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ABSTRACT

With the increasing popularity of high-resolution remote sensing images, the remote sensing image retrieval (RSIR)
has always been a topic of major issue. A combined, global non-subsampled shearlet transform (NSST)-domain
statistical features (NSSTds) and local three dimensional local ternary pattern (3D-LTP) features, is proposed
for high-resolution remote sensing images. We model the NSST image coefficients of detail subbands using 2-
state laplacian mixture (LM) distribution and its three parameters are estimated using Expectation-Maximization
(EM) algorithm. We also calculate the statistical parameters such as subband kurtosis and skewness from detail
subbands along with mean and standard deviation calculated from approximation subband, and concatenate all
of them with the 2-state LM parameters to describe the global features of the image. The various properties
of NSST such as multiscale, localization and flexible directional sensitivity make it a suitable choice to provide
an effective approximation of an image. In order to extract the dense local features, a new 3D-LTP is proposed
where dimension reduction is performed via selection of ‘uniform’ patterns. The 3D-LTP is calculated from
spatial RGB planes of the input image. The proposed inter-channel 3D-LTP not only exploits the local texture
information but the color information is captured too. Finally, a fused feature representation (NSSTds-3DLTP)
is proposed using new global (NSSTds) and local (3D-LTP) features to enhance the discriminativeness of fea-
tures. The retrieval performance of proposed NSSTds-3DLTP features are tested on three challenging remote
sensing image datasets such as WHU-RS19, Aerial Image Dataset (AID) and PatternNet in terms of mean average
precision (MAP), average normalized modified retrieval rank (ANMRR) and precision-recall (P-R) graph. The
experimental results are encouraging and the NSSTds-3DLTP features leads to superior retrieval performance
compared to many well known existing descriptors such as Gabor RGB, Granulometry, local binary pattern (LBP),
Fisher vector (FV), vector of locally aggregated descriptors (VLAD) and median robust extended local binary
pattern (MRELBP). For WHU-RS19 dataset, in terms of {MAP,ANMRR}, the NSSTds-3DLTP improves upon
Gabor RGB, Granulometry, LBP, FV, VLAD and MRELBP descriptors by {41.93%,20.87%}, {92.30%,32.68%},
{86.14%,31.97%}, {18.18%,15.22%}, {8.96%,19.60%} and {15.60%,13.26%}, respectively. For AID, in terms of
{MAP,ANMRR}, the NSSTds-3DLTP improves upon Gabor RGB, Granulometry, LBP, FV, VLAD and MRELBP
descriptors by {152.60%,22.06%}, {226.65%,25.08%}, {185.03%,23.33%}, {80.06%,12.16%}, {50.58%,10.49%} and
{62.34%,3.24%}, respectively. For PatternNet, the NSSTds-3DLTP respectively improves upon Gabor RGB, Gran-
ulometry, LBP, FV, VLAD and MRELBP descriptors by {32.79%, 10.34%}, {141.30%, 24.72%}, {17.47%,10.34%},
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{83.20%,19.07%}, {21.56%,3.60%}, and {19.30%,0.48%} in terms of {MAP,ANMRR}. The moderate dimensionality
of simple NSSTds-3DLTP allows the system to run in real-time.
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Remote sensing image retrieval; laplacian mixture model; local ternary pattern; statistical modeling, KS test,
texture, global features

1 Introduction

Due to advances in remote imaging sensors and earth observation technologies, the volume
of high resolution remote sensing images have increased dramatically. Urbanization preparation,
deforestation detection, weather prediction, farm monitoring, and military applications are only a
few of the uses for remote sensing images. Hence, precise image retrieval techniques for remote
sensing images are very important [1–4]. The increase in spatial resolution and database volume
have led to difficulties in the manual annotation based image retrieval approaches. Hence it is
very important to have a proper management framework to deal with this huge volume of remote
sensing data. Image retrieval techniques based on image content plays crucial role to handle
this data properly. Feature extraction and similarity measurement are the two key modules in
content based image retrieval (CBIR). In the feature extraction module, features that describe
visual content of an image are extracted, and then the similarity between the features extracted
from the query and the database images is calculated. Remote sensing images consist of semantic
objects of wide range as they cover quite large geographical area. The main challenge in case of
remote sensing images is the presence of variations in appearance in semantic objects of same
category [2]. Hence for retrieval of remote sensing images, the features extracted should be highly
robust and descriptive. The time requirement for retrieval of images of interest out of the huge
volume of remote sensing data is also to be considered while designing an efficient remote sensing
image retrieval framework.

The texture, color and shape information are the primary visual attributes of any high
resolution remote sensing images and describes important details for scene retrieval. The most
of the earlier literature are based on these features. The various handcrafted features like scale
invariant feature transform (SIFT) [5], color histogram [6], gist [7], histogram of oriented gradients
(HOG) [8] and local binary pattern (LBP) [9], etc. exist in the literature. The color histogram and
gist describes the global features whereas the SIFT, HOG and LBP describes the local features of
an image. Global features denote the visual details of an image as a whole. The macrostructure
informations in an image can be well captured with global features. In [1], Ferecatu and Bouje-
maa for image retrieval employed global image descriptors that are constructed using statistical
representation of color, texture as well as shape features and demonstrated few search exam-
ples that exhibits the effectiveness of relevance feedback on remote sensing images. In [10], Ma
et al. proposed a shape based descriptor that uses region and polygonal extraction. In an another
approach, Yang et al. [11] showed the use of color layer based texture elements histogram along
with color fuzzy correlogram for retrieval of remote sensing images. Few techniques employ both
statistical model and multiresolution analysis to describe the global features of the images. Choy
et al. [12] modeled the wavelet coefficients of images using three parameter generalized Gamma
distribution and used its parameters to describe the texture feature. In [13], the image wavelet
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subband coefficients were modeled using finite mixtures of generalized Gaussian distribution. The
parameters of this distribution were used as features to describe the subband images. Liu et al.
[14] modeled the NSST coefficients of remote sensing images using Bessel K distribution and
used its parameters to describe the texture feature. In [3], another remote sensing image retrieval
approach based on statistical modeling was introduced where the symmetric normal inverse Gaus-
sian (SNIG) distribution was used to model detail subbands of the NSST. The estimated SNIG
parameters were used to construct the feature vector. The main strength of transform domain
statistical modeling based techniques is that the texture discrimination here is treated as an issue of
similarity measurement between statistical distributions, which is relatively easy to implement when
compared to Markov random fields [15]. The global feature based techniques are usually effective
on the categories that are largely texture based and carries image-scale details. The local feature
based techniques however are effective in the categories which exhibits definite or perceptible struc-
tures whose presence/absence is used to discriminate the images. The local pattern based schemes
such as LBP [16], local ternary pattern (LTP) [17], etc. captures microstructure information only
and is highly appropriate for dense local feature extraction. In [18,19], a technique using patch
based complete local binary pattern in multi-scale framework is introduced for remote sensing
image scene classification. Bian et al. introduced extended multi-structure local binary pattern for
scene classification of remote sensing images. In [20], the original Bag-of-words (BOW) model was
improved by characterizing the images using local features that are extracted from base images
for retrieval of remote sensing images. Sukhia et al. [21] proposed to use LTP in three different
scales for extraction of features from remote sensing images. These features are then encoded with
Fisher vector encoding scheme.

