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ABSTRACT

During mine filling, the caking in the pipeline and the waste rock in the filling slurry may cause serious safety
accidents such as pipe blocking or explosion. Therefore, the visualization of the innermine filling of the solid–liquid
two-phase flow in the pipeline is important. This paper proposes a method based on capacitance tomography for
the visualization of the solid–liquid distribution on the section of a filling pipe. A feedback network is used for
electrical capacitance tomography reconstruction. This reconstruction method uses radial basis function neural
network fitting to determine the relationship between the capacitance vector and medium distribution error. In
the reconstruction process, the error in the linear back projection is removed; thus, the reconstruction problem
becomes an accurate linear problem. The simulation results show that the reconstruction accuracy of this algorithm
is better than that of many traditional algorithms; furthermore, the reconstructed image artifacts are fewer, and
the phase distribution boundary is clearer. This method can help determine the location and size of the caking
and waste rock in the cross section of the pipeline more accurately and has great application prospects in the
visualization of filling pipelines in mines.
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1 Introduction

In the process of mining, cemented tailing filling technology is often adopted to reduce
environmental pollution and solve problems such as surface subsidence [1]. The slurry of the mine
filling body is a solid–liquid two-phase flow that contains tailings, waste rock, cementing material,
water, and other components, which flows in a complex manner in the filling pipeline [2]. During
transportation, owing to pressure change, pipe distribution position, and other factors, problems
such as internal deposition, scaling, and blockage of pipelines can easily occur, which can affect
the safety of the filling pipeline and the mine filling process. To avoid the blockage of the filling
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pipeline and reduce the detection cost, the visual detection of the pipeline has attracted increasing
attention [3]. Liu et al. [4] proposed the use of electrical resistance tomography technology to
detect the filling pipeline, but there was no considerable imaging effect. Electrical capacitance
tomography (ECT) technology can help visualize the phase distribution in a pipeline cross-section
and obtain reliable and intuitive results for pipeline detection.

ECT, a nondestructive testing method, is an effective means to monitor multiphase flow.
As the permittivity of the medium in the measured pipeline may vary, ECT can calculate the
permittivity distribution from the measured capacitance through the reconstruction algorithm,
which can reflect the corresponding phase distribution [5]. Based on the different computing prin-
ciples of reconstruction, reconstruction algorithms can be classified as non-iterative and iterative
algorithms. Linear back projection (LBP) [6] and Tikhonov regularization [7] are examples of non-
iterative algorithms, whereas the Newton-Raphson algorithm [8] and the algebraic reconstruction
technique (ART) [9] are iterative algorithms. Non-iterative algorithms are fast but have poor
accuracy. Although iterative algorithms have high accuracy, their effect is still not ideal. Owing to
the soft field effect of the reconstruction problem, there is a nonlinear relationship between the
measured capacitance and the distribution of the dielectric constant. However, all of the above
algorithms are linear reconstruction algorithms, which perform calculations based on the linear
relationship. Therefore, linearization errors are introduced in the reconstruction, which results in
a decrease in accuracy [10–12]. In recent years, many researchers have applied the fitting and
prediction capabilities of neural networks to reconstruction algorithms. Li et al. [13] proposed
a reconstruction algorithm based on a radial basis function neural network (RBFNN). The
reconstruction speed is high, the effect is satisfactory, and it has a certain practical value. Tian
et al. [14] established an image reconstruction framework using the radial basis function and the
sparsity of the phase distribution. Zhu et al. [15] developed a deep convolutional neural network
and adopted a mixed training strategy to map the capacitance to the permittivity distribution.
Zheng et al. [16] developed a self-encoder neural network using a fully connected network to solve
the image reconstruction problem of ECT. Yang et al. [17] further optimized the reconstructed
image based on the U-Net framework. Wang et al. [18] inputted the results of Landweber iterative
reconstruction into a two-channel convolutional neural network, which improved the feature
extraction capability of the network and the reconstruction effect of the image details.

In this study, an ECT reconstruction feedback network based on an RBFNN was established,
and the center selection of the RBFNN was realized using the orthogonal least squares (OLS)
algorithm. There are major errors in the calculation results of linear reconstruction algorithms.
Using a feedback reconstruction network, the errors were removed, and accurate imaging results
were obtained.

In Section 2, the system model and mathematical principle of capacitance tomography are
introduced. Section 3 describes the proposed ECT feedback network reconstruction method, the
RBFNN, and the training dataset. In Section 4, the corresponding experiments and results are
presented. Section 5 presents a summary and prospects for future research.

