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ABSTRACT

Defects detection with Electroluminescence (EL) image for photovoltaic (PV) module has become a standard
test procedure during the process of production, installation, and operation of solar modules. There are some
typical defects types, such as crack, finger interruption, that can be recognized with high accuracy. However, due
to the complexity of EL images and the limitation of the dataset, it is hard to label all types of defects during
the inspection process. The unknown or unlabeled create significant difficulties in the practical application of the
automatic defects detection technique. To address the problem, we proposed an evolutionary algorithm combined
with traditional image processing technology, deep learning, transfer learning, and deep clustering, which can
recognize the unknown or unlabeled in the original dataset defects automatically along with the increasing of the
dataset size. Specifically, we first propose a deep learning-based features extractor and defects classifier. Then, the
unlabeled defects can be classified by the deep clustering algorithm and stored separately to update the original
database without human intervention. When the number of unknown images reaches the preset values, transfer
learning is introduced to train the classifier with the updated database. The fine-tuned model can detect new
defects with high accuracy. Finally, numerical results confirm that the proposed solution can carry out efficient and
accurate defect detection automatically using electroluminescence images.
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1 Introduction

In the past decades, the huge capacity of solar energy has been established around the world
and the energy conversion efficiency of photovoltaic (PV) has achieved tremendous improvements
year by year [1,2]. However, the conversion efficiencies can be impaired due to the long-time
exposure under outdoor conditions that can cause long-term deterioration of PV module perfor-
mance [3,4]. To detect the defects in the PV module, several physical algorithms are proposed.
For example, current-voltage (IV) characteristics have been widely used to evaluate the status
of the PV module [5–7]. However, IV curves could be scarcely influenced by some tiny defects
that make it infeasible to accurately detect defects in PV modules [8]. In addition, infrared (IR)
imaging is employed to detect the defects. The idea behind the IR imaging is that the temperature
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in the defective area is higher than the normal area. However, such a technique cannot detect
micro-defects due to the low resolution of IR images [9].

The inner structure of a silicon PV module is presented in Fig. 1. The current generated in a
cell is collected and transferred through the busbars. The power generated in a PV module is the
sum of all cells in the module. Therefore, the cell is a basic unit of a PV module and almost all
of the defects in EL images are cell-level.
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Figure 1: Inner structure of PV module and cell: (a) strings; (b) a cell

In recent years, EL is treated as an excellent technique to detect defects in PV modules.
The idea behind it is that when a specified current is injected into the PV module, radiative
recombination of carriers can create light emission and the light can be collected by the specified
camera. Therefore, EL images can provide an inner perspective to evaluate the state of PV
modules [10,11]. Given that the PV plants are always deployed in remote areas covering a large
geographical area or some unsuitable places for human operation, the manual inspection with EL
images is unfeasible, especially for large-scale PV plants. A set of studies for automatic defect
detection using EL images has been carried out as follows. In [12], a series of image processing
algorithms are proposed to extract cells from the PV module and then a well-trained CNN is
used to recognize the crack. In [13], a public dataset of solar cells is provided that contains 2,624
solar cell images and two approaches are proposed to classify the EL images. In [14], a fusion
model of Faster R-CNN and R-FCN is proposed to detect solar cell surface defects. In [15],
an efficient method for defects inspection has been proposed that leverages the multi-attention
network and the hybrid loss to improve the performance. In [16], a pipeline is developed to extract
and classify the cell from the PV module. In [17], a deep learning-based defect detection of a
photovoltaic module is proposed and GAN is introduced for the data augmentation. In [18],
a novel complementary attention network is introduced that suppresses the noise feature in the
background and enlarges the defects features simultaneously. In [19], a model is proposed to
predict PV module electrical properties from EL image features using pixel intensity-based and
machine learning-based classification algorithms. In [20], the detection of a crack in the PV
module manufacturing system is presented and the proposed solution can identify the cells with
cracks with high accuracy. In [21], the effect of crack distributions over a solar cell in terms of
output power, short-circuit current density and open-circuit voltage was investigated. In [22], a new
architecture that integrated fuzzy logic and convolution operations was proposed to suppress the
subjectivity and fuzziness of defects recognition. In [23], an encoder-decoder network is proposed
to perform semantic segmentation of EL images. In [24], a deep learning-based detection of
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multi-type defects was proposed to implement inspection in the production line. In [25], a deep
feature-based method was proposed to classify the defects. In this paper, the deep features were
extracted by deep neural networks that were classified with machine learning methods.

