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ABSTRACT

This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm
(M-AM-SGRPIA) for a class of single input single output (SISO) linear output error models with multi-threshold
quantized observations. It proves the convergence of the designed algorithm. A pattern-moving-based system
dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple out-
put (SIMO) or SISO nonlinear systems, and a SISO linear output error model with multi-threshold quantized
observations is adopted to approximate the unknown system. The system input design is accomplished using the
measurement technology of random repeatability test, and the probabilistic characteristic of the explicit metric
value is employed to estimate the implicit metric value of the pattern class variable. A modified auxiliary model
stochastic gradient recursive algorithm (M-AM-SGRA) is designed to identify the model parameters, and the
contraction mapping principle proves its convergence. Two numerical examples are given to demonstrate the
feasibility and effectiveness of the achieved identification algorithm.
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1 Introduction

In the metallurgical, petroleum-chemical and steel industries, there are technologically com-
plicated, highly energy-consuming and polluting large-scale equipments such as electrolytic tank,
sintering machine, blast furnace cement rotary kiln and so on. The production process of this
kind of equipments presents the following characteristics [1]. 1) The complex system mechanism
beyonds the accurate description of mathematical and physical equations; 2) Working conditions
and quality parameters are in large quantities, and the system moving mode is full of distributive-
ness, nonlinearity and parameter perturbations; 3) Some physical and chemical processes are in
conformity with statistical law of moving. A feasible method of system modeling and control is
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the pattern recognition technology for these considered processes [2] and most researchers’ practice
is to design the corresponding model and controller according to the different pattern class of
the system working condition [3,4]. A novel pattern-moving-based system dynamics description
method was proposed in [5]. Its basic idea is to take the pattern class as a moving variable, and it
is mapped to a computable space by class centers [6,7], interval numbers [8], and cells [9] due to its
lack of arithmetic operation attribute. Furthermore, in view of various metric methods of pattern
class, the linear autoregressive model with exogenous input (ARX) or interval ARX (IARX) model
was established, and the parameter identification algorithm based on least square [6], minimum-
variance-based controller [5], optimal controller [10], state-feedback controller [7] and predictive
controller [11] were designed.

Although a series of research achievements have been made in the system modeling, parameter
identification and control based on pattern moving, the differences of each pattern sample in
one pattern class have never been considered. Since a pattern class is a set of pattern samples
with the same or similar characteristics, the hybrid metrics, that is, the combination of implicit
metric D(·) and class center explicit metric D(·) is proposed. The way of class center explicit
metric indicates the statistical attribute of pattern class, and the way of implicit metric denotes the
difference of each pattern sample in one pattern class. By using the hybrid metrics, the outputs
of pattern-moving-based system dynamics description are in-line with multi-threshold quantized
observations. Therefore, this paper will study the pattern-moving-based parameter identification
of a kind of linear system models with multi-threshold quantized observations. To our best
knowledge, for the model parameter identification based on accurate measured values, a great
number of research results were introduced in [12], such as least square method [13], maximum
likelihood and prediction error methods [14], unbiased finite impulse response filter algorithm [15],
Kalman linear filtering and prediction algorithm [16,17], Bayesian approach [18], and so forth.

The system with multi-threshold quantized observations is considered as a set-valued system
which is different from a conventional one with accurate measurement outputs [19,20]. Although
the identification of set-valued systems is not easy task, a series of important research results have
been achieved in the past decade. For the linear system identification with threshold quantized
observations, a full rank input design method (such as repetitive input design) and an empirical
distribution function method were proposed in [21–23]. For the identification of Hammerstein
and Wiener systems with binary outputs, the methods of proportional full rank signal, joint
identifiability and strong full rank periodic signal inputs were proposed in [24,25], which effectively
overcame the problems of system nonlinearity and rough binary output information. The param-
eter identification of Wiener system was also studied in terms of quantized inputs and binary
outputs in [26]. Based on the truncated empirical measurement method of probabilistic statistics,
a non-truncated empirical measurement method was proposed for the finite impulse response
(FIR) system model with binary outputs, and the progressive effectiveness of the algorithm was
demonstrated in [27]. A two-segment design method for a class of FIR systems with binary-
valued observations was investigated in [28]. The parameter estimation problem of set-valued
system was explained comprehensively from the perspective of combining system principle and
practical application in [29]. The idea of parameter identification based on an auxiliary model was
systematically expounded in [30]. An auxiliary-model-based least squares recursive algorithm was
proposed for a quantized control system with communication constraints in [31].