2 Principle

In this study, an ECT system was investigated and verified through simulation experiments.
The ECT system is illustrated in Fig. 1. This system consists of a 12-electrode ECT sensor, a
capacitance measurement circuit, and an upper computer (PC).
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Measurement circuit

Figure 1: ECT system

The 12-electrode ECT system was studied, and there were 66 independent measured capaci-
tance values. Fig. 1 shows the ECT sensor. In the two-dimensional ECT model shown in Fig. 2,
12 electrodes are distributed on the outside of the pipe and close to the pipe wall; furthermore,
a shield is used to reduce interference from the outside of the system, and there are two different
media in the pipe under test.

Figure 2: ECT sensor model

In the capacitance tomography system, there is a nonlinear relationship between the capaci-
tance C between the plates and the dielectric constant ε:

C =− 1
V

∫∫
�

ε(x,y)∇φ(x,y)d� (1)

where V is the potential difference between the corresponding plates, ε(x,y) is the measurement
region, φ(x,y) is the dielectric constant at the corresponding position within the measurement
region, and φ(x,y) is the potential at the corresponding position. Eq. (1) can be expressed by a
sensitivity-based linear model [19] as follows:

λ= Sg (2)

where λ represents the normalized capacitance vector, S is the sensitivity matrix, and g is the
normalized dielectric constant matrix. S represents the sensitivity of the capacitance vector to the
permittivity distribution. The changing trend of the dielectric constant vector can be reflected by
the pixel distribution; that is, g can also be represented as a pixel vector.
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Because the number of pixels required for imaging is much larger than the number of
measured capacitance values, the dimension of g is much larger than that of C. The number of
calculations required for sensitivity S will increase with an increase in the precision of the sensitive
field partition. Because the condition number of S is large, the disturbance with a small measured
capacitance value will cause a large change in the dielectric constant [20]. Therefore, the solution
to the inverse problem based on Eq. (2) is inconclusive.

To address these problems, this paper proposes the use of an RBFNN to establish the
nonlinear relationship between capacitance and dielectric constant values and to select the center
of the RBFNN using the OLS method.

3 Reconstruction Algorithm and Training Samples

In this study, the LBP reconstruction algorithm was used to solve the ECT inverse problem,
and an RBFNN was used to realize the nonlinear mapping between the approximation measure-
ment capacitance and LBP reconstruction error. An OLS was used to optimize the RBFNN. Thus,
the ECT feedback network was implemented. This section introduces the overall framework of
the ECT feedback network based on the RBFNN, the principle of OLS-RBF, and the generation
of the training set.

3.1 Feedback Network
In the LBP algorithm, the solution of the dielectric constant value is expressed as follows:

g= STλ (3)

where ST represents the transpose of the sensitivity matrix. Because the LBP algorithm is a linear
reconstruction algorithm and there is a nonlinear relationship between the measured capacitance
and dielectric constant distribution in the ECT reconstruction problem, the reconstructed image
is not accurate, and severe distortion and artifacts may occur. The image error (IE) of the LBP
reconstruction is expressed as follows:

eg = g− gLBP (4)

Hypothesis f (·) represents the nonlinear relationship between the measured capacitance and
the reconstruction error. Therefore, we have

eg = f (λ) (5)

which can be obtained through Eq. (4) as follows:

g= gLBP+ f (λ) (6)

If the nonlinear relationship between the measured capacitance and the reconstruction error is
known, the error generated by Eq. (3) can be reduced using Eq. (6) to improve the reconstruction
accuracy.

An RBFNN based on the OLS algorithm was established to realize the nonlinear mapping
between the measured capacitance and the reconstruction error. The feedback ECT reconstruction
method based on the RBFNN proposed in this paper is shown in Fig. 3, where C represents the
capacitance vector, G represents the original image in the training set, GLBP represents the image
obtained by the LBP algorithm, and eG represents the difference between G and GLBP. In the
reconstruction process, gLBP represents the image obtained by the LBP algorithm, eg represents
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the image difference predicted by the trained RBFNN, and g represents the final reconstructed
image.

C

Training set

G

GLBP
-

eG

C

eg

g

gLBP

Reconstruction

RBFNN

Figure 3: Structure of ECT feedback network

3.2 RBF Neural Network
An RBFNN has a feedforward structure with a single hidden layer, and the application of

its kernel function can map low-dimensional linearly indivisible data to high-dimensional space,
making it linearly separable in a high-dimensional space [21]. Owing to its local approximation
ability and nonlinear characteristics, it can approximate the continuous function of arbitrary
accuracy. Owing to the inaccuracy of the inverse problem of ECT and the nonlinearity of the
distribution of capacitance as well as the media constant, the reconstruction of the LBP algorithm
will result in major errors. The proposed reconstruction algorithm uses the trained RBFNN to
predict such errors and eliminate them in the reconstruction process in order to realize an accurate
calculation of the media distribution. The structure of the RBFNN is shown in Fig. 4. The input
of the network is the capacitance vector, and the output is the predicted IE.

