
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2022.018540

ARTICLE

Nonlinear Response of Tunnel Portal under Earthquake Waves
with Different Vibration Directions

Hongyun Jiao1, Mi Zhao1, Jingqi Huang2,*, Xu Zhao1,3 and Xiuli Du1

1Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing,

100124, China
2Beijing Key Laboratory of Urban Underground Space Engineering, School of Civil and Resource Engineering, University of Science

and Technology Beijing, Beijing, 100083, China
3Beijing Key Laboratory of Earthquake Engineering and Structural Retrofit, Beijing University of Technology, Beijing, 100124, China
*Corresponding Author: Jingqi Huang. Email: huangjingqi11@163.com

Received: 01 August 2021 Accepted: 22 November 2021

ABSTRACT

Tunnel portal sections often suffer serious damage in strong earthquake events. Earthquake waves may propagate
in different directions, producing various dynamic responses in the tunnel portal. Based on the Galongla tunnel,
which is located in a seismic region of China, three-dimensional seismic analysis is conducted to investigate the
dynamic response of a tunnel portal subjected to earthquake waves with different vibration directions. In order to
simulate the mechanic behavior of slope rock effectively, an elastoplastic damage model is adopted and applied to
ABAQUS software by a self-compiled usermaterial (UMAT) subroutine. Moreover, the seismic wave input method
for tunnel portal is established to realize the seismic input under vertically incident earthquake waves with different
vibration directions, e.g., S waves with a vibration direction perpendicular or parallel to the tunnel axis and Pwaves
with a vibration direction perpendicular to the tunnel axis. The numerical results indicate that the seismic response
and damagemechanisms of the tunnel portal section are related to the vibration direction of the earthquake waves.
For vertically incident S waves running perpendicular to the tunnel axis, the hoop tensile strain at the spandrel and
arch foot and the hoop shear strain at the vault and arch bottom are the main contributors to the plastic damage
of the tunnel. The strain is initially concentrated around the tunnel foot and spandrel, before shifting to the tunnel
vault and bottom farther away from the tunnel entrance. For vertically incident S waves running parallel to the
tunnel axis, very large hoop shear strain and plastic damage appear at the tunnel haunches. This strain first increases
and then decreases with distance from the tunnel entrance. For vertically incident P waves running perpendicular
to the tunnel axis, the maximum damage factor of the slope rock and the maximum plastic strain of the tunnel
are significantly lower than for S waves. Moreover, with increasing distance from the tunnel entrance, the plastic
damage to the tunnel lining rapidly decreases.

KEYWORDS

Tunnel portal; earthquake; dynamic numerical analysis; vibration direction; elastoplastic damage model;
seismic input method

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2022.018540


1290 CMES, 2022, vol.131, no.3

1 Introduction

The thousands of mountain tunnels that have recently been built in China play an important
role in local development. Such tunnels may pass through highly active seismic areas, especially
in Southwest China. Several strong earthquakes in recent decades, some mountain tunnel portals
suffered particularly serious damage to some mountain tunnel portals, which is just less critical
than that of the fault [1–4]. Slope instability, rock collapse and lining cracks are triggered by
strong earthquakes, introducing numerous challenges to the safe operation of these tunnels. Thus,
the tunnel portal is one of the weaker components of the tunnel structure in the event of an
earthquake [5,6].

There has been considerable research on the seismic damage suffered by tunnel portals, mainly
through model tests, numerical simulations, and in-situ investigations. Sun et al. [7] performed
model tests to investigate the seismic response of a tunnel portal, and analyzed the interface
interaction characteristics of the surrounding rock and the tunnel lining. To study the failure
mode of a tunnel portal under strong earthquakes, Zhao et al. [8] adopted a rigid box model
performed shaking table tests of the tunnel portal section. Xu et al. [9] conducted further shaking
table tests to study the seismic response of the tunnel portal under different seismic scenarios.
Compared with model tests, numerical simulations require less time and labor resources, and are
capable of simulating a larger range of environmental and boundary conditions. Wu et al. [10]
studied the damage mechanisms of a tunnel portal numerically, while Liu et al. [11] conducted
a numerical study of the seismic response of the tunnel portal at the Dianzhong water diversion
project. Importantly, Wang et al. [12] proved that the hydrodynamic pressure has a significant
adverse effect on the seismic capacity of the tunnel portal. Other excellent research has been
reported by Geni [13] and Yu et al. [14], Yu et al. [15] and so on. These preliminary works make
us have more knowledge of the seismic performance and failure mechanism of the tunnel portals.