Both global and local features capture complementary informations and their combina-
tions are observed to be effective in improving the retrieval and classification performance. In
order to describe a high resolution image scene with high diversity, many techniques fail to
supply discriminative details especially when some major structural information in the image
usually dominate the image class. In such cases, the fusion of both local and global features
are usually preferred to obtain improved performance [22,23]. In the last one decade, various
schemes [24–31] have been introduced that combine both local and global features. In [24],
Bian et al. fused the local features that are extracted using codebookless model and the global
features that are exploited using saliency based multiscale multiresolution multistructure local
binary pattern for classification of high resolution remote sensing scenes. In [25], Risojevic
et al. extracted local features employing the SIFT and global features utilizing the enhanced Gabor
texture descriptor, and were combined using a scheme to enhance the classification of remote
sensing image scenes. In [26], Liu et al. introduced median robust extended LBP (MRELBP)
which not only captures microstructure information but macrostructure too. In [27], Yang et al.
extracted global features from high pass subband images of dual-tree complex wavelet and local
features from LBP applied on all low pass subband images. The authors finally combined both
these features for texture classification. In [28], Kabbai et al. combined both local and global
features for image classification. Local features were extracted using speeded up robust feature
descriptor and the global features were extracted through combination of wavelet transform based
features with modified form of local ternary pattern (LTP). A multiple feature based regularized
kernel is introduced for classification of hyperspectral images [29]. Various spatial features such
as local feature, shape, spectral and global features are combined to supply more discriminative
information. For local, global and shape features; LBP feature, Gabor feature and extended
multiattribute profiles are exploited respectively.
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It is discussed in [14] that the combination of features not everytime assures improved retrieval
performance. For any images with high amount of details, it is essential to select efficient features
that are supportive to each other in order to achieve improved retrieval results and to effectively
blend them without increase in feature dimensions. Motivated from [3,14,24,27], we introduce a
remote sensing image retrieval technique that uses an effective combination of new local 3D-
LTP based features and novel global NSST domain statistical features. The 3D-LTP descriptor
encodes both the colour cue information and local texture details. It is shown that the 2-state
LM distribution best fits the statistics of detail NSST subband coefficients than BKF, Laplacian
and SNIG distributions. Through accurate statistical modelling we calculate the discriminative
global texture features from NSST subbands using the 2-state LM distribution parameters along
with subband kurtosis and skewness. Since the local or global features describes complementary
image informations and alone cannot provide discriminative description in many situations, we
propose an effective blend of global and local features along with colour information to improve
the discriminativeness of the features. The proposed NSSTds-3DLTP outperforms Gabor RGB,
Granulometry, LBP, FV, VLAD and MRELBP descriptors in terms of MAP, ANMRR and P-
R curve analysis for WHU-RS19,AID and PatternNet datasets. The NSSTds-3DLTP is highly
suitable in retrieval of high resolution remote sensing images where accurate and fast search
procedures are required in order to retrieve the most relevant images.

The main contributions of the paper are:

1. The image NSST detail subband coefficients are modeled using 2-state Laplacian mixture
model. It is demonstrated that the 2-state Laplacian mixture model best fits the subband
coefficients when compared to other highly non-Gaussian distributions such as Laplacian,
Bessel K form and SNIG. The 2-state Laplacian mixture model parameters in addition
with kurtosis and skewness are calculated from detail subbands, and the mean along with
standard deviation are calculated from the approximation subband and are concatenated
together to construct the feature vector, to represent the global features of the image. This
global feature is referred to as NSSTds.

2. Since the classical LTP ignores the encoding of color feature which is also one of the cru-
cial visual attribute, an extension to 3D-LTP is introduced in this paper in order to encode
not only the local intensity variations across the planes but also the color information.

3. The proposed fusion of local and global features achieves highly discriminative feature
representation with much less dimensions. This feature fusion is referred to as NSSTds-
3DLTP.

The paper is organized with the following structure. Section 2 presents a brief review
on NSST and detailed description on proposed framework in remote sensing image retrieval.
Section 3 reflects the performance analysis on the experimental outcomes obtained. Section 4
concludes the paper.

2 Methodology

2.1 Nonsubsampled Shearlet Transform (NSST)
Though wavelet transform deals effectively with the point singularities of signals, it fails to

capture the linear singularities that exist in the images [32]. To handle this problem, different
multi-geometric analysis tools such as curvelet [33], contourlet [34] and shearlet transform [35]
were introduced in the literature.
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NSST inherits the benefits of classic theory of the affine systems, i.e., it is an extension of
the wavelet theory. The important properties of NSST such as localiztion, multiscale, translational
invariance and high directional sensitivity enables the NSST to provide a powerful image represen-
tation. Inspite of the significant developments that has been made, the effective texture description
is still a demanding problem that needs attention. Therefore, in this paper we intend to develop
a shearlet based texture descriptor to describe the texture information more effectively.

The continuous shearlet transform (ST) of image f in two dimension can be defined as
follows:

STϕ,f (i, s, t)=< f ,ϕi,s,t > (1)

where i, t and s represents scale, translation and orientation parameters, respectively [32]. The
shearlet function ϕ(i, s, t) is defined as

ϕi,s,t = |detKi,s|−1/2ϕ(K−1
i,s (a− t)); i > 0, s ∈ R, t ∈ R2,ϕ ∈ L2(R2) (2)

The notation L2 denotes a vector space of square integrable functions on a 2-D euclidean
space R2.

The parameter Ki,s =
[

i −√
is

0
√

i

]
for i > 0, s ∈ R, t ∈ R2. The Ki,s matrix can be factorized

as Ki,s =
[

1 −s
0 1

][
i 0
0
√

i

]
= BsAi where Bs and Ai denotes shear and diagonal matrices. It is

important to note that anisotropic dilation is carried out by Ai (for multiscale partitions) and
shearing is done by Bs matrix (for directional analysis).

In NSST, nonsubsampled Laplacian pyramid (NSLP) filtering results in low and high fre-
quency components and directional filtering with different shearing matrices lead to shift invariant
form of shearlet transform. The NSST removes the up sampling and down sampling operations
unlike shearlet transform and therefore is completely invariant [36,37]. Also NSST is multi-scale
and has got high directional selectivity. Therefore the use of NSST in image retrieval applications
could do justice to these powerful features of NSST in effectively describing the features of input
image.

In Fig. 1, a visual example of image NSST approximation and detail subbands for one
remote sensing image is shown. The NSST approximation and detail subbands (Fig. 1) refer to the
subbands that contains low-frequency coefficients and the high-frequency coefficients respectively.
Figs. 1d–1e and 1f–1i respectively shows high frequency detail coefficients at the finest scale/Scale
1 and at next coarsest scale, i.e., Scale 2.

2.2 The Proposed Remote Sensing Image Retrieval Framework
This subsection describes the proposed NSSTds-3DLTP feature in a RSIR framework in

details. The framework consists of two major modules. The first module calculates the global
NSSTds features using NSST-domain statistical parameters and the second module calculates the
local 3D-LTP features from RGB channels. The proposed global NSSTds features are combined
with proposed local 3D-LTP features to generate a fused representation NSSTds-3DLTP leading
to an enhanced feature description.