Input layer Hidden layer Output layer

C

eg

Figure 4: Structure of RBF network

The RBFNN takes neurons as nodes and the radial basis function as the excitation function.
The activation function of the hidden layer node responds locally to the input. When the input is
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close to the central range of the base function, the hidden layer node will produce a large output;
when the input is far from the central point, the output decays exponentially. The hidden layer
neurons obtain the output layer by linear addition.

RBFs are non-negative real-valued functions whose values depend on the input distance from
the central point and are radially symmetric. The Gaussian function is expressed as follows:

φ(||x− ci||)= e(
||x−μi||2

2σ2
) (7)

where x is the input, ci is the center point of the ith node of the hidden layer, σi is the width
variance of the ith node, and || · || is the Euclidean norm. Let y be the output of the network-
output layer node,

y=
M∑
i=1

ωiφ(||x− ci||) (8)

ωi is the weight of the ith hidden layer connected to the output node, which is determined by
the linear OLS method through input x and the corresponding expected output. The hidden layer
is composed of M nodes. The input data are inputted to the network, and the response of the
hidden layer is calculated; subsequently, the output of the network is calculated using the initial
weight. In the training process, the weight is constantly adjusted to minimize the error between
the network output and the expected output. The RBFNN is also called the local response
function [22] because it only trains some weights that have a significant influence on the output.

When using an RBFNN, the most important factor is selecting the center point. In this study,
the OLS algorithm was used to select the center and construct the RBFNN. RBF network can
be viewed as the following regression model:

Y =Pθ +E (9)

where, Y = [y1,y2, . . . ,yn]
T , P = [p1,p2, . . . ,pM ], θ = [θ1, θ2, . . . , θM ]T , E = [ε1,ε2, . . . , εn]T , ε is the

error.

OLS transforms the P set into orthogonal basis vectors, and then obtains the effect of each
basis vector on the output,

P=WA (10)

where, A is an upper triangular matrix in M dimension with diagonal 1, W is an N×M matrix,
and

WTW =H (11)

where H is a diagonal matrix whose diagonal element is hi,

hi =wTi wi (12)

wi is an orthonormal basis vector. And Eq. (9) can be transformed into

Y =Wg+E (13)

where, g in OLS algorithm is represented as

g=H−1WTY (14)
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θ in Eq. (9) can be solved by the following formula:

Aθ = g (15)

The gram-Schmidt method can be used to obtain the value of the least squares estimate θ .

Center selection OLS algorithm

1. Set the number of hidden layer nodes M and initial RBF center ci in advance (1 ≤ i ≤
M);

2. Calculate the regression matrix P according to the input data X;
3. Select the regression operator by OLS algorithm: Wk represents the kth column of the

regression operator matrix. k = 1, let the columns of P be the first columns of W, calculate
error, The regression operator with large error is selected as the first column of W; k≥2,
The remaining n-k columns in P are the kth columns of W, use Gram-Schmidt method to
orthogonalize it to the kth columns and calculate the error, the regression operator with
large errors is regarded as the kth column of W.

3.3 Training Samples
COMSOL Multiphysics finite element software was used to establish four distributions of

ECT models: single-core, two-core, three-core, and stratified. When modeling different samples
in COMSOL, different parameters were used to describe their characteristics. Figs. 5a–5c show
the core distribution, and the parameters describing the sample are the center position and
radius. Fig. 5d shows the stratified distribution, and its parameters are the height of the stratified
distribution interface and the inclination angle between the normal line of the interface and the
horizontal line. Different samples can be created by generating random parameters.

Figure 5: Training samples (a) Single-core (b) Two-core (c) Three-core (d) Stratified

Each distribution sample was simulated by COMSOL to obtain 5,000 datasets, with a total
of 20,000 data sets. Each dataset consists of a measured capacitance vector C and a dielectric
constant value vector g. C and g are the input and expected output of the network, respectively.
To accelerate the convergence speed of the network training, before using the data set to train the
network, each group of measured capacitance values needs to be normalized. The normalization
formula for C is as follows:

λij =
1/Cm

ij − 1/Cl
ij

1/Ch
ij− 1/Cl

ij

(16)
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where λij, Cm
ij , C

h
ij and Cl

ij respectively represent the normalized capacitance between the i-j

electrode pair, the measured capacitance, the capacitance when the measured area is filled with a
medium with a high relative permittivity and a medium with a low relative permittivity.