Because of the smaller overburden depth, the tunnel portal has a seismic response that
is strongly affected by the slope around the structure. The slope rock is often severely weath-
ered, reducing its ability to restrain the portal structure compared with other tunnel parts that
are buried deeper underground [12]. Therefore, a precise and appropriate constitutive model is
essential in simulating the failure strength, plastic deformation, damage softening, and other
seismic mechanical behavior of slope rock. However, previous works have only considered heavily
simplified constitutive models, such as linear elastic models, plastic models based on the Mohr–
Coulomb criterion, and so on. Moreover, earthquake waves propagate through the ground in
different vibration directions. Although many researchers have studied the seismic response of
deep-buried tunnels under earthquake waves propagating in different vibration direction [16–19],
the seismic response and damage characteristics of tunnel portals under such conditions have not
been fully considered.

In this study, an elastoplastic damage model is integrated into the ABAQUS software through
a self-compiled user material (UMAT) subroutine, allowing the mechanical behavior of the slope
rock to be simulated. First, the accuracy of the model is verified. Based on the Galongla tun-
nel project, a dynamic time-history model is then constructed to simulate the seismic response.
A viscous-spring boundary is used to absorb the wave radiation. In addition, a wave input
method for the slope rock is established, and the applicability and accuracy of this method
are verified. Vertical incident seismic waves in different vibration directions are simulated by the
proposed method, and the response of the portal structure of Galongla tunnel is numerically
studied. Finally, the seismic response characteristics and damage mechanism of the tunnel portal
are discussed.
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2 Galongla Tunnel Project

Galongla tunnel is a critical part of the Zhamo highway in Tibet, the only highway leading
to Motuo County in China. the local geography is shown in Fig. 1a. The geological condition of
the tunnel is very complex. As shown in the geological profile in Fig. 1b, the rock mass along
the tunnel can be divided into Grades II, III, and IV according to the Chinese rock classification
code. The tunnel portal is loose Holocene deposits consisting of welded tuff, gravel, silt, and clay,
as shown in Fig. 1c. The cross-section of the Galongla tunnel is horseshoe shaped, as shown in
Fig. 2. The tunnel structure consists of rock bolts, a primary lining, a waterproof layer, and a
secondary lining, and was excavated and constructed by the New Austrian tunneling method.
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Figure 1: Sketch of Galongla tunnel: (a) satellite image around Galongla tunnel; (b) longitudinal
profile; and (c) portal section

Figure 2: Cross-section of Galongla tunnel portal

Galongla tunnel is located in the Himalayan fault zone, which is subjected to frequent geo-
logical activity, i.e., an earthquake-prone area. According to the seismic data issued by the China
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Earthquake Administration, the basic intensity degree is VIII. Therefore, the tunnel, especially the
tunnel portal, faces a serious earthquake risk. To investigate the seismic damage mechanics of
the tunnel portal part, the results of dynamic numerical analysis are described in the following
sections.

3 Elastoplastic Damage Model for Rocks and Realization with the ABAQUS Software

Based on the nonlinear unified strength criterion, Du et al. [20] established a triaxial elasto-
plastic damage model for rock mass. The plastic part of the model employs the nonlinear unified
strength criterion as the yield function in the effective stress space. The hardening law takes the
equivalent plastic shear strain as the hardening parameter, and considers the effect of mean stress
on the hardening rate. For the damage part, the evolution law is assumed to have an exponential
form so as to consider the degradation and softening behavior of the rock mass. In this study,
the constitutive model is implemented in the ABAQUS software through a self-compiled UMAT
subroutine to simulate the mechanical behavior of the rock mass [21].

3.1 Description of the Elastoplastic Damage Model
The following nonlinear unified strength criterion developed by Lu et al. [22] is adopted as

the yield function of the plastic part:

f (σ̄ij,κ)=
√
2
2

√
(σ̂ 1− σ̂ 2)

2+ (σ̂ 2− σ̂ 3)
2+ (σ̂ 3− σ̂ 1)

2− κMβ

σ̂ 1+ σ̂ 2+ σ̂ 3

3
(1)

where κ is the hardening variable; σ̂i and Mβ are the characteristic stress and the failure strength
ratio, respectively, which can be expressed as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
σ̂ i = pr

(
σ̄ i

pr

)β
Mβ = 3

(1+ sinφc)
β − (1− sinφc)

β

(1+ sinφc)
β + 2(1− sinφc)

β

(2)

where the reference stress pr takes a value of 1 MPa to give a dimensionless stress; β denotes the
parameter for converting the normal stress σ̄i to the characteristic stress σ̂i, which is constant for
a certain material; ϕc denotes the internal friction angle.