The block diagram of NSSTds-3DLTP based framework is presented in Fig. 2.
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Figure 1: Example of NSST 2-level decomposition of a remote sensing image from PatternNet
dataset. (a) Original image; (b) Its grayscale form; (c) Approximation subband; (d) 1st Detail
subband (Scale 1); (e) 2nd Detail subband (Scale 1); (f) 1st Detail subband (Scale 2); (g) 2nd Detail
subband (Scale 2); (h) 3rd Detail subband (Scale 2); (i) 4th Detail subband (Scale 2)

Figure 2: The block diagram of proposed NSSTds-3DLTP descriptor in an image retrieval
framework

2.2.1 Computation of NSST Domain Statistical Features (NSSTds)
With statistical modeling of transform coefficients, the texture discrimination problem can

be solved with much less dimensions by simply measuring the similarity between the statistical
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models. This technique is relatively easier to implement and is highly effective. The parametric
distributions have been employed to model the image transform coefficients distribution, for
retrieval of images [3,14]. In the literature, wavelet transform domain statistical modeling of
images have been quite popular. The non-Gaussian distributions such as generalized Gaussian,
finite mixture of generalized Gaussian [13] and generalized Gamma [12] based models have been
successfully used in image retrieval applications. The discrete wavelet transform are not capable
of describing the linear singularities present in images. As also discussed in previous subsection,
the multiscale geometric analysis tools such as shearlet provides solution to the above problem as
this transform provides excellent sparse representation for higher dimensional singularities. Very
recently in [3], it was demonstrated that the image NSST coefficients obey highly non-Gaussian
statistics and the symmetric normal inverse Gaussian (SNIG) distribution was shown to be more
appropriate than Laplacian and BKF models [14] in modeling the NSST detail coefficients of
remote sensing images. Laplacian mixture (LM) model has been known for its good ability to
capture very heavy tails of highly non-Gaussian empirical data. It should be noted that the
tails of mixture of two Laplacian distributions decays slower than the tail of one Laplacian
distribution. The mixture of three or more Laplacian distributions may give more heavy tails than
a single Laplacian distribution or mixture of two Laplacian distributions, however as the number
of parameters to be estimated increases the potential to estimate them accurately gets decreased.
Therefore, we propose to model the NSST subband coefficients of remote sensing images using
2-state LM model [38,39].

In this paper, a mixture of two individual Laplacian distributions is referred to as 2-state LM
distribution or model. Let Px(j)(x(j)) (where j = 1, 2 . . .NT and NT is the no. of set of coefficients)
denote a 2-state LM model for modeling the image NSST high-frequency detail coefficients x(j)
which is expressed as [38]:

Px(j)(x(j))=ω(j)P1(x(j))+ (1−ω(j))P2(x(j)) (3)

where ω(j) and (1−ω(j)) are the weights to two individual Laplacian pdf’s P1(x(j)) and P2(x(j)),
respectively.

When P1(x(j))= 1
σ1(j)

√
2
e
−√

2|x(j)|
σ1(j) and P2(x(j))= 1

σ2(j)
√

2
e
−√

2|x(j)|
σ2(j) , Eq. (3) can be expressed as:

Px(j)(x(j))=ω(j)
1

σ1(j)
√

2
e

−√
2|x(j)|

σ1(j) + (1−ω(j))
1

σ2(j)
√

2
e

−√
2|x(j)|

σ2(j) (4)

The σ1(j) and σ2(j) respectively are the standard deviations of individual pdf’s P1(x(j))
and P2(x(j)). The parameters σ1(j), σ2(j) and ω(j) are first initialized and then estimated using
Expectation-Maximization (EM) algorithm [38,39].

To estimate the parameters of 2-state LM distribution, the parameters [σ1,σ2,ω] are first
initialized and subsequently the Expectation Maximization computation procedures are iteratively
carried out till the condition of convergence is reached.

Expectation procedure: In this procedure, for each iteration the responsibility element r1(j) is
calculated using:

r1(j)← ω(j)P1(x(j))
ω(j)P1(x(j))+ (1−ω(j))P2(x(j))

(5)
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and

r2(j)← (1− r1(j)) (6)

The responsibility elements must assure r1(j)+ r2(j)= 1 .

Maximization procedure: The ω(j) is calculated using:

ω(j)← 1
Nm

∑
i∈Nm(j)

r1(i) (7)

where Nm(j) denotes a square shaped local window with Nm coefficients inside it and is positioned
at the x(j) as center. The σ1(j) and σ2(j) are calculated using:

σ 2
1 (j)=

∑
i∈Nm(j)

r1(i)|x(j)|2
∑

i∈Nm(j)
r1(i)

(8)

σ 2
2 (j)=

∑
i∈Nm(j)

r2(i)|x(j)|2
∑

i∈Nm(j)
r2(i)

(9)

In order to defend the use of 2-state LM model in modeling the statistics of NSST coeffi-
cients, we perform Kolomogrov-Smirnov (KS) goodness of fit test [38] considering Laplacian, BKF
and SNIG as probable models. The KS test statistic supplies the information on distance between
empirical CDF (ECDF) and the CDF of a probable distribution. In this test, while calculating
the distance information between ECDF and each probable distributions CDF, the one which give
minimum KS statistic value is declared as the best fit for the given empirical data.

Mathematically, the KS test can be expressed as [38]:

KSv = maxx∈N |F(x)− F̂(x)| (10)

where F̂(x) and F(x) are the ECDF and CDF of the model respectively. The parameter x in
Eq. (10) denotes the emprical data, i.e., the high frequency NSST detail coefficients whereas N
denotes the total number of coefficients in the set of data.

Table 1 exhibits the average KS test statistics for remote sensing images taken from well
known WHU-RS19 image dataset.

Table 1: Average KS test values for WHU-RS19 dataset

Dataset pdf Level 1 Level 2 Level 3

Subband Subband Subband

1 2 3 4 5 6 7 8 1 2 3 4 1 2

WHU-RS19 Laplacian 0.042 0.041 0.038 0.036 0.041 0.047 0.042 0.034 0.049 0.040 0.046 0.050 0.051 0.055
BKF 0.080 0.084 0.085 0.099 0.087 0.014 0.083 0.088 0.062 0.077 0.064 0.063 0.062 0.051
SNIG 0.029 0.026 0.028 0.028 0.028 0.027 0.028 0.028 0.027 0.030 0.027 0.028 0.033 0.031
LMM 0.013 0.014 0.013 0.013 0.016 0.014 0.016 0.015 0.016 0.019 0.017 0.018 0.013 0.012
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For the purpose of performing KS test, we consider a 3-level NSST decomposition (with 1,2,3
directions) that yields one approximation subband and a total of 14 detail subbands. The KS
test was performed on 20 random images taken from diverse classes such as ‘Airport’, ‘Beach’,
‘bridge’, ‘commercial’, ‘desert’, ’farmland’, ‘footballfield’, ‘forest’, ‘Industrial, ‘Meadow’, ‘Park’,
‘River’, ‘Pond’, ‘Railway’, ‘Port’ and ‘Residential’ of WHU-RS19 dataset and finally averaged in
order to find the most appropriate distribution that approximates the statistics of high-frequency
NSST detail coefficients, considering Laplacian, BKF and SNIG distributions. It is clearly visible
from Table 1 that for most of the subbands, the KS test value for 2-state LM model is the
smallest that reveals clearly that it is able to approximate the detail subband coefficients better
than Laplacian, Bessel K form (BKF) and SNIG distributions.