The details of the previous work [12–25] are presented in Table 1. The limitations of these
solutions can be summarized as follows: (1) Most images used in the previous studies are collected
during the factory inspection and the resolution of the images captured during the factory inspec-
tion is generally much higher than those collected during the field inspection using the unmanned
aerial vehicle (UAV). The solution used in the references could not be appropriate for the field
inspection; (2) The dataset with sufficient images covering all defects can be hardly obtained,
and the unknown or unlabeled defects may exist in the original dataset. This can degrade the
defect detection performance; (3) Image annotation for the unknown or unlabeled defects can
be time-consuming in practice. These limitations may significantly degrade the performance of
automatic defect detection using EL images in terms of both efficiency and accuracy in large-scale
photovoltaic plants.

Table 1: Defects detection of PV module with EL images

Reference/
Year

Model Data in details GPU Detected defects types

TrainValidationTest

[12]/2018 LeNet 600 60 10 NVIDIA
GTX1080

crack

[13]/2019 Adapted
VGG

1968 – 656 – material defects; finger
interruption; micro-crack;
degradation of cell
inter-connection; electrically
insulated cell parts

[14]/2020 Faster
RCNN

861 – 600 NVIDIA
GTX1080

broken cells; cracks;
unsoldered areas;

[15]/2020 Proposed
CNN

620 – 208 – crack;
finger interruption

[16]/2019 Proposed
CNN

2840 – 710 – crack; corrosion;

[17]/2020 Proposed
CNN

6400 1600 600 NVIDIA
TITAN

finger interruption;
micro-crack; break;

[18]/2020 Proposed
CNN

847 – 2782 – finger interruption; crack;
black core

[19]/2020 Proposed
CNN

2841 711 889 GPU busbar corrosion (5 levels)

(Continued)
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Table 1 (Continued)

Reference/
Year

Model Data in details GPU Detected defects types

Train Validation Test

[20]/2020 Traditional
image
process
methods

– – – – crack

[21]/2021 manual – – – – crack
[22]/2021 Proposed

CNN
1679 420 525 NVIDIA

TESLA P100
Defective; non-defective

[23]/2021 Proposed
CNN

124 – 25 – shunts; droplets

[24]/2021 Proposed
CNN

3591 1196 1196 – weak soldering; black
area; scratch; finger
interruption; crack; low
cell; finger block; cell
mix; disconnection;
break; high cell; belt
drop; bright mark;
brightness saltation;
foreign object; black
edge; sucker mark

[25]/2021 Proposed
CNN

2624 Nvidia
GT-740 M

non-defected (0% defect
rate), Possibly normal
(33% defect rate),
Possibly defected (66%
defect rate) and
Defected (100% defect
rate)

To address the aforementioned challenges, a novel approach using the combination of deep
learning, deep clustering, and transfer learning is introduced to establish our defects detection
system of PV cells with EL image, which can recognize the labeled and unknown or unlabeled
defects with high performance. Specifically, a deep learning-based features extractor and classifier
are proposed to extract the deep features of images and classify the images. In addition, a
deep clustering with unsupervised manner is designed to automatically classify the unlabeled or
unknown defects. The structure of the CNN is adapted to improve computing efficiency. The
framework of the proposed algorithmic solution is illustrated in Fig. 2.