To describe the rock dilatancy effectively, a non-associated flow rule is adopted. The expression
for the plastic potential function is similar to the yield function, with the parameter Mβ replaced
by Mg, which is a function of the dilatancy angle ψ :

Mg = 3
(1+ sinψ)β − (1− sinψ)β

(1+ sinψc)
β + 2(1− sinψ)β

(3)

The hardening variable κ is a function of the equivalent plastic shear strain γ p, and has the
form

κ =
{∫

dκ if κ < 1

1 if κ ≥ 1
, dκ = 3(1− ao)

(
1− κ
1− ao

)2
3

Aγ
p+ σ0
σc/3+ σ0

dγ p (4)
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where ao is the initial hardening rate; σc and σo are the uniaxial compression strength and the
three-dimensional tensile strength, respectively; and Aγ is the plastic shear strain corresponding to
the hydrostatic pressure p, which has a value of σc/3. The equivalent plastic shear strain γ p can
be calculated as

γ p=
√
2
3
depijde

p
ij =

√
2
3

(
ε
p
ij −

1
3
ε
p
vδij

)(
ε
p
ij−

1
3
ε
p
vδij

)
(5)

where epij is the plastic deviatoric strain; εpij and ε
p
v denote the plastic strain tensor and the plastic

volume strain, respectively; δij is Kronecker’s delta.

The damage factor d is introduced to characterize the micro-defects in the surrounding rock
material and the development of its internal damage state. There are two main forms of the
damage factor, i.e., scalar damage variables and tensor damage variables. The damage variable in
scalar form describes the isotropic damage of a material, and is mainly used for the distribution
of spherical defects. It is considered that the damage degree of a material is the same in any
direction. However, the direction of crack propagation for rock materials often has a certain
directionality under the action of external load, and the influence of these cracks on the cross-
sectional area will be different in each direction. Given the anisotropy of rock damage, many
researchers use tensor damage variables to characterize the directionality of crack distribution and
propagation. In establishing a rock damage evolution equation, many scholars have established
models based on different damage internal variables [23–33]. Considering that the rock damage is
softened by the volume expansion caused by the development of internal micro-cracks, this paper
uses the volume strain as the internal variable of the evolution of damage. The specified damage
variable is positive in compression and negative in tension. In the damage part of the model, the
damage variable d is defined as

d = 1− exp(−b1εd) (6)

where b1 is a parameter controlling the slope of the softening curve; εd is the equivalent strain,
which can be written as

εd =
∫
ε̇d

ε̇d =

⎧⎪⎨
⎪⎩
0 if κ < 1

ε̇pv(
σ33+ |σ33|

pr
+ 1

)b2 if κ ≥ 1

ε̇pv =
3∑
i=1

〈−ε̇pi〉

(7)

where dεpv is the volumetric plastic strain rate; χ1 controls the rate of increase of εd ; b2 is a
constant that affects the value of χ1.

3.2 Relationship between the Stress and Strain
For the elastoplastic damage model, the increment in the Cauchy stress σij can be expressed

as the effective stress σ̄ij:

dσij = (1− d)dσ̄ij (8)
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The relationship between increments in the effective stress σ̄ij and the stain εij is

dσ̄ij =De
ijkldε

e
ij =De

ijkl(dεij− dεpij) (9)

where εeij and ε
p
ij denote the elastic strain and the plastic strain, respectively; De

ijkl is the elastic

stiffness matrix, which has the form

De
ijkl =

E
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(1+ v)(1− 2v)
δijδkl (10)

The plastic strain increment dεpij can be obtained by the following flow rule:

dεpij = dλ
∂g
∂σij

(11)

Substituting Eq. (11) into Eq. (5) yields
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The consistency condition then gives

df = ∂f
∂σij

dσ̄ij+ ∂f
∂γ p

dγ p= 0 (13)

Substituting Eq. (12) into Eq. (13), we obtain
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Combining Eqs. (9), (11), and (14), we find that

dλ=
∂f
∂σ̄ ij

De
ijkl

A+ ∂f
∂σ̄ ij

De
ijkl
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dεij (16)

Combining Eqs. (9), (11), and (16) gives, after some rearrangement, the stress–strain increment
relationship:
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The expressions for ∂f
∂γ p

, ∂f
∂σ̄ ij

, and ∂g
∂σ̄ ij

in Eqs. (15) and (17) are given in the Appendix.

3.3 Implementation in ABAQUS Software and Verification
Based on the derived relationship between the stress and strain, the elastoplastic damage

model is integrated into the ABAQUS software through a self-developed UMAT subroutine. To
verify the accuracy of the implemented model, a three-dimensional (3-D) solid unit cube model
measuring 1 m× 1 m× 1 m is built and discretized into a single grid using reduction integral
elements (C3D8R). The numerical results are compared with the results of conventional triaxial
experiments by Kawamoto et al. [34] and Lin et al. [35]. The constitutive model parameters of the
triaxial experiments performed by Kawamoto et al. [34] and Lin et al. [35] are listed in Table 1.