In addition to KS test and to further demonstrate the suitability of 2-state LM distribu-
tion in modeling the image NSST detail coefficients, we plotted the histogram plots (Fig. 3) of
various detail subbands of NSST in logarithmic domain where Laplacian, BKF, SNIG and LM
model pdf’s are fitted in log domain. Fig. 3 clearly demonstrates the superiority of 2-state LM
distribution in approximating the statistics of high frequency detail coefficients as compared to
other statistical models. Both Fig. 3 (through log histogram plots) and Table 1 (through KS test
statistic) confirms that the 2-state LM model provides best fit compared to Laplacian, BKF and
SNIG distributions.
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Figure 3: The log histogram plot for six NSST subbands of one example image from WHU-
RS19 dataset where Laplacian, BKF, SNIG and LM pdfs are fitted to empirical histogram in log
domain. (a) Subband 1 (Scale 1); (b) Subband 2 (Scale 1); (c) Subband 1 (Scale 2); (d) Subband
2 (Scale 2); (e) Subband 3 (Scale 2); (f) Subband 4 (Scale 2)
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Given the 2-state LM model, the probability density function (pdf) of NSST coefficients in
each subband can be fully described using three parameters σ1,σ2,ω. We use two more statistical
parameters namely skewness (s) and kurtosis (κ) to describe the detail NSST subband coefficients.
The skewness and kurtosis indicates about the distribution symmetry and distribution peakedness
respectively. For a given sample of n values, we calculate the sample kurtosis and skewness using
following expressions:

s =
1
n

∑n
i=1 (xi − x)

3

[
1
n

∑n
i=1 (xi − x)

2
]3/2 (11)

κ =
1
n

∑n
i=1 (xi − x)

4

[
1
n

∑n
i=1 (xi − x)

2
]2 (12)

where xi and x denotes the ith value of x and the sample mean, respectively.

We use simple statistical mean and standard deviation features to describe the statistics of
approximation subband.

σ =
√√√√1

n

n∑
i=1

(xi − x)2 (13)

μ= 1
n

(
n∑

i=1

xi

)
(14)

Finally to describe the image NSST subbands using statistical features, we calculate the
2-state LM distribution parameters (σ1,σ2,ω), skewness (s) and kurtosis (κ) from each detail
subband along with the mean (μA) and standard deviation σA estimated from the approx-
imation subband, and concatenate them to construct the NSSTds feature vector as: F1 =
[(σ1(i),σ2(i),ω(i), s(i),κ(i)),μA,σA]i∈(1,Ns) (Ns is the total number of detail subbands).

2.2.2 Computation of Inter-Channel 3D-Local Ternary Pattern (3D-LTP) Features
The NSSTds proposed in previous subsection are regarded as global features of an image. The

global feature based description however fails to describe the detailed arrangement and perceptible
objects present in an image which usually can be best described using local features. For instance,
few land use and land cover based categories are illustrated largely by discrete objects such as
baseball fields and storage tanks. In order to address this issue we propose a new 3D-LTP based
technique where it is directly applied on the spatial RGB color channels [40].

The 2-fold motivation of extension of LTP to 3D-LTP are:

1. Since the RGB planes have high inter-plane correlation, the 3D-LTP exploits the relation-
ship between a pixel intensity in one plane with respect to the neighbors in the next plane
in reference to the same spatial position, thus capturing the color cue information too.

2. Since the 3D-LTP can capture the above local inter-plane relationship, the process behaves
like a high-pass kind of filter which catches the local intensity variations in an orientation.
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The traditional and popular LBP technique [9] describes the texture feature by computing a
LBP value where a center pixel is compared to all its neighbors in a circular neighborhood and
a 0/1 is assigned to each neighbor based on the center pixel and neighboring pixel difference as
follows:

LBPR,T =
T∑

i=1

2i−1f (I(pi)− I(pc)) (15)

f (x)=
{

1 x ≥ 0
0 else

(16)

where I(pc) is the center pixel value, I(pi) are the neighboring values, T denotes the total no. of
neighbors and R is the neighborhood radius.

Tan and Triggs proposed a 3-valued code called local ternary pattern (LTP) [17] which is
an extension to LBP where the pixel values in the range of ± threshold (th) around I(pc) are
quantized to 0, for the values above (I(pc) + th) are quantized to +1 and the values less than
(I(pc)− th) are quantized to −1. The function f (x) is thus modified as follows:

f (x, I(pc), th)=

⎧⎪⎨
⎪⎩
+1 x ≥ I(pc)+ th
0 |x− I(pc)|< th
−1 x ≤ I(pc)− th

(17)

where x = (I(pi)− I(pc)). A sample example of LBP and LTP calculation is shown in Fig. 4.
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Figure 4: Example of LBP and LTP calculation for a sample image. (a) LBP; (b) LTP (for
threshold 5)
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LTP can capture image details better than LBP, as LTP provides 3 valued code to the
difference between centre pixel and its neighbouring pixels.

The extension to 3D-LTP encodes not only the color cue information but also the local
texture information in a color image. Given a RGB color image, the proposed inter-channel 3D-
LTP produces six new images as shown in sample example computation in Fig. 5. The encoding
of R channel considers the center/reference pixel in R and consider neighbors from G channel.
Similarly, the encoding of G channel considers center/reference pixel in G channel and neighbors
from B channel and the center/reference pixel in B channel consider neighbors from R channel
for encoding B channel. The pattern images formed with 3D-LTP are presented in Fig. 6. Inter
channel LTP when calculated for each of R-G, G-B and B-R combination provides one upper and
one lower LTP. Therefore the R-G, G-B and B-R combinations produces a total of six pattern
images, i.e., three upper LTPs and three lower LTPs.
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Figure 5: A sample example for 3D-LTP calculation

To reduce the feature dimensions, we identify and consider only the ‘uniform’ patterns in 3D-
LTP. In this paper, the ‘uniform’ refers to uniform appearance of 3D local ternary patterns which
means the patterns that have two or less number of discontinuities in circular binary representation
and rest are referred to as non-‘uniform’ [16]. For example, 000100002 is an uniform pattern as
it has only 2 bitwise 0/1 transitions and 00101001 is non-‘uniform’ pattern with more than 2
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spatial transitions. It is observed that these ‘uniform’ patterns constitutes a majority of patterns
that corresponds to important features like edges, textures, sharp corners, etc. For an image with
R=1 and T=8, the unique ‘uniform’ patterns would be 58.

2.2.3 Fusion of NSST-Domain Statistical Features (NSSTds) and 3D-LTP Based Features
For describing a complex scene having complicated patterns and spatial structures, the blend

of complementary features such as local and global features are usually preferred to achieve good
results. In this subsection, we introduce a fused feature description using NSSTds and 3D-LTP
based features for retrieval of remote sensing images.

If feature vector F1 = [(σp1(i),σp2(i),ω(i), s(i),κ(i)),μA,σA]i∈(1,Ns) denotes the NSSTds calculated
from detail and approximation subbands and F2 is the feature vector obtained from 3D-LTP
‘uniform’ histograms, then the final feature vector is described by F = [F1, F2].

For example, if an input image is decomposed using 4-level NSST with 3,3,4,4 directions
(coarser to finest scale), we obtain a total of 49 subbands. Among these 49 subbands, one is
low-frequency approximation subband and rest 48 are high-frequency detail subbands, i.e., 8(23),
8(23), 16(24) and 16(24) exists in Scale 4 (most coarsest), Scale 3, Scale 2 and Scale 1 (finest)
respectively. With NSSTds, each high-frequency detail subband is represented by a 5 dimensional
feature vector, so a total of 48 detail subbands will provide a feature vector of dimension
(48 × 5) = 240. Since only standard deviation and mean parameters are used to describe an
approximation subband, a total of (240 + 2) = 242 dimension is required by NSSTds descriptor
to describe a total of 49 subbands (both approx.+detail subbands). From Fig. 5 it can be clearly
seen that with 3D-LTP technique (using uniform features), a total of 6, i.e., 3 upper LTP and 3
lower LTP feature maps are obtained. As 59 uniform features are obtained as a result of encoding
a single feature map, a total of (59 × 6) = 354 features are therefore required to Encode 6, i.e.,
3 upper and 3 lower LTP feature maps. For the given NSST decomposition setting, finally with
proposed NSSTds-3DLTP a total of 242+ 354 = 596 features are obtained.