The proposed defects detection system utilizes the phased design to address the outstanding
technical challenges from both algorithm and system perspectives. The technical contributions
made in this work are as follows:
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1) A deep clustering algorithm is designed to cluster the different unknown or unlabeled
defects based on the distance difference of the defects feature vector that is extracted by the
well-trained CNN-based model. In addition, the deep clustering algorithm can be classified
in an unsupervised manner;

2) A transfer learning algorithm is introduced to accurately detect the newly formed defects
that are classified by the deep clustering algorithm. Data augmentation is applied to
increase the performance of the CNN-based classification model;

3) To get the best trade-off between the performance and computing complexity, the effect
of the model structure is considered and analyzed. The proposed model can obtain high
accuracy with relatively simple computational complexity;

4) A real-world testbed with unmanned aerial vehicles (UAV) is built. To the best of the
authors’ knowledge, this work is the pioneering work to adopt the UAV for EL inspection
in PV plants. In addition, a data set of EL images of PV modules with various defects
is well established and maintained. The EL image can be shared when requested for
non-commercial purposes.

Figure 2: Framework of the proposed defect detection algorithm

The remainder of the paper is organized as follows: Section 2 presents the details of the
proposed algorithm; In Section 3, the performance of the proposed solution is evaluated through
extensive experiments and the numerical results are presented and discussed; finally, the conclusive
remarks and future work are given in Section 4.

2 The Algorithm for Defects Detection

The framework contains several parts and steps that are presented in Fig. 3 and the crucial
parts are simply illustrated as follows:

The feature extractor (ConvNet f (θ)): The extractor is a refined CNN-based model to extract
the feature vectors for defects classification or clustering. In the pre-training process, the classifier
is firstly trained and obtains the original parameters with the original labeled images. To reduce
the computational complexity, the parameters in ConvNet are frozen in the transfer learning
period. The augmentation of the images is introduced to further improve the system performance.
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Classifier (gw(yn|Pn)): The classifier is a fully connected layer to classify the defects. In the
pre-training period, gw can get the initial parameter to distinguish the original labeled images and
in the transfer learning process, the parameter in gw is updated to classify the novel dataset. To
increase the performance, the augmentation of the images is also introduced.

Unknown defects detector: Given that several defects in the collected dataset are unknown, we
introduce a deep clustering algorithm to recognize the unknown defects without human interven-
tion. A threshold ξ is used to distinguish the unknown defects. An autoencoder and k-means
algorithms are designed to classify the unknown defects.

Transfer learning and updating strategy: To decrease the computing consumption, transfer learn-
ing is introduced to learn the feature of newly defects classified and the images with unknown
defects can be classified automatically and transfer into the training set.

Figure 3: Details of the proposed defect detection algorithm

The details of the above algorithms are illustrated as follows.

2.1 The ConvNet and Defects Classifier
The aerial images of PV cells in the collected data set are represented as {(I1, p1), (I2, p2),. . .,

(In, pn)}, where Im is the images collected at the mission point m. The images in the training set
are denoted as T= {(x1, y1), (x2, y2),. . ., (xn, yn)}, where xm means the mth images in the training
set and ym is the class label of the mth images.

Motivated by [17], a novel structure of the deep learning-based model is proposed to extract
the feature or representation of the image. The model for features extraction is denoted as
ConvNet that contains two blocks: block A and block B and the classifier contains two fully
connected layers. The structures of blocks A and B in ConvNet and the classifier are presented
in Figs. 4a–c, respectively.
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Figure 4: The structure of ConvNet and classifier: (a) block A in ConvNet; (b) block B ConvNet;
(c) classifier gw

In fact, the deep learning-based model can be considered as a ConvNet mapping (f (θ)),
where θ is the parameters in the mapping. The vector obtained by applying the mapping is the
representation or feature of the input image. To classify the image, a parametrized classifier gw
is built on the top of the ConvNet f (θ), where w is the parameter of the classifier. The label
predicted by gw is the image’s types to one of the k possible pre-defined classes. The purpose of
the training process in the training set is to find the parameters θ∗ and w* that the f (θ∗) and gw∗
can get the good general features and recognize the defects with high accuracy. The parameters θ

and w are jointly updated by optimizing the following issue:

min
θ ,w

(
∑
j

l(gw(fθ (xj)), yj)) (1)

where l is the cross-entropy loss function that is commonly applied to the classification task, as
presented in (2):