Table 1: Constitutive model parameters for the triaxial experiments performed by Kawamoto
et al. [34] and Lin et al. [35]

E/GPa σo/MPa υ β ϕc/o ψ/o A ao b1 b2

Lin et al. [35] 25.3 47.4 0.25 0.276 26.1 13.1 0.0015 0.8 7600 1.5
Kawamoto et al. [34] 51.6 24.7 0.25 0.243 46.9 23.5 0.002 0.9 1500 1.3

Fig. 3 compares the results obtained by the present model and those reported by Kawamoto
et al. [34] and Lin et al. [35]. From this figure, it is clear that the constitutive model accurately
simulates the whole process of rock deformation and damage under a complex stress state,
especially the strain softening and the changing characteristics of strength with respect to the
confining pressure.

Figure 3: Comparison between the present model and the triaxial experiments performed by
Kawamoto et al. [34] and Lin et al. [35]

4 Dynamic Finite Element Model

4.1 Geometry of the Computational Model
To investigate the seismic response of the Galongla tunnel portal, dynamic history simulations

were performed using the ABAQUS software. The 3-D finite element model and its dimensions
are shown in Fig. 4, in which the slope inclination is set to be 4:5 in height and length along
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the tunnel axial direction. The Mohr–Coulomb constitutive model was adopted for the nonlin-
ear behavior of the tunnel lining, with material parameters of density ρ =2500 kg/m3, Young’s
modulus E =30 GPa, Poisson’s ratio υ = 0.22, friction angle ϕ = 58.7◦, and cohesive stress
c=2.3 MPa. The rock medium was simulated by the elastoplastic damage model, implemented in
the ABAQUS software as described in Section 3, with material parameters of ρ = 2300 kg/m3,
E =0.87 GPa, υ = 0.42, β = 0.225, σo = 24.7 MPa, ϕc = 46.9, ψ = 23.5, A = 0.0018, ao = 0.9,
b1 =501, b2 =1.07.
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Figure 4: 3-D computational model of Galongla tunnel portal: (a) rock mass; (b) tunnel structure

In this study, the tunnel portal responses under three different earthquake incident waves are
investigated. The first case considers the incident waves to be plane P waves with a vibration
direction perpendicular to the tunnel axis. The second and third cases consider the earthquake
waves to be vertically incident S waves with vibration directions perpendicular and parallel to the
tunnel axis, respectively. The Kobe University earthquake records for rock strata were obtained
in similar geological conditions to those of the Galongla tunnel project site. The Kobe waves are
real seismic records with rich spectra, as shown in Fig. 5. They have been widely used to study
the seismic response of mountain tunnels through numerical simulations and experimental tests.
Therefore, the Kobe waves are selected as the input waves in this study.
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Figure 5: Acceleration time histories of the incident earthquake waves
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During the numerical analysis, a viscous-spring artificial boundary is employed to simulate
the radiation damping effect at the truncated boundary, as introduced in Section 4.2. The seismic
input method for the slope site considering different vibration directions is then described in
Section 4.3.

4.2 Viscous-Spring Artificial Boundary
In recent decades, many artificial boundaries have been developed which can be found in

the works of Lysmer et al. [36], Deeks et al. [37], Du et al. [38], and so on. The viscous-spring
boundary developed by Du et al. [38] is adopted in this study due to its simple form and high
accuracy. The boundary is realized by establishing springs and dampers in three directions, as
shown in Fig. 6a. At boundary node l of the 3-D finite element model, the parameters of the
springs and dashpots are⎧⎪⎨
⎪⎩
K3ln=

1
(1+ ar)

λ+ 2G
R

,C3ln=brρcp
K3ls=

1
(1+ ar)

G
R
,C3ls=brρcs

(18)

where the subscripts n and s denote the normal and tangential direction of the boundary plane,
respectively. The distance between the wave source and the artificial boundary is denoted by R;
λ, G, and ρ denote the Lamé constant, shear modulus, and mass density, respectively; cs is the
shear wave velocity in the medium, and cp is the compression wave velocity; ar and br denote the
modified coefficients, which have values of 0.8 and 1.1, respectively.

4.3 Seismic Input Method
Fig. 6a describes the incident conditions for the truncated region of the slope site. The

earthquake wave motions can be converted into equivalent nodal forces, which are applied at the
artificial boundary [39–41]. Together with the viscous-spring boundary developed by Du et al. [38],
the equivalent nodal forces at a given boundary node l can be obtained from Eqs. (19)–(21). The
specific forms are as follows.