This work investigates a M-AM-SGRPIA for a kind of linear output error models with multi-
threshold quantized observations which is established from the perspective of pattern moving and
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hybrid metrics. Compared with the existed research results, the main differences and contributions
of this paper are summarized as follows:

1) Different from the previous system identification problem of ARX or IARX models based
on pattern moving and single metric [6,7], this paper considers hybrid metrics, the model noise
distribution and proves the convergence of the designed M-AM-SGRPIA.

2) Compared with the parameter identification algorithms of set-valued system in [21–29], this
paper adopts an auxiliary model and designs a M-AM-SGRPIA, which will reduce the estimation
error radio to some extern.

3) An auxiliary-model-based least squares recursive algorithm has been designed for a class
of linear systems with communication constraints in [31], which is different from the designed
algorithm and physical background in this paper.

The outline of this work is organized as follows. Section 2 presents a pattern-moving-based
system dynamics description and problem formulation. Section 3 proposes a M-AM-SGRPIA and
its convergence is proved by the contraction mapping principle in Section 4. Section 5 demon-
strates the feasibility and effectiveness of the M-AM-SGRPIA by two numerical examples. The
conclusion comes in Section 6.

Notation: R stands for the real number field; Z+ denotes the positive integer field; λmax[A]
is the maximum eigenvalue of matrix A, and λmin[A] is its minimum eigenvalue; f (t) = o(g(t))

represents g(t) > 0, limt→∞ f (t)
g(t) = 0; argmaxi(·) is the value of i when (·) gets the maximum value;

‖·‖ is the Euclidean norm; the superscript T denotes the transposition; F(·) and F−1(·) represent
the probability distribution function and its inverse function respectively; E(·) is the mathematical
expectation; P(·) denotes the probability.

2 Preliminary and Problem Formulation

2.1 Pattern-Moving-Based System Dynamics Description
Consider a class of unknown SIMO non-affine nonlinear discrete-time systems as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y1(k)= f1 (y1 (k− 1) , · · · ,y1 (k− n1) ,u (k− 1) , · · · ,u (k−m1)) ,

y2(k)= f2 (y2 (k− 1) , · · · ,y2 (k− n2) ,u (k− 1) , · · · ,u (k−m2)) ,

...

yq(k)= fq
(
yn (k− 1) , · · · ,yn

(
k− nq

)
,u (k− 1) , · · · ,u (k−mq

))
,

(1)

where q > 0; yi(k) ∈ R and u(k) ∈ R denote the output of fi(·) and the whole system’s input
respectively; ni ∈ Z+ and mi ∈ Z+ are the unknown output and input orders; fi(·) denotes an
unknown nonlinear discrete-time function; i ∈ {1, · · · ,q}.

Assumption 2.1 The input of system (1) is bounded, i.e., a constant M1 exists and satisfies
that |u (k) | ≤M1.

A pattern-moving-based system dynamics description [32] corresponding to system (1) is
proposed in the following three steps:

1) Feature extraction (T (·)) and output dimension reduction. A large number of input and
output data are collected offline, and the input data set {u (k)} and q-dimensional output vector set
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{[y1(k), · · · ,yq(k)]} are obtained. Drawing on the data-driven modeling ideas [33,34] and through
the principal component analysis (PCA) feature extraction [35] of the output data, the first
principal component information is obtained, and then one-dimensional principal component
information set {y (k)} will be obtained.

2) Classification (M (·)) and metrics (D (·) ,D(·)). Using pattern classification technology to
classify the first principal component information, the number of pattern class (N), the class cen-
ter value (si), class radius (ri) and threshold value (Ci) of each pattern class (dxi) can be obtained,
i= [1, . . . ,N]. At any time instant k, the system output vector [y1(k), · · · ,yq(k)] corresponds to a
working condition and a pattern class dx(k) at the same time. Since the pattern class does not
have the arithmetic operation attribute, that is, pattern class 1+ pattern class 2 �= pattern class
3, the pattern class variable needs to be measured. Since the pattern class is a set of pattern
samples with the same or similar attributes, the method of combining the class center explicit
metric D (·) and implicit metric D(·) is adopted, that is, si =D(dxi) and dxi =D(dxi). The implicit
metric values are unknown, but there is a definite relationship between an implicit metric value
and a class center explicit metric value by choosing a reasonable classification method, such as
|si− dxi| ≤ ri.