2.2.4 Steps of NSSTds-3DLTP Feature Extraction Methodology
The algorithm for the proposed feature extraction technique is as follows:

Input-Image; Output-Feature vector
1. Convert the color remote sensing image into gray scale image.
2. Apply the NSST on the gray scale image.
3. Extract the 2-state LMM parameters, kurtosis and skewness from each NSST detail sub-

band and concatenate it with the mean (μA) and standard deviation (σA) calculated from
the approximation subband to form the feature vector F1.

4. Calculate the 3D-LTP based features from the R,G,B color channels of original remote
sensing image to form the feature vector F2.

5. The NSST-domain statistical features (NSSTds) and the 3D-LTP based features are finally
concatenated to form the final feature vector set F = [F1, F2] after normalization.
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Figure 6: The pattern images obtained for an image from PatternNet dataset with inter channel
3D-LTP (a) Original image (b) Upper LTP pattern image after encoding R channel, (c) Lower
LTP pattern image after encoding R channel, (d) Upper LTP pattern image after encoding G
channel, (e) Lower LTP pattern image after encoding G channel, (f) Upper LTP pattern image
after encoding B channel, (g) Lower LTP pattern image after encoding B channel

2.2.5 Similarity Measure
The extracted features of query image and database images are matched using a similarity

metric. In the experiments, the NSSTds-3DLTP features has been evaluated using ‘d1’, Euclidean,
Manhattan, Canberra and Chi-square similarity measures.

It has been observed that NSSTds-3DLTP exhibits best retrieval performance with ‘d1’
distance measure in comparison to Euclidean, Manhattan, Canberra and Chi-square distance
measures. Therefore, the NSSTds-3DLTP descriptor employs ‘d1’ distance measure for feature
matching in the image retrieval framework.

The d1 distance measure is given by:

D(dk, q)=
Lf∑
j=1

∣∣∣∣ fk(j)− fq(j)
1+ f k(j)+ fq(j)

∣∣∣∣ (18)

where D(dk, q) denotes the distance between dk and q where dk is the kth database image and q
denotes the query image. The length of the feature vector is Lf . The parameter fk denotes the

kth feature vector in the database of features and fq denotes the query feature vector. The least
distance value indicates the best match of the image in the database.
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2.2.6 Feature Vector Matching
The algorithm of the feature vector matching is as follows:

Input: Query image; Output: Most similar retrieved images
1. Calculate the feature vector of each image using NSSTds-3DLTP in the database.
2. Calculate the feature vector of query image using NSSTds-3DLTP.
3. Calculate the similarity between each database image feature vector and the feature vector

of query image using d1 distance.
4. Sort the similarity values obtained from Step (3).
5. The final sorted result are the most similar retrieved images from the database.

3 Experimental Results and Discussion

This section presents experimental results to validate the performance of the proposed fused
features. The experiments were carried out on a system with Intel core i5-7200U CPU, 2.50 GHz
and 8GB RAM using MATLAB computing platform. First the experimental settings are described
which includes the database details and performance evaluation criteria. Next, the experimental
test results and analysis are presented where the proposed descriptor is compared with many well
known existing descriptors.

3.1 Experimental Settings
3.1.1 Description of Datasets

Three publicly available popular remote sensing image databases namely WHU-RS19 [41],
Aerial Image Dataset (AID) [42,43] and PatternNet [44,45] are utilized in the experiments, the
details of which are given below:

1. WHU-RS19 Dataset
WHU-RS19 dataset [41] consists of a total of 1005 images of 19 different classes with a
high spatial resolution of 600 × 600 pixels (Table 2). All the images are taken from huge
satellite images (from Google earth imagery) where the light, emergence of objects and
their positions changes notably with repeated occlusions and is therefore known to be a
challenging dataset. The different image classes in this dataset are-airport, beach, bridge,
commercial, desert, farmland, football field, forest, industrial, meadow, mountain, park,
parking, pond, port, railway station, residential, river and viaduct. Sample images from
each image class are shown in Fig. 7.

Table 2: Databases used in the experiments

S. No. Database Total images No. of classes Image size

1. WHU-RS19 1005 19 600× 600
2. AID 10000 30 600× 600
3. PatternNet 30400 38 256× 256
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Figure 7: Example image from each class of WHU-RS19 dataset

2. Aerial Image Dataset (AID)
AID dataset [42,43] is known to be one of the largest annotated aerial image dataset

which is composed of a total of 30 classes with 10000 images (Table 2). The remote
sensing images in this dataset are obtained using dissimilar imaging sensors that are used
at separate time periods under diverse imaging situations which reduces the inter-class
variations and escalates the intra-scale variations, therefore bringing in more difficulties in
correct retrieval of similar images. Each class has around 220–420 images of size 600×600
pixels. The images of this dataset are classified into the following classes-airport, bare land,
baseball field, beach, bridge, center, church, commercial, dense residential, desert, farmland,
forest, industrial, meadow, medium residential, mountain, park, parking, playground, pond,
port, railway station, resort, river, school, sparse residential, square, stadium, storage tanks
and viaduct. The images of this large scale aerial dataset are collected selectively from
Google Earth imagery. Example image of each class of AID is presented in Fig. 8.

Figure 8: Example image from each class of AID dataset
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3. PatternNet
PatternNet [44,45] is the largest high resolution remote sensing image dataset (Table 2).

The images in this dataset are collected from Google Earth imagery or via Google MAP
API of US cities. This dataset consists of 38 image classes, each with 800 images of
dimension 256 × 256. The main advantage of this dataset is the presence of very less
background compared to other remote sensing image datasets. PatternNet is composed
of the following classes- airport, baseball field, basketball court, beach, bridge, cemetery,
chaparral, christmas tree farm, closed road, coastal mansion, cross walk, dense residential,
ferry terminal, football field, forest, freeway, golf course, harbor, intersection, mobile home
park, nursing home, oil gas field, oil well, overpass, parking lot, parking space, railway,
river, runway, runway marking, shipping yard, solar panel, sparse residential, storage tank,
swimming pool, tennis court, transformer station and waste water treatment plant. The
sample image from each class are presented in Fig. 9.

Figure 9: Example image from each class of PatternNet dataset

3.1.2 Performance Evaluation Criteria
The retrieval performance of the proposed descriptor is evaluated using average normalized

modified retrieval rank (ANMRR), mean average precision (MAP) and precision-recall (P-R)
graph, the details of which are given below:

1. Average normalized modified retrieval rank (ANMRR)
It is often employed to assess the retrieval performance of MPEG-7 standard and is quite
popular in the field of remote sensing image retrieval. The value of ANMRR ranges
between 0 and 1. Smaller the value, higher the retrieval efficacy [3,46]. For any query image
(q), Gr(q) denotes the size of ground truth images and let the ground truth image at kth

position is retrieved at the location Rank(k). Subsequently, the image ranks that are treated
as acceptable from retrieval point of view are expressed as K(q) which is two times that
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of Gr(q) and the images belonging to higher ranks are given a penalty as:

Rank(m)=
⎧⎨
⎩

Rank(m) if Rank(m) < K(q)

1.25K(q) if Rank(m) > K(q)

(19)

Therefore the average rank (Ar) for q is given as:

Ar(q)= 1
Gr(q)

Gr(q)∑
m=1

Rank(m) (20)

To control the effect of variable no. of ground truths of query image, the normalization is
done and averaged for all query images NQ to compute ANMRR:

ANMRR = 1
NQ

NQ∑
q=1

Ar(q)− 0.5[1+Gr(q)]
1.25K(q)− 0.5[1+Gr(q)]

(21)

2. Mean Average Precision (MAP)
The MAP is one way to congregate Precision-Recall curve into a single value that assess
the rank place of all ground truth. Let Prave(q) is the average precision for each query
image q which is simply the average of precision values of each relevant item:

Prave(q)=
∑n

k=1 (Pr(k) ∗ rel(k))

No. of relevant items
(22)

where rel(k) denotes a function which outputs 1 if the item at kth rank is valid or relevant
else outputs 0. The Pr(k) denotes the precision at k. The Prave values over all query items
lastly provides the MAP:

MAP =
∑NQ

q=1 Prave(q)

NQ
(23)

The range of MAP value lies between 0 and 100. Higher value of MAP signifies better
retrieval performance of the descriptor [3,46].