E=−
∑
j

tk log(yk) (2)

where yk is the output of the deep learning-based model and tk is the label of the image. The
loss function is minimized by the mini-batch stochastic gradient descent. The output of a layer in
the model can be computed as follows:

xl=f (ul), with ul =Wl ·xl−1 + bl (3)

where xl is the output of the lth layer and Wl and bl is the weight and bias in the lth layer. The
updating of the weights can be calculated by (4) and (5)

Wij
l =Wij

l−1− η
∂E

∂Wij
l
+ νlij (4)

vlij = γ vl−1
ij −ληwl−1

ij (5)

where ∂E
∂Wij

l is the gradient of the kernel weights and η is the learning rate, Wij
l and vlij denote

the weight and momentum between the neuron i in lth layer and the neuron j in (l+1)th layer.

To improve the performance of the proposed model, data augmentation is widely applied to
increase the size of the data. It has been proved in [17,25] that generative adversarial networks
can create synthetic images and improve the performance of the deep learning-based method.
However, due to the operation complexity of GANs and the size of the collected EL images
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data, Gaussian blur and geometric transformation are performed in this paper to increase the
number of training samples. The details of our data augmentation algorithm are presented in
Algorithm 1.

Algorithm 1
Input: the original images I:(i1, i2, . . . , in)
Output: the augmented images (i′1, i

′
2, . . . , i

′
m)

1 while i ∈ (i1, i2, . . . , in) do
// Geometric transformation for the whole image in training data set

2 Initialization: θ ∈ (−3◦ ∼ 3◦),(Δx,Δy) ∈ (−5%∼ 5%), ki
3 while pixel Pi ∈ I do
4 Geometric transformation // Eq. (6)
5 Get the new pixelP′
6 end

// Gaussian blur for the whole image in training data set
7 Initialize the standard deviation δ

8 while pixelPi ∈ I ′ do
9 Gaussian blur //Eq. (7)
10 Get the new pixelP′′
11 end
12 Obtain the augmented image set
13 end

The grey value in the point (x, y) of image i is denoted as Pi(x, y) and the corre-
sponding transformed grey value is denoted as P′

i(x,y). The geometric transformation can be
performed by (6){
x′ = kx1 ·x · cos θ + ky1 · y · sin θ +Δx

y′ = ky2 · y · cos θ − kx2 ·x · sin θ +Δy
(6)

where θ ∈ (−3◦ ∼ 3◦) is the rotation angle, kx1∼2, ky1∼2 are the transformation coefficients and
(Δx,Δy) ∈ (−5% ∼ 5%) are the translation factors in axes x and y. The operation of Gaussian
blur can be performed by (7)

Pi(x′,y′)=Pi(x,y) ·G(x,y)

=Pi(x,y) · 1
2πδ2

· e−(x2+y2)/2δ2 (7)

where G(x, y) is the Gaussian function and δ is the standard deviation.

2.2 Unknown Defects Recognition and Training Set Upgrade Strategy
The images of PV cells captured by UAV are denoted as χ : (x1, x2,. . .,xn) and all χ : (x1,

x2,. . .,xn) are transferred into the well-trained classifier that is described in Section 2.1. The
well-trained classifier is represented by gw(f (θ)) and the output of the classifier is the marginal
probability distribution P. Therefore, the classification of a PV cell can be denoted as {xi, yi, Pi},
where xi is an image of PV cell, Pi is the maximum probability of the predicted label yi.
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If the output of classifier Pi < ξ , where ξ is the preset threshold, it is reasonable to believe
that xi is an unknown defect. To classify the same type of unknown defects, a deep clustering
algorithm (DC) is designed.

