RKPM in x= 0.5 and at t=
0.1 s
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Fig. 3 discusses the relative error for the RRKPM and the RKPM, and it can be found
that the maximum relative errors are 0.4518% and 0.4464% for the RRKPM, and 1.8054% and
1.2586% for the RKPM, respectively. The results illustrate that the RRKPM has better accuracy
and stability than that of the RKPM.
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Figure 3: The relative errors of the THCP for the RRKPM and the RKPM in x= 0.5 and at t=
0.1 s

Because the kernel function 1 has better accuracy than the kernel function 2, the kernel func-
tion 1 is used in the following analysis. Fig. 4 compares the temperatures between the analytical
solution and the RRKPM in x=0.5 and at t=0.1, 0.3, 0.5, 0.7, 0.9 s, and it can be found that
the solution of RRKPM agrees well with the analytical solution.
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Figure 4: The temperature of the THCP for the RRKPM and the RKPM at different time in x
=0.5

Fig. 5 discusses the temperature among the analytical solution, the RKPM and the RRKPM
in y= 0.7 and at t=0.1 s. Fig. 6 analyzes the relative errors of the RKPM and the RRKPM. The
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maximum relative errors are 0.4400% and 1.8012% for the RRKPM and the RKPM, respectively,
and it can be found that the RRKPM is in better agreement with the analytical solution.
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Figure 5: The temperature of the THCP for the RRKPM and the RKPM in y= 0.7 and at t=
0.1 s
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Figure 6: The relative errors between the RRKPM and the RKPM in y=0.7 and at t=0.1 s

Fig. 7 compares the temperature between the analytical solution and the RRKPM in y=0.7
and at t= 0.1, 0.3, 0.5, 0.7, 0.9 s. The maximum relative error is 0.0795% for the RRKPM, and
it can also be found that the RRKPM is consistent with the analytical solution.

The calculation results of the RRKPM are in better agreement with the analytical solutions,
which shows that the calculation accuracy of the RRKPM is higher than that of RKPM. When
different kernel functions are used for calculation, the calculated values of the RRKPM are
consistent, but the RKPM has a large deviation. Meanwhile, the numerical results also show that
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the calculating accuracy of the RRKPM is not affected by kernel function, and its stability is
better than that of RKPM.
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Figure 7: The temperature for the RRKPM and the RKPM in y=0.7 at different time

5.2 Transient Temperature Field of the THCP in a Semi-Circular Ring Plate
The governing equation of the THCP in semi-circular ring plate is

∂T(r, θ , t)
∂t

− ∂2T(r, θ , t)
∂r2

− ∂2T(r, θ , t)
∂θ2

=T(r, θ , t), r∈ [1, 2], θ ∈ [0, π ] (97)

Based on the boundary conditions

T(r, θ , t)|r=1 = sin θ · et (98)

T(r, θ , t)|r=2 = 0 (99)

T(r, θ , t)|θ=0 =T(r, θ , t)|θ=π = 0 (100)

and the initial condition

T(r, θ , t)|t=0 = 4
3

(
1
r
− r
4

)
sin θ (101)

The analytical solution of the THCP is written as

T(r, θ , t)= 4
3

(
1
r
− r

4

)
sin θ · et (102)

Fig. 8 is the node distribution in the THCP domain � of the semi-circular ring plate with time
interval �t = 0.001 s. The penalty factor is taken as α = 1.0× 108 and the scaling parameter is
taken as δ = 2.0.



CMES, 2022, vol.131, no.3 1809

Figure 8: Node distribution in the semi-circular ring plate

The temperature in θ =π /4 and at t=0.1 s is calculated by the analytical solution, the
RRKPM and the RKPM, respectively (shown as Fig. 9). In order to prove the effectiveness of the
RRKPM, Fig. 10 gives the relative errors of the RRKPM and the RKPM in θ =π /4 and at t=
0.1 s. It can be found from Fig. 10 that the maximum relative error is 0.4421% for the RRKPM,
and 1.7556% for the RKPM. The results illustrate that the RRKPM has a higher accuracy than
the RKPM.
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Figure 9: The temperature of the THCP for the RRKPM and the RKPM in θ =π /4 and at t=
0.1 s

Fig. 11 compares the temperatures between the analytical solution and the RRKPM in θ =
π /2 and at t= 0.1, 0.3, 0.5, 0.7, 0.9 s. The maximum relative error is 0.4256% for the RRKPM,
and it can be illustrated that the RRKPM is consistent with the analytical solution.

Fig. 12 discusses the temperature among the analytical solution, the RKPM and the RRKPM
in r=1.8 and at t=0.1 s. Fig. 13 analyzes the relative errors of the RRKPM and the RKPM.
The maximum relative error is 0.4512% for the RRKPM, and 1.8179% for the RKPM, so the
RRKPM agrees well with the analytical solution.

Fig. 14 discusses the temperature among the analytical solution, the RKPM and the RRKPM
in r=1.5 and at t=0.1, 0.3, 0.5, 0.7, 0.9 s. The maximum relative error is 0.4186% for the
RRKPM, and 1.7241% for the RKPM. It can be illustrated that the solution of RRKPM is
consistent with the analytical solution.
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Figure 10: The relative errors of the RRKPM and the RKPM for the THCP in θ =π /4 and at t
=0.1 s
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Figure 11: The temperature of the THCP for the RRKPM in θ =π /2 at different time
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Figure 12: The temperature of the THCP for the RRKPM and the RKPM in r=1.8 and at t=
0.1 s
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Figure 13: The relative errors of the THCP for the RRKPM and the RKPM
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Figure 14: The temperature of the THCP for the RRKPM and the RKPM in r=1.5 under
different time

From above calculations, it can be shown that the calculation accuracy of the meshfree
RRKPM is higher than that of the RKPM. When different kernel functions are used for cal-
culation, the calculated values of the meshfree RRKPM are consistent, but the RKPM has a
large deviation. So the numerical result of the meshfree RRKPM cannot be affected by the kernel
function, and its stability is better than that of the RKPM.

6 Conclusions

A novel meshfree analysis of the RRKPM is developed for the THCP in this paper. The
discrete governing equation of the THCP is established by the Galerkin weak form, and the
corresponding equations of the meshfree RRKPM for the THCP are derived. From several
examples of the THCP, it can be found that the meshfree analysis of the RRKPM has better
calculating accuracy and convergence than that of the RKPM for solving the THCP. Meanwhile,
the meshfree RRKPM can also be applied to many other interesting problems, such as complex
structure dynamics, crack propagation and fracture, etc. These problems need to be further
researched in the future work.
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