3. Precision-Recall (P-R) curve
Precision and recall, both are popularly used for image retrieval performance assessment.
The ratio of number of relevant images retrieved to the number of images retrieved gives
the precision value whereas recall is the ratio of number of relevant images retrieved to the
number of relevant images in a database. The descriptor that shows largest area under the
curve indicates high precision and high recall which exhibits better results relevancy and
improved correct relevant image retrieval [46].
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3.2 Results and Analysis
Here for the experiments, the remote sensing images are decomposed using NSST with 3,3,4,4

directions to extract the NSST-domain statistical features. It yields one approximation subband
along with 48 detail subbands. For each database, the performance of proposed descriptor is
compared with Gabor RGB [47], Granulometry [48], LBP [16], FV [49], VLAD [50] and MRELBP
[51] in terms of MAP and ANMRR (Tables 3 and 4).

Table 3: Performance comparison of the proposed descriptor for WHU-RS19 dataset in terms of
ANMRR and MAP

Dataset Methods MAP ANMRR

WHU-RS19 Gabor RGB [47] 31.69 0.570
Granulometry [48] 23.39 0.670
LBP [16] 24.06 0.663
FV [49] 38.06 0.532
VLAD [50] 41.28 0.561
MRELBP [51] 38.91 0.520
NSSTds 38.71 0.499
3D-LTP 32.85 0.576
NSSTds-3DLTP 44.98 0.451

Table 4: Performance comparison of the proposed descriptor for AID and PatternNet datasets in
terms of ANMRR and MAP

Dataset Methods MAP ANMRR Dataset Methods MAP ANMRR

AID Gabor RGB [47] 11.69 0.843 PatternNet Gabor RGB [47] 26.53 0.686
Granulometry [48] 9.04 0.877 Granulometry [48] 14.6 0.817
LBP [16] 10.36 0.857 LBP[16] 29.99 0.686
FV [49] 16.40 0.748 FV [49] 19.23 0.760
VLAD [50] 19.61 0.734 VLAD [50] 28.98 0.638
MRELBP [51] 18.19 0.679 MRELBP [51] 29.53 0.618
NSSTds 24.62 0.680 NSSTds 29.93 0.672
3D-LTP 17.54 0.775 3D-LTP 32.32 0.653
NSSTds-3DLTP 29.53 0.657 NSSTds-3DLTP 35.23 0.615

From Tables 3 and 4, it is observed that the global NSSTds features performs better than the
local 3D-LTP features both in terms of ANMRR and MAP for WHU-RS19 and AID databases,
and both NSSTds and 3D-LTP performs quite close for Patternnet. The good performance of pro-
posed NSSTds features is due to its suitability of capturing texture features for retrieval of remote
sensing images and can effectively describe features mainly over multiple scales and multiple
orientations. For each database, the proposed fusion NSSTds-3DLTP outperforms all the existing
methods including MRELBP which is also known for its ability to capture both global and local
features (Tables 3 and 4). The proposed method shows good improvement over other methods
both in terms of MAP and ANMRR which verifies the efficacy of combining proposed NSST
domain statistical feature and 3D-LTP. In terms of MAP,ANMRR, the NSSTds-3DLTP improves
upon Gabor RGB, Granulometry, LBP, FV, VLAD and MRELBP descriptors by 41.93%,20.87%,
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92.30%,32.68%, 86.14%,31.97%, 18.18%,15.22%, 8.96%,19.60% and 15.60%,13.26% respectively for
WHU-RS19 dataset. For AID, in terms of {MAP,ANMRR}, the NSSTds-3DLTP improves upon
Gabor RGB, Granulometry, LBP, FV, VLAD and MRELBP descriptors by {152.60%,22.06%},
{226.65%,25.08%}, {185.03%,23.33%}, {80.06%,12.16%}, {50.58%,10.49%} and {62.34%,3.24%}
respectively and for PatternNet dataset the NSSTds-3DLTP respectively improves upon Gabor
RGB, Granulometry, LBP, FV, VLAD and MRELBP descriptors by {32.79%, 10.34%},
{141.30%, 24.72%}, {17.47%,10.34%}, {83.20%,19.07%}, {21.56%,3.60%}, and {19.30%,0.48%}
in terms of {MAP,ANMRR}. Unlike most of the other methods, which are either local
or global, the subfeature 3D-LTP not only encodes the color cue but the local texture
information is extracted too. Further, the subfeature NSSTds is capable of capturing the
image information at multiple scales and orientations. The complementary characteristics of
NSSTds and 3D-LTP are combined in NSSTds-3DLTP to produce a highly discriminative
representation.

In Tables 5–7, the average precision of all descriptors including proposed descriptors
(NSSTds, 3D-LTP, NSSTds-3DLTP) for individual classes and for each database is shown. The
average precision value is calculated for 20 top retrieved images found in 20 trials for 20 images
selected randomly from each image class. Tables 5–7 show that the NSSTds-3DLTP features
performs best in most of the individual classes compared to other techniques including global
NSSTds and local 3D-LTP. From Tables 5–7, it can be clearly seen that the global NSSTds
features alone when compared to local 3D-LTP show good performance on the specific classes like
Forest, river, residential, bareland, school, mountain, parking etc. which are more texture based
and have image-scale attributes (Fig. 10). However, the local 3D-LTP alone when compared to
global NSSTds show good performance on the classes like intersection, railway, baseball field,
freeway, storage tank, golf course,church, commercial, pond, medium residential, bridge etc. that
contains unique arrangement of structures in the absence of which the images cannot be retrieved
correctly (Fig. 10). These results confirms that the local and global features contain mutually
supportive details and their combination is expected to improve the discriminativeness of features.
The retrieval of challenging images such as tennis court, dense residential, sparse residential,
stadium, playground etc. are significantly improved using fused NSSTds-3DLTP descriptor. In
Fig. 12, a few image query examples from different classes and its corresponding retrieved results
using proposed NSSTds-3DLTP descriptor (for all the three databases) are shown. From Fig. 12a,
it is observed that the images from the classes beach, bridge, desert, farmland, industrial and river
from WHU-RS19 dataset when given as input query images exhibit correct retrieval results except
for viaduct class where it provides one incorrect retrieved result, i.e., an image from Railway class
is wrongly retrieved here. Likewise, from Fig. 12b, it is observed that the images from the classes
airport, bareland, church, dense residential, desert, medium residential and school from AID
dataset when given as input query images exhibit correct retrieval results except for Beach class
where it provides one incorrect retrieved result i.e., an image from bridge class is wrongly retrieved
here. And, from Fig. 12c it is observed that the images from the classes baseball field, beach,
cemetry, chaparral, closed road, coastal mansion, waste water treatment plant from PatternNet
dataset when given as input query images exhibit correct retrieval results except for Airplane
class where it provides one incorrect retrieved result i.e., an image from waste water treatment
plant class is wrongly retrieved here. From Tables 3 and 4, Figs. 11 and 12, we can conclude
that the NSSTds-3DLTP is able to achieve encouraging results for most of the images over other
techniques, however it shows a few cases of incorrect retrieval too in relatively simple class such
as ‘beach’.