For node l on the bottom boundary (y= 0), the equivalent nodal forces are⎧⎨
⎩

Fx=A3l(K3lsux+C3lsu̇x− σyx)
Fy=A3l(K3lnuy+C3lnu̇y− σyy)
Fz=A3l(K3lsuz+C3lsu̇z− σyz)

(19)

where Fx, Fy, and Fz are the equivalent nodal forces in the x, y, and z directions, respectively;
ux, uy, and uz are the free field displacements of boundary node l in the x, y, and z directions,
respectively; u̇x, u̇y, and u̇z are the free field velocities; σyy, σyx, and σyz are the free field stresses;
A3l is a quarter of the total area of all boundary elements containing boundary node l, as shown
in Fig. 6a, where A3l= (A1 +A2+A3+A4)/4.

For node l on the left boundary (x=0) and the right boundary (x= Lx), the equivalent nodal
forces are⎧⎨
⎩

Fx=A3l(K3lnux+C3lnu̇x+δσxx)
Fy=A3l(K3lsuy+C3lsu̇y+δσxy)
Fz=A3l(K3lsuz+C3lsu̇z+δσzx)

(20)
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where δ is a boundary-dependent parameter, i.e., δ = −1 for the left boundary and δ = 1 for
the right boundary; σxx, σxy, and σxz are the free field stresses on the left and right boundaries,
respectively.

For node l on the back boundary (z=0) and the front boundary (z = Lz), the equivalent
nodal forces are⎧⎨
⎩

Fx=A3l(K3lsux+C3lsu̇x+δσzx)
Fy=A3l(K3lsuy+C3lsu̇y+δσzy)
Fz=A3l(K3lnuz+C3lnu̇z+δσzz)

(21)

where δ takes a value of −1 on the back boundary and a value of 1 on the front boundary; σzz,
σzx, and σzy are the free field stresses on the front and back boundaries, respectively.

As shown in Eqs. (19)–(21), the free field displacements ux, uy, and uz, velocities ..., u̇y, and
u̇z, and stresses σxx, σyy, σzz, σxy, σzy, and σzx need to be determined to calculate the boundary
equivalent nodal forces. The free field displacements, velocities, and stresses of each boundary
node can be determined through free field site analysis. In consideration of the homogeneity and
isotropy of the site and the symmetry of the loading conditions, the free field response of the
slope site can be analyzed using a two-dimensional (2-D) site model, as shown in Fig. 6b.
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Figure 6: Illustration of the seismic input method for the 3-D slope site
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In the 2-D model for slope seismic analysis, the viscous-spring boundary developed by Du
et al. [38] is applied at the bottom and lateral boundaries. At boundary node l of the 2-D model,
the spring and dashpot parameters can be written as⎧⎪⎨
⎪⎩
K2ln=

1
(1+ ar)

λ+ 2G
2R

, C2ln=brρcp
K2ls=

1
(1+ ar)

G
2R

, C2ls=brρcs
(22)

In addition, the incident earthquake waves are converted into equivalent nodal forces that
apply at each boundary node. For node l on the bottom boundary (y=0) of the 2-D model, the
equivalent nodal forces of incident SV, SH, and P waves are given by⎧⎨
⎩Fx =A2l

(
K2lsu0(t)+

G
cs
u̇0(t)

)
Fy = Fz = 0

SV wave (23a)

⎧⎨
⎩
Fx = Fy= 0

Fz =A2l

(
K2lsu0(t)+

G
cs
u̇0(t)

)
SHwave (23b)

⎧⎨
⎩
Fx = Fz = 0

Fy =A2l

(
K2lnu0(t)+

λ+ 2G
cp

u̇0(t)
)
Pwave (23c)

where u0(t) and u̇0(t) denote the displacement and velocity of the incident waves. A2l is half of
the total length of all boundary elements containing boundary node l in the 2-D finite element
model, as shown in Fig. 6b, where A2l= (L1+L2)/2.