The proposed deep clustering algorithm contains two parts: (1) autoencoder; (2) k-means
algorithms. The autoencoder is to extract the dominant features and consists of an encoder and
decoder. The autoencoder is trained to minimize the reconstruction error, which is presented
in (8)

l(z, z′)= ||z− z′||2 (8)

Algorithm 2
Input: the original images I:(i1, i2, . . . , in)
Output: the predicted label yi
1 while i ∈ (i1, i2, . . . , in) do
2 Put in into the well-trained model gw(f (θ)) and get the probability Pn and the feature f (θ)

3 if Pi < ξ do
4 transmitting the image into a separate space  and labeled unknown
5 end

//the first process of predication is finished
6 end
7 Train the autoencoder by (8)

while i′ ∈ do
8 Put the feature f (θ) into the k-means clustering by (9)
9 while s(k) is increasing do
10 k=k+1
11 computing the score of the clustering s(k) by (10)
12 end
13 get the max s(k) and k types of the unknown defects
14 separate the k types defects and store them into the database
15 updating the training set
16 end

Preliminary research [26] indicates the choice of the clustering algorithm is not crucial and in
this paper, we introduce a standard clustering algorithm, k-means, to group the features extracted
by ConvNet. In our cases, the features fθ (xn) computed by ConvNet are clustered into k groups.
More specifically, k-means for the features is to minimize the within-cluster k square as presented
in (9)

min
k∑
j=1

∑
z∈Si

||z− ui|| (9)

where ui is the arithmetical mean of points in the nearest or same center set Si. The pseudocode
of defect detector and training set updating strategy is presented in Algorithm 2.

s(k) is introduced to calculate k, as given in (9). More specifically, in (10), a smaller Wk and
larger Bk indicate higher s(k), and hence a better clustering performance. Therefore, when max
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s(k) is obtained, k can be calculated.

s(k)= tr(Bk)
tr(Wk)

· m− k
k− 1

(10)

where Bk is the trace of the between group dispersion matrix and Wk is the covariance matrix of
data in the same type, and tr is the trace of the matrix.

2.3 Detection of the Unknown Defects Using Transfer Learning
To decrease the computing complexity, transfer learning is introduced to train the classification

model. In this paper, the labeled training set is considered as the source domain Ds = {χ , P(X)},
where χ is the feature space of the labeled PV cell images and P(x) is marginal probability.
Similarly, the target domain can be denoted as T = (x, f (·)), where x is the feature space in the
target domain and f (·) is the target predictive function. The purpose of our design is to improve
the learning process of predictive function f (·) using the knowledge in Ds.

The earlier layers in the deep learning-based model are to extract the generic features from
images, e.g., colors, edges and shapes, while the deeper layers are more likely to learn the more
abstract features for classification [27]. Depending on the defects features in the EL images, it is
optional to fine-tune the last full connected (FC) layer in the classifier and freeze the earlier layer
in the ConvNet. ConvNet is used as the feature extractor for the image representation that is
pre-trained on the given training set.

In the training process, the Adam optimizer is used for backpropagation and the categorical
cross-entropy is used as the loss function that is presented in Eq. (2). The details of the process
are described in Algorithm 3. In this paper, the classifier is presented in Fig. 4c.

Algorithm 3
Input: the pre-trained model

the clustered unknown images xi, yi, Pi
Output: the predicted label yi
1 while x ∈ (x1,x2, . . . ,xn) do
2 freeze the parameters in the well-trained ConvNet
3 Calculate the gradient and update the weight and threshold by Eq. (2)∼Eq. (5)
4 end
5 Save the parameter in the classifier

3 Experimental Assessment and Numerical Results

In this section, numerical experiments have been performed to evaluate the performance of
the proposed algorithms. In this paper, the collected paper contains EL images with several types
of cell conditions: good condition, crack, finger interruption, black core, busbars corrosion, which
is presented in Fig. 5.

The data set is collected with a UAV-based platform in the real PV plants in Gonghe, Qinghai
Province, China (100 MW). The platform is presented in Fig. 6. In the platform, four-rotor
aircraft, DJI M300 is employed and some others accessories to establish the platform contain
EL camera, X-port and Manfold2. In addition, a high-performance computation platform (with 4
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NVIDIA TITAN GPUs) is used to decrease the computing time during the training process. The
installed software for implementing the computing are Python and Pytorch.