CMES, 2022, vol.131, no.1 157

Table 5: Average precision per class for WHU-RS19 dataset

Sl. No. Class Average precision

Gabor RGB Granulo. LBP FV VLAD MRELBP NSSTds 3D-LTP NSSTds-3DLTP

1 Airport 65.62 69.31 69.37 77.05 73.71 70.24 68.01 67.34 68.89
2 Beach 89.24 87.14 92.49 87.40 93.87 92.88 93.24 91.19 90.89
3 Bridge 75.18 68.75 65.31 69.12 71.39 74.58 75.42 75.48 70.78
4 Commercial 67.75 65.77 65.96 78.94 79.19 85.11 67.31 72.55 72.10
5 Desert 89.92 89.93 76.22 76.26 85.38 84.57 90.22 98.03 98.35
6 Farmland 74.02 62.14 79.43 76.96 79.17 78.85 80.02 87.54 80.89
7 Football field 61.59 64.15 65.98 70.04 74.66 75.34 76.25 73.73 79.06
8 Forest 83.27 81.21 77.29 89.84 97.09 86.56 87.34 85.02 95.48
9 Industrial 68.75 68.32 68.51 78.07 74.23 66.52 66.92 66.57 71.27
10 Meadow 80.46 75.36 68.10 76.96 83.37 88.93 82.68 80.80 88.06
11 Mountain 80.74 76.04 84.02 95.91 96.46 90.68 88.44 67.60 90.26
12 Park 72.01 66.04 68.53 81.94 76.78 76.31 66.78 80.69 79.28
13 Parking 69.29 68.12 70.03 84.13 88.68 80.28 74.63 72.19 78.78
14 Pond 71.48 64.78 69.36 68.00 67.83 79.41 70.23 71.35 84.41
15 Port 62.79 75.69 69.00 71.29 72.30 77.42 74.03 73.67 76.49
16 Railway station 77.09 66.06 86.52 85.08 86.92 84.67 77.47 83.06 82.93
17 Residential 68.29 68.39 67.22 71.46 75.99 80.30 76.45 67.94 78.35
18 River 73.43 65.36 71.64 72.46 67.44 77.01 80.77 73.89 82.30
19 Viaduct 62.68 63.61 66.87 78.12 76.31 76.64 77.63 69.72 77.65

Table 6: Average precision per class for AID dataset

Sl. No. Class Average precision

Gabor RGB Granulo. LBP FV VLAD MRELBP NSSTds 3D-LTP NSSTds-3DLTP

1 Airport 64.81 61.08 71.28 68.50 67.70 71.79 98.79 69.89 98.69
2 Bareland 76.52 74.71 76.08 77.51 76.40 69.72 86.15 82.14 91.61
3 Baseball field 73.88 68.78 77.60 63.66 71.03 69.88 72.49 78.84 82.92
4 Beach 74.82 67.32 70.07 77.92 87.27 74.25 73.81 82.40 81.37
5 Bridge 70.44 73.82 69.01 68.38 72.90 77.82 66.44 68.91 67.08
6 Center 74.56 73.60 69.13 70.42 71.30 75.47 70.93 64.80 68.68
7 Church 65.56 70.47 69.63 70.75 72.04 73.60 67.99 72.87 75.75
8 Commercial 68.88 67.33 71.87 74.62 75.36 73.21 69.37 79.04 79.65
9 Dense residential 76.09 76.69 70.33 80.16 84.05 71.16 83.28 78.39 87.76
10 Desert 88.64 80.20 73.77 66.77 70.81 85.79 85.75 89.71 96.50
11 Farmland 73.53 70.61 75.78 71.94 74.92 67.89 72.75 73.18 75.11
12 Forest 77.13 74.60 83.66 91.01 93.74 77.61 92.95 86.50 94.94
13 Industrial 63.32 66.77 70.21 71.67 74.12 81.46 67.69 66.33 69.64
14 Meadow 71.86 71.00 69.52 70.58 74.52 75.40 78.66 89.23 93.46
15 Medium 70.93 72.39 73.53 72.03 73.34 67.15 74.74 84.29 86.00

residential
16 Mountain 79.25 65.82 86.53 89.94 90.39 69.09 88.43 71.19 93.25
17 Park 63.74 64.73 62.00 68.53 70.87 74.04 66.39 68.77 71.88
18 Parking 73.50 70.63 75.21 90.05 92.07 67.58 85.51 77.12 85.03
19 Playground 68.77 66.08 67.56 63.88 70.82 70.60 69.25 69.40 76.60
20 Pond 65.43 65.22 73.57 66.09 67.27 75.55 73.19 72.69 80.40

(Continued)
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Table 6 (continued)

Sl. No. Class Average precision

Gabor RGB Granulo. LBP FV VLAD MRELBP NSSTds 3D-LTP NSSTds-3DLTP

21 Port 69.51 70.45 70.35 78.97 81.71 64.25 77.86 77.52 84.30
22 Railway station 67.26 73.54 72.46 69.49 71.61 67.56 70.76 68.51 69.14
23 Resort 68.73 68.02 71.05 64.85 72.98 74.20 67.58 72.53 73.94
24 River 66.75 66.69 72.57 67.26 73.46 68.20 72.88 68.15 80.47
25 School 73.96 66.36 70.14 68.26 67.31 69.08 77.04 65.11 76.41
26 Sparse residential 78.90 75.02 80.20 81.37 84.51 71.27 90.04 88.51 96.25
27 Square 70.64 71.43 71.79 68.18 70.56 69.39 65.79 65.72 65.36
28 Stadium 70.22 73.47 71.32 67.09 71.82 68.47 71.42 69.51 75.61
29 Storage tank 66.00 64.93 66.96 68.29 74.17 67.49 75.59 69.95 80.54
30 Viaduct 62.71 65.36 63.21 80.54 80.85 71.21 73.43 64.36 77.61

Table 7: Average precision per class for PatternNet dataset

Sl. No. Class Average precision

Gabor RGB Granulo. LBP FV VLAD MRELBP NSSTds 3D-LTP NSSTds-3DLTP

1 Airplane 85.10 66.64 75.70 70.62 73.13 71.23 79.34 94.08 91.20
2 Baseball field 83.28 72.95 80.03 76.89 76.26 76.48 68.64 89.44 84.91
3 Baseball court 69.96 71.10 69.01 75.98 76.91 89.48 78.81 75.97 75.20
4 Beach 98.03 89.60 97.43 83.84 92.65 91.56 99.57 99.44 99.90
5 Bridge 88.06 79.84 88.45 83.16 82.47 85.67 90.69 91.81 95.00
6 Cemetery 84.53 85.21 86.84 84.86 81.48 88.98 93.99 93.43 97.15
7 Chaparral 99.31 98.19 99.98 99.76 99.96 75.86 99.86 100.00 100.00
8 Christmas tree 97.97 94.00 99.27 98.60 99.66 85.24 99.93 99.06 99.81