For node l on the left boundary (x=0) and the right boundary (x= Lx), the equivalent nodal
forces of the incident waves are given by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fx =A2l

[
K2ln

(
u0(t)+ u0(t− 2h− yl

cs
)

)
+C2ln

(
u̇0(t)+ u̇0

(
t− 2h− yl

cs

))]

Fy =A2l
G
cs
δ

(
u̇0(t)− u̇0

(
t− 2h− yl

cs

))
Fz = 0

SV wave (24a)

⎧⎨
⎩
Fx = Fy= 0

Fz =A2l

[
K2ls

(
u0(t)+ u0(t− 2h− yl

cs
)

)
+C2ls

(
u̇0(t)+ u̇0

(
t− 2h− yl

cs

))]
SHwave (24b)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fx =A2l
λ

cp
δ

(
u̇0(t)− u̇0

(
t− 2h− yl

cp

))

Fy =A2l

[
K2ls

(
u0(t)+ u0(t− 2h− yl

cp
)

)
+C2ls

(
u̇0(t)+ u̇0

(
t− 2h− yl

cp

))]
Fz = 0

Pwave (24c)
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where the boundary-dependent parameter δ takes a value of −1 on the left boundary and a value
of 1 on the right boundary; h is the height of the lateral boundary.

In general, the seismic input method for the 3-D model is as illustrated in Fig. 6. First,
the free field response of the slope site is numerically simulated by a 2-D site model. Using the
displacement, velocity, and stress time histories from the 2-D site model, the equivalent nodal
forces of the 3-D model are calculated with Eqs. (19)–(21).

4.4 Validation of Seismic Input Method
The proposed seismic input method is now verified. The 3-D slope site model illustrated in

Fig. 7 was constructed with material parameters of ρ = 2300 kg/m3, E = 0.87 GPa, and υ = 0.42.
The input seismic waves take the form of an impulse, with the displacement time history shown
in Fig. 8. With the aid of the present seismic input method, the impulse is transmitted to the
3-D slope site model as vertically incident P waves and vertically incident S waves with vibration
directions perpendicular and parallel to the x-direction, respectively. In addition, a 2-D slope site
model was constructed to provide reference solutions.
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The displacement contours of the 2-D model and the 3-D model are compared in Fig. 9. For
reasons of brevity, only the displacement contours under vertically incident P waves are shown
in this figure. It can be observed from Fig. 9 that the displacement contours of the 3-D model
are very similar to those of the 2-D model. Moreover, the displacement in the y-direction at
monitoring points A and B is plotted in Fig. 10. From Fig. 10, it is apparent that the 3-D model
provides good agreement with the 2-D model. Thus, the incident method of the 3-D slope site
proposed in this paper has a high degree of accuracy, and can thus be employed to investigate
the seismic response of the tunnel portal.

Figure 9: Comparison of displacement contours of the 2-D model and the 3-D model under P
waves (a) t = 0.05 s (b) t = 0.15s (c) t = 0.25 s (d) t = 0.30 s (e) t = 0.40 s
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Figure 10: Displacement time histories at points A and B (a) P waves with vibration direction
being perpendicular to the tunnel axis (b) S waves with vibration direction being parallel to the
tunnel axis (c) S waves with vibration direction being perpendicular to the tunnel axis

5 Numerical Results

5.1 Vertically Incident S Waves with Vibration Direction Perpendicular to Tunnel Axis
Fig. 11 shows the damage factor contours of the rock ground near the tunnel portal under

S waves with a vibration direction perpendicular to the tunnel axis. The surrounding rock suffers
heavy damage, especially near the tunnel–ground interface. The damage to the surrounding rock
near the tunnel foot and spandrel is significant near the tunnel entrance. With increasing distance
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from the entrance, the heavy damage gradually shifts from the tunnel foot and spandrel to the
tunnel vault and bottom.

Figure 11: Damage factor contours of rock ground near the tunnel portal under S waves with
vibration direction perpendicular to tunnel axis

The maximum principal plastic strain contours of the tunnel lining under S waves with a
vibration direction perpendicular to the tunnel axis is presented in Fig. 12. The dynamic response
of the tunnel lining is mainly affected by the tunnel–foundation interactions, the mechanics of
which are significantly different from those of upper structures built on open land. Thus, the
plastic deformation of the tunnel matches the progress of damage in the surrounding rock (see
Fig. 11). In detail, at the tunnel entrance, the plastic strain is concentrated around the tunnel foot
and spandrel. With increasing distance from the entrance, the plastic strain shifts from the tunnel
foot and spandrel to the tunnel vault and bottom.