4 Simulations Experiments

To verify the effectiveness of the proposed reconstruction method, two criteria of correla-
tion coefficient (CC) and image error (IE) are used to quantitatively evaluate the reconstruction
accuracy:

CC=

N∑
i=1

(gi− ḡ)(Gi− Ḡ)√
N∑
i=1

(gi− ḡ)2
N∑
i=1

(Gi− Ḡ)
2

(17)

IE = g−G
G

(18)

where G represents the distribution of the dielectric constant of the original image, G represents
the distribution of the dielectric constant of the reconstructed image, Ḡ is the average value of
G, and ḡ is the average value of G.

Fig. 6 shows the reconstruction results of noiseless data calculated by the proposed algo-
rithms, ART algorithm, Tikhonov algorithm, and Landweber iterative method. Table 1 shows the
IE and CC, corresponding to the results in Fig. 6. For the reconstruction results, our algorithm
had a lower IE, higher CC, and better imaging effect. The reconstruction results show that the
proposed algorithm can significantly reduce artifacts in the reconstruction results in all cases
and more accurately display the position where the phase distribution changes; it also achieves
high reconstruction accuracy. The ART algorithm has a good reconstruction effect for the core
flow, but it cannot obtain the exact reconstruction results for the laminar flow distribution. The
Tikhonov and Landweber algorithms perform better on laminar flow than ART, but they cannot
eliminate artifacts in the core flow reconstruction results. Because the nonlinearity of the ECT
inverse problem is removed in the reconstruction process, the reconstruction results are closer to
the real permittivity distribution, and there are fewer artifacts.

To further study the anti-noise performance of the algorithm, the capacitance data are added
to the noise and then inputted to the feedback reconstruction network for calculation. The signal-
to-noise ratio (SNR) is expressed as follows:

SNR= Psignal
Pnoise

(19)

where, Psignal represents the measurement signal and Pnoise represents the noise signal.

Noise was added to the capacitor vector, as shown in Fig. 7. First, the capacitance matrix
was expanded, and then Gaussian noise with a preset SNR (SNR=50) was added to each row of
the expanded matrix. Any column of the expanded matrix can be used as a result of the added
noise. Gaussian noise with a preset SNR (SNR=50) was added to each row.
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Figure 6: Comparison of simulation experiments

Table 1: Evaluation of simulation experiment result

Our method ART Tikhonov Landweber

IE (%) CC IE (%) CC IE (%) CC IE (%) CC

1 3.46 0.9956 1.30 0.9887 14.19 0.9431 22.52 0.8861
2 2.71 0.9908 4.59 0.9623 21.46 0.9264 26.64 0.8600
3 4.38 0.9871 6.81 0.9315 24.36 0.9387 28.87 0.7773
4 3.12 0.9957 8.24 0.8917 12.13 0.9347 2.08 0.9463
5 2.06 0.9987 4.25 0.9725 5.09 0.9822 2.78 0.9837
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Figure 7: Processes of noise-contaminated capacitance generation
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Fig. 8 shows the reconstruction results for the noisy data. The proposed algorithm still has
a good imaging effect when the capacitance data are polluted by noise. Thus, the proposed
reconstruction method has strong noise resistance and good generalization ability; furthermore,
the reconstruction effect is satisfactory. The proposed method can be used for the visualization of
filling pipelines based on ECT technology.

Figure 8: Reconstruction results based on noise-contaminated simulation data

5 Conclusions

A feedback reconstruction network based on an RBFNN was proposed for mine filling
pipeline visualization and to reduce the error caused by nonlinearity in the ECT reconstruction
process. After the calculation error caused by the linear algorithm is removed from the model, the
ECT reconstruction problem is transformed from nonlinear to linear inverse. In this study, typical
two-phase flow data samples were used to train the RBFNN for predicting the reconstruction
error, and the LBP algorithm was used to complete the image reconstruction. In the simulation
results, for the data without noise and the data interfered by noise, the proposed reconstruction
method has a high reconstruction accuracy, fewer imaging artifacts, and a clear phase distribution
boundary. It can effectively judge the caking and blockage in the pipeline, which has an important
application prospect. The feedback reconstruction network greatly reduces the error of the linear
model of ECT. It can be combined with a more complex reconstruction algorithm to further
improve the accuracy of the reconstruction algorithm, providing a theoretical basis for the visual
detection of mine filling pipelines.
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