Figure 5: Sample images of PV cells in different conditions

Figure 6: The UAV-based platform

3.1 Effects of the Models Using Different Structures
In this section, we evaluate the effects of the model with different structures. As mentioned

previously, the features extracted from earlier layers in the deep learning-based model could
include more information about color, edge or texture and the features extracted by the deeper
layer can be more abstract. The experiments are carried out to evaluate the performance of
these models with different structures and parameters, and the numerical results are presented
in Fig. 7. Here, in total five models, i.e., (c1p1), (c1c2p1), (c1c2p1c3p2), (c1c2p1c3c4p2) and
(c1c2p1c3c4c5p2), are extensively compared and analyzed. These models are represented by
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Model 1∼Model 5, where (ci) and (pi) are the ith convolution layers and the ith pooling layer,
respectively. At the end of the model, two fully connected layers are adopted to classify the defects.
In addition, given that the feature mappings extracted by different kernels can be different, the
impact of the kernel (k = 2, 4, 8, 16) in the convolution layer is also analyzed.

(a)

(b)

(c)

Figure 7: Experimental evaluation of CNN model with different parameter settings: (a) flops of
different models; (b) parameters of different models; (c) mean accuracy of defect detection

It can be inferred from Figs. 7a and b that with the increasing of the kernel number, the
parameters and flops grow rapidly. It means that the computing process has become more com-
plicated along with the increase of kernel number. When the number of kernels is doubled, the
parameters and flops are about doubled. The results presented in Fig. 7c illustrate that the growth
of the number of kernels from 2 to 8 can increase the accuracy because more kernels can provide
more deep features. However, we also noticed that when the number of kernels is beyond 8, the
performance could be damaged. It is indicated that the convolution layer with 4 or 8 kernels
is sufficient to extract the defects features in EL images. In addition, an additional number of
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kernels could increase the computing complexity greatly. Therefore, model 3 is selected to classify
the defects.

3.2 Performance of Classification Accuracy and Implementation Details
In this section, we trained the proposed deep learning-based model for 160 epochs. Once the

training process is completed, the parameters with the lowest validation loss are loaded to the
model for test. To evaluate the performance of the proposed solution, a 10-fold cross-validation
scheme is introduced. The original dataset, which contains 5,000 EL images (1,000 images for each
type of condition), is equally divided into ten parts and each part contains 100 images for each
type of condition. In the experiment, seven parts, two parts and one part are selected randomly
as the training, validation and test set. The mean accuracy and standard deviation for each type
are presented in Table 2.

Table 2: The mean accuracy and standard deviation in the experiments

Good condition Finger interruption Crack Busbar corrosion Black core

Mean accuracy 0.98 0.93 0.94 0.96 0.96
Standard deviation 0.01 0.017 0.017 0.011 0.009

To show the performance of the proposed methods, the confusion matrix is presented in
Fig. 8.

Figure 8: Classification confusion matrix

The classification accuracy of different defects is presented in Table 2. The classification accu-
racy of the proposed model is all beyond 0.9 and the mean accuracy of defects classification in
the 10-fold cross-validation scheme is 0.95. The accuracy of finger interruption is the lowest (0.93).
This is due to that some features of finger interruption could be covered by the background.

To analyze the features extraction ability of the proposed model, class activation maps (CAM)
are introduced to visualize the learned features [28]. For easy explanation, the feature map of the
top convolution layer is used as the input to create the heat map. Fig. 9 shows the visualization of
the extracted features map. It can be concluded from Fig. 9 that the proposed model can extract
the defects feature with high performance.

3.3 Performance of Unknown Defects Detector
In this part, the proposed deep clustering method is evaluated with the existing methods. In

the experiments, crack and finger interruption are treated as the known defects as well as the
cells in good condition, while busbars corrosion and black core are considered as the unknown
defects. 2,400 images (about 800 images in each labeled type) are used to train the ConvNet and
200 images of the cells with busbars corrosion and black core are used to test the deep clustering.
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The pre-trained ConvNet is used to extract the 256-D features from the input images. Then, k-
means is employed to separate the features extracted from the unknown images and k can be
determined by Eq. (10). All the hyperparameters in the models are set randomly and the learning
rate is 0.0001. In Table 2, scores of the proposed deep clustering (DC) with different k values are
obtained. It can be observed that the highest score is calculated when k is 2, which matches the
experiment setup.