Figure 12: Maximum principal plastic strain of the tunnel lining under S waves with vibration
direction perpendicular to tunnel axis

The strain can be decomposed into the hoop axial strain εh, hoop shear strain γh, and axial
tensile strain εa, as shown in Fig. 13. Fig. 14 shows the distributions of these strain components
at tunnel cross-sections of D=7.5 m and 61.5 m, respectively, using L-foot to represent the lower
left arch foot position of the lining, using L-haunch to represent the left arch waist position of
the lining, using L-spandrel to represent the upper left arch shoulder position of the lining, using
R-foot to represent the lower right arch foot position of the lining, using R-haunch to represent
the right arch waist position of the lining, using R-spandrel to represent the upper right arch
shoulder position of the lining, using Bottom to represent the bottom center position of the lining,
and using Vault to represent the top center position of the lining. The same goes in the following.
Significant hoop axial strain εh appears at the tunnel foot and spandrel, and the hoop shear strain
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γh around the tunnel bottom and vault is considerable. Though the rock-tunnel model is bilaterally
symmetric, the shaking produced by an earthquake is not symmetric, and neither are the vertically
incident S waves with a vibration direction perpendicular to the tunnel axis. Thus, εh and γh are
not symmetric at the cross-sections. Compared with εh and εh, the axial tensile strain εa is very
small, which indicates that the tunnel suffers only slight tensile deformation in the tunnel axial
direction.

εh

εa

γh

εa

γh

Figure 13: Illustration of the strain components
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Figure 14: Distribution of strain components along lining cross section for S waves with vibration
direction perpendicular to tunnel axis: (a) hoop strain, (b) hoop shear strain, and (c) axial tensile
strain

The distributions of hoop axial strain εh at the left spandrel and right arch foot along the
tunnel axis are given in Fig. 15a, and the hoop shear strain γh at the tunnel vault and bottom are
shown in Fig. 15b. As the axial tensile strain εa is very small, the distribution of this component
along the tunnel axis is not presented. From Fig. 15a, εh at the spandrel and arch foot are
dominant at the tunnel entrance, and then quickly decrease to a stable value with distance from
the tunnel entrance. Therefore, the plastic strain at the spandrel and arch foot are higher around
the tunnel entrance than at other positions, as shown in Fig. 12. Fig. 15b shows that the hoop
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shear strain first increases and then decreases with increasing distance from the tunnel entrance.
Thus, the plastic damage changes to become concentrated around the tunnel vault and bottom,
as shown in Fig. 12.
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Figure 15: Distributions of strain components along the tunnel axis for S waves with vibration
direction perpendicular to tunnel axis: (a) hoop axial strain and (b) hoop shear strain

5.2 Vertically Incident S Waves with Vibration Direction Parallel to Tunnel Axis
Fig. 16 shows the damage factor contours of the rock ground near the tunnel portal under

S waves with a vibration direction parallel to the tunnel axis. The surrounding rock suffers severe
damage near the tunnel entrance. Moreover, the damage contours of the rock are symmetrical.
Fig. 17 shows the maximum principal plastic strain contour at the tunnel lining under S waves
with a vibration direction parallel to the tunnel axis. The plastic strain of the tunnel lining in
Fig. 17 is concentrated around the tunnel haunches, and the value increases and then decreases
with distance from the tunnel entrance. Moreover, the rock damage and the plastic strain on the
tunnel under S waves with a vibration direction parallel to the tunnel axis are different from those
in the case of S waves vibrating perpendicular to the tunnel axis.

Figure 16: Damage factor contours of rock ground near the tunnel portal under S waves with
vibration direction parallel to tunnel axis

The distributions of the strain components at two tunnel cross-sections for S waves with a
vibration direction parallel to the tunnel axis are shown in Fig. 18. This figure shows that the
tunnel suffers significant hoop shear strain, but only slight hoop axial strain and axial tensile
strain. Moreover, the hoop shear strain is much higher around the tunnel haunches than at other
positions. This indicates that the tunnel haunches are vulnerable to S waves with a vibration
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direction parallel to the tunnel axis. The distribution of the hoop shear strain changes at the same
pace as the plastic damage at the haunches (see Fig. 17). Fig. 19 plots the distribution of the
hoop shear strain at the haunches along the tunnel axis. From Fig. 19, we see that the hoop shear
strain increases at first and then decreases with increasing distance from the tunnel entrance, and
changes at the same pace as the plastic strain of the tunnel (see Fig. 17).

Figure 17: Maximum principal plastic strain contour of tunnel lining under S waves with vibration
direction parallel to tunnel axis
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5.3 Vertically Incident P Waves with Vibration Direction Perpendicular to Tunnel Axis
The seismic response of the tunnel portal under vertically incident P waves with a vibration

direction perpendicular to the tunnel axis is now analyzed. The damage factor contours of the
rock near the tunnel portal are shown in Fig. 20, and the maximum principal plastic strain
contour of the tunnel lining is shown in Fig. 21. The damage contours of the rock, as well as the
plastic strain on the tunnel lining, are symmetric and significantly concentrated around the tunnel
entrance. With increasing distance from the tunnel entrance, the plastic damage to the tunnel
lining quickly decreases. The maximum damage factor of the rock and the maximum plastic strain
of the tunnel are significantly lower than in the case of vertically incident S waves.
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Figure 20: Damage factor contour of rock near the tunnel portal under vertically incident P waves
with vibration direction perpendicular to tunnel axis