farm
9 Closed road 84.74 66.31 80.94 72.66 76.78 71.18 86.38 90.97 93.27
10 Coastal mansion 85.34 82.88 87.25 62.85 65.16 74.93 85.70 92.23 94.20
11 Crosswalk 94.19 80.08 94.11 76.30 77.43 82.95 97.25 98.42 99.15
12 Dense residential 87.22 77.17 86.07 69.57 73.57 80.03 90.42 91.15 92.80
13 Ferry terminal 72.49 71.25 79.66 75.64 73.39 79.32 75.86 84.87 84.40
14 Football field 77.22 65.02 71.01 69.04 79.04 82.29 82.22 82.90 87.65
15 Forest 98.02 95.26 97.31 97.27 98.37 89.22 99.87 99.13 99.94
16 Freeway 99.20 81.83 99.51 81.61 97.88 82.39 99.19 99.96 99.97
17 Golf course 87.38 84.70 86.77 74.69 66.83 85.30 87.39 94.81 94.00
18 Harbor 81.79 87.37 83.96 82.70 93.18 81.46 94.98 90.76 95.22
19 Intersection 79.82 70.28 82.04 66.67 69.19 81.29 82.50 86.98 89.11
20 Mobile home park 93.97 92.05 96.19 92.99 97.10 74.61 98.93 98.48 99.22
21 Nursing home 67.54 68.71 76.34 63.68 69.37 83.53 73.50 77.06 81.65
22 Oil gas field 98.63 90.27 99.89 89.98 95.42 86.47 99.47 99.58 99.96
23 Oil well 99.12 97.21 99.82 99.98 99.84 79.27 98.20 99.88 99.76
24 Overpass 80.45 68.03 88.83 71.97 78.92 83.22 76.40 86.41 82.65
25 Parking lot 82.80 88.57 78.04 87.62 97.58 86.73 97.36 93.62 97.25
26 Parking space 86.10 89.39 85.34 89.26 93.12 81.08 88.19 89.84 90.06
27 Railway 83.67 72.42 84.59 79.89 78.84 78.07 78.90 89.73 89.49
28 River 97.16 94.01 98.75 95.25 94.46 76.42 99.60 99.87 99.97
29 Runway 95.69 74.88 94.43 79.71 83.88 77.93 96.86 96.79 98.57

(Continued)



CMES, 2022, vol.131, no.1 159

Table 7 (continued)

Sl. No. Class Average precision

Gabor RGB Granulo. LBP FV VLAD MRELBP NSSTds 3D-LTP NSSTds-3DLTP

30 Runway marking 90.26 86.16 86.73 74.68 75.22 80.58 89.45 95.00 94.71
31 Shipping yard 89.07 83.34 93.13 78.32 87.91 78.27 93.92 96.70 97.29
32 Solar panel 88.39 81.81 91.20 87.72 91.77 84.75 90.74 92.54 93.16
33 Sparse residential 76.29 70.01 75.42 61.45 66.63 95.14 80.03 79.99 84.51
34 Storage tank 84.97 77.88 78.02 76.60 84.46 80.78 80.94 86.90 88.49
35 Swimming pool 82.82 71.32 85.64 63.77 69.71 76.75 86.96 92.51 91.63
36 Tennis court 81.99 78.92 83.79 80.75 89.17 77.11 87.04 84.88 87.94
37 Transformer station 80.50 69.75 74.16 75.94 77.22 84.59 77.98 78.34 80.55
38 Wastewater treat. 79.22 72.15 78.45 75.96 78.31 77.44 88.46 85.06 91.64

plant

Figure 10: Image classes on which improved results are achieved using global NSSTds alone
(1st row) and local 3D-LTP alone (2nd Row) when compared to each other. (a) ‘Forest’ (b)
‘Mountain’ (c) ‘River’ (d) ‘Residential’ (e) ‘Bareland’ (f) ‘School’ (g) ‘Golf Course’ (h) ‘Intersection’
(i) ‘Railway’ (j) ‘Baseball field’ (k) ‘Freeway’ (l) ‘Bridge’

In order to further show the superiority of proposed fused features over other techniques
including NSSTds and 3D-LTP, the P-R curves for all the techniques are shown in Figs. 11a–11c
for WHU-RS19, AID and PatternNet databases respectively. Precision is defined as the ratio of
number of relevant images retrieved to the total number of retrieved images, however recall is
defined as the ratio of number of relevant images retrieved to the total number of relevant images
present in the database. Precision indicates the accuracy of retrieval and recall indicates about the
efficacy of the retrieval performance. The precision-recall graph describes about the inherent trade-
off between these two parameters and is an important performance indicator in retrieval systems.
The descriptor who has the largest area enclosed by its precision-recall curve (high precision and
high recall) is considered as the the superior one.
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Figure 11: The precision-recall curve for (a) WHU-RS19, (b) AID and (c) PatternNet dataset

Figure 12: Few cases of input query examples taken from different classes and the corresponding
retrieval results using NSSTds-3DLTP (Input query image, correct retrieved results and wrong
retrieved results are enclosed in Black, Green and Red coloured boxes respectively for more
clarity). (a) WHU-RS19, (b) AID, (c) PatternNet

In Fig. 11a, i.e., for WHU-RS19 dataset, the P-R curve obtained using NSSTds-3DLTP
encloses the largest area and exhibits the best results followed by VLAD, FV, NSSTds, MRELBP,
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3D-LTP, Gabor RGB, LBP and Granulometery descriptors. For AID dataset, the NSSTds-3DLTP
exhibits the superior results followed by NSSTds, VLAD, FV, 3D-LTP, MRELBP, Gabor RGB,
LBP and Granulometry (Fig. 11b). Similarly, for PatternNet too, the NSSTds-3DLTP shows
the best results followed by MRELBP, 3D-LTP, LBP, NSSTds, VLAD, FV, Gabor RGB and
Granulometry (Fig. 11c). The P-R curve results are observed to be consistent with Tables 2 and
3 results.

From Table 8, it can be seen that the feature dimensions of NSSTds-3DLTP is less than
MRELBP and higher than other techniques. The Gabor RGB, granulometery, LBP, FV and
VLAD techniques have comparatively less feature dimensions than NSSTds-3DLTP, but their
performance is also well less than NSSTds-3DLTP. The NSSTds-3DLTP outperforms state of the
art MRELBP with relatively less feature dimensions.

Table 8: Comparison of feature dimensions of various techniques

Methods Gabor RGB Granulometry LBP FV VLAD MRELBP Proposed

Dimension 96 78 256 512 512 800 596

4 Conclusions

This paper combines global feature based on NSSTds and local feature based on 3D-LTP to
generate a combined representation, i.e., NSSTds-3DLTP for retrieval of high-resolution remote
sensing image. The complementary characteristics of local and global texture features along with
colour information are utilized in NSSTds-3DLTP to produce a highly discriminative representa-
tion. Through KS test and log histogram plots we have shown that the 2-state LM distribution
is the most appropriate distribution that approximates the statistics of high-frequency detail sub-
band coefficients. Five statistical parameters are extracted from each NSST subband to form the
feature vector of NSSTds. The 3D-LTP exploits both local texture details and colour information
whereas the NSSTds exploits only global texture information. The image retrieval experiments
using WHU-RS19, AID and PatternNet datasets validate the superior performance of NSSTds-
3DLTP over many existing techniques with an encouraging margin. The NSSTds-3DLTP achieves
the performance without any requirement for a pre-training and without parameter tuning and
with less dimensions which is important from real-time implementation point of view.

In the future work, more effective local/global combination will be investigated and the shape
based features will be exploited too.
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