Figure 9: Visualization of the feature mappings

To evaluate the performance of DC, we introduce another two algorithms to implement the
same task. One directly used k-means to cluster the images and another is called the combination
of the principal component analysis with k-means (PCA+k-means) to cluster the original images.
All the relevant settings in the experiments for the three methods are the same. Here, three
commonly used metrics, i.e., V-measure, adjusted mutual information (AMI) and adjusted rand
index (ARI), is introduced. The larger value of the metric indicates better performance. The results
are all presented in Table 3 and it can be concluded that the proposed DC outperforms the other
two benchmark methods in the three metrics most of the time. This is due to the fact that the
direct k-means treat all the information as the same during the processing and the defects features
could be covered by numerical noises, which can greatly impact the clustering results and although
PCA+k-means can reduce the dimensionality of the features, PCA is not applicable to extract
the features in EL image. In addition, the performance of the methods with the different number
of clusters (k =2, 3, 4) is presented in Table 3 and it can be observed that when k=2, the best
results are obtained, which matches the experimental setup.

Table 3: Comparison with different clustering methods and k values

s(k) V-measure AMI ARI

DC, k=2 125.8 0.82 0.89 0.78
k-means, k=2 67.3 0.53 0.51 0.47
PCA+k-means, k=2 70.4 0.49 0.52 0.44

(Continued)
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Table 3 (Continued)

s(k) V-measure AMI ARI

DC, k=3 83.4 0.72 0.69 0.67
k-means, k=3 51.7 0.51 0.41 0.43
PCA+k-means, k=3 50.5 0.53 0.42 0.41
DC, k=4 78.5 0.73 0.54 0.61
k-means, k=4 46.4 0.49 0.32 0.47
PCA+k-means, k=4 44.7 0.51 0.34 0.42

3.4 Comparison with the Existing Methods
In this section, we compared the proposed method with the state-of-art approaches, namely,

VGG16 [29], MobileNet [30], ResNet50 [31] and InceptionV3 [32]. To make these models more
appropriate to the dataset, the last two layers in these models are replaced by two connected layers
(1 × 1 × 256, 1 × 1 × 5). We do not change the other parameters in these models and the
parameters are presented in [29–32].

In this work, accuracy, and trainable parameters in different models are considered and
analyzed, which is presented in detail in Table 3. Those methods can extract the defects features
with the combination of some convolution and fully connected layers. As presented in Table 4,
the well-trained InceptionV3 can obtain a better accuracy of 92%, but the trainable parameters in
the model are larger than the proposed method. Overall, the proposed method outperforms the
above-mentioned models in the defect classification of EL images and provides the best trade-off
between computational complexity and classification performance.

Table 4: Performance comparison with other models

Proposed VGG16 MobileNet ResNet50 InceptionV3

Trainable Params 11 M 23 M 20 M 57 M 55 M
Accuracy 0.96 0.87 0.9 0.89 0.92

4 Conclusions and Future Work

This paper proposed a framework for the application of deep learning to address the problems
of PV cells defects detection with EL images. A well-trained feature extractor (ConvNet) and
classifier are obtained and given that there are some unknown defects during the inspection
process, a deep clustering technique is proposed to distinguish the unknown or unlabeled defects
without human intervention. To relieve the limitation of insufficient data, image augmentation is
used. In addition, transfer learning is adopted to transfer the defects feature map to the target
domain. The proposed algorithmic solution is evaluated extensively under different operational
scenarios. The experiment results prove the accuracy and efficiency of the model.

For future work, the algorithms can be deployed in the edge devices for online defect detection
and more types of defects types need to be considered and investigated. In addition, topological
optimization can be introduced to obtain the best trade-off between computing accuracy and
complexity.
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