Figure 21: Maximum principal plastic strain contour of the tunnel portal under vertically incident
P waves with vibration direction perpendicular to tunnel axis



1308 CMES, 2022, vol.131, no.3

Fig. 22 shows the distributions of strain components along two tunnel cross-sections for
vertically incident P waves. The hoop axial strain εh and hoop shear strain γh are larger than
the axial tensile strain εa. Moreover, Fig. 22 indicates that εh and γh are dominant around the
tunnel haunches, and change at the same pace as the plastic strain concentrated around the tunnel
haunches. Fig. 23 shows the distributions of εh and γh at the tunnel haunches along the tunnel
axis. With increasing distance from the tunnel entrance, the hoop axial strain gradually decreases,
whereas the hoop shear strain increases at first and then decreases.
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Figure 22: Distributions of strain components along lining cross-sections for vertically incident P
waves with vibration direction perpendicular to tunnel axis: (a) hoop strain, (b) hoop shear strain,
and (c) axial tensile strain
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Figure 23: Distributions of strain components along tunnel axis for vertically incident P waves
with perpendicular vibration direction: (a) hoop axial strain and (b) hoop shear strain

6 Summary and Conclusions

During past earthquake events, tunnel portals have suffered more serious damage than other
tunnel sections. Earthquake waves may propagate in different vibration directions, producing a
complex dynamic response in the tunnel portal. Based on the Galongla tunnel project, which is
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located in a seismic region of China, a 3-D numerical model of the tunnel portal was established
to study such effects. The seismic mechanical behavior of the slope rock was simulated using an
elastoplastic damage model implemented in ABAQUS through a self-compiled UMAT subroutine.
The viscous-spring artificial boundary was used to simulate the radiation damping effect at the
truncated boundary. Moreover, a seismic input method for the slope site was established for
vertically incident earthquake waves with different vibration directions. The damage characteristics
of the Galongla tunnel portal under different vibration directions of earthquake waves were then
numerically studied. The conclusions are as follows:

(1) For vertically incident S waves with a vibration direction perpendicular to the tunnel axis,
the hoop tensile strain at the spandrel and arch foot and the hoop shear strain at the
vault and arch bottom are the main contributors to the plastic damage of the tunnel. For
vertically incident S waves with a vibration direction parallel to the tunnel axis, a very large
hoop shear strain occurs at the tunnel haunches. For vertically incident P waves with a
vibration direction perpendicular to the tunnel axis, the tunnel is mainly subjected to hoop
tensile strain and hoop shear strain.

(2) The vibration direction of the earthquake waves significantly influences the dynamic
response of the tunnel portal. For vertically incident S waves with a vibration direction
perpendicular to the tunnel axis, the hoop axial strain at the spandrel and arch foot are
dominant at the tunnel entrance, and then rapidly decrease to a stable value away from the
tunnel entrance. The hoop shear strain increases at first and then decreases with increasing
distance from the tunnel entrance. For vertically incident S waves with a vibration direction
parallel to the tunnel axis, the hoop shear strain increases and then decreases with distance
from the tunnel entrance. For vertically incident P waves with a vibration direction perpen-
dicular to the tunnel axis, the hoop axial strain decreases gradually, and the hoop shear
strain first increases and then decreases with increasing distance from the tunnel entrance.
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Appendix

(1)
∂f
∂γ p

∂f
∂γ p

=−Mβ

σ̄
β

1 + σ̄ β1 + σ̄ β1
3

b1
(b1+ γ p)2

(A.1)

(2)
∂f
∂σ̄ ij

∂f
∂σij

=
[
∂f
∂σ11

∂f
∂σ22

∂f
∂σ33

∂f
∂σ12

∂f
∂σ23

∂f
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]
=LMN (A.2)

where

L(6, 3)=

⎡
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∂ Ī1
∂σ̄ 11

∂ J̄2
∂σ̄ 11

∂ J̄3
∂σ̄ 11

∂ Ī1
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(A.3)

M(3, 3)=
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N(3, 1)=
[
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∂σ̄ 1
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∂σ̄ 2
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(A.5)

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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∂ Ī1
∂σ̄ 12

= ∂ Ī1
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∂ Ī1
= 1

3
,
∂σ̄2

∂ Ī1
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(3)
∂g
∂σ̄ ij

The expression of
∂g
∂σ̄ ij

is similar to that of
∂f
∂σ̄ ij

, just replacing parameter Mβ with Mg.