3) Establishing the pattern-moving-based system dynamics equations. The input sequence
{u (k)}, implicit metric sequence {dx (k)} and class center explicit metric sequence {s (k)} are
employed to construct the following dynamics equations of the system:

dx (k)= f
(
dx (k− 1) , . . . ,dx (k− n) ,u (k− 1) , . . . ,u (k−m)

)
; (2)

s(k)=D(M(dx(k)))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1,dx(k) ∈ [s1− r1, s1+ r1] ;

s2,dx(k) ∈ [s2− r2, s2+ r2] ;

...

sN ,dx(k) ∈ [sN − rN , sN + rN ] ,

(3)

where f (·) is a unknown system function; m,n denote the input and output orders of system
(2) respectively. It exits a classification-metric deviation e (k) between the dx (k) and s (k), and
|e (k)| = |s (k)− dx (k) | ≤ r1 while s (k)= ci.

If the contribution rate of the first principal component information obtained by feature
extraction T (·) is greater than 85%, it can be considered that the output information of source
system (1) is not lost or loses very little. For many practical SIMO physical systems, the contri-
bution rate of the first principal component information can reach or even exceed 85%. Taking
sintering machine as an example, through data analysis, it is found that the contribution rate
of first principal component information is far greater than 85% when the temperatures of four
positions near the sintering node under the excitation of ignition input are considered and feature
extracted [5].

Remark 2.1 In the process of establishing the pattern-moving-based dynamics Eqs. (2) and
(3), the condition of parameter configuration of classification method is to ensure that a certain
pattern class corresponds to a specific quality index of the product [36]. Furthermore, a physical
SISO nonlinear discrete-time system can also be transformed into a pattern-moving-based SISO
system, but it does not need the first step of feature extraction process.
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2.2 Problem Formulation
Although there inevitably unmodeled dynamics problems, it is common to employ a linear

model to approximate the situation that the system (2) is unknown. Choosing a reasonable
classification method such as a modified quantized control classification [36], the following linear
output error model with multi-threshold quantized observations can be constructed for system
(2)–(3).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx (k)= a1dx (k− 1)+ . . .+ andx (k− n)+ b1u (k− d− 1)+ . . .+ bmu (k− d−m) ;
∧
dx (k)= dx (k)+υ (k) ;

s(k)=D(M(

∧
dx(k)))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1, c1− r1 <
∧
dx(k)≤ c1 + r1;

c2, c2− r2 <
∧
dx(k)≤ c2 + r2;

...

cN , cN − rN <
∧
dx(k)≤ cN + rN ,

(4)

where v (k) is the model noise; s (k) ∈ {c1, c2, · · · , cN} is the class center explicit metric value;
D(M (·)) denotes a classification-metric process; Ci = ci + ri = ci+1 − ri+1 is satisfied under a
reasonable classification.

Assumption 2.2 The input and output orders of the model are known and equal, that is, n=m.

Assumption 2.3 v (k) is an independent and identically distributed (i.i.d.) random signal
noise, and its probability distribution function F (s) and inverse function F−1(s) are known and
continuously differentiable.

Under the Assumption 2.2, the first expression of model (4) can be written as follows:

dx (k)= B (q)
A (q)

u (k)= ϕT (k) θ , (5)

where A (q) = 1 − a1q − . . . − anqn; B (q) = b1q + b2q2 + . . . + bnqn;ϕ (k) = [dx(k − 1), · · · ,dx(k −
n),u(k− 1), · · · ,u(k− n)]T ; the parameter vector θ = [a1, · · · ,an,b1, · · · ,bn]T is to be identified.

If the input sequence {u (k)} and output sequence {dx (k)} can be obtained directly, it is known
to all that there exists a lot of methods to identify the model parameters. However, one can
only get the observation sequence {s (k)} and {u (k)}. Therefore, this paper will design a parameter
identification algorithm based on these two sequences.

Remark 2.2 The model orders and cumulative distribution function of v (k) are supposed
to be known in Assumption 2.2 and Assumption 2.3, respectively. These two problems are not
the focus of this paper. If the model orders are unknown, in practice, the order selection may
mainly depend on the experiential knowledge of the system. From a theoretical point of view, the
model order selection could be addressed by means of the parameter estimation technique with
quantized observations and drawing on the classical order selection methods of cross-validation,
information criteria, the F-test and the statistical tests on the residuals. In view of the unknown
distribution function of model noise, it is not easy task to identify that. However, one can refer
to the parameterization technique proposed in [37].
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3 Design of Parameter Identification Algorithm

3.1 Estimation of Implicit Metric Value dx(k)

For the convenience of calculation, s(k) is denoted by ss(k) = [ss1k, ss
2
k, · · · , ssNk ]T , and the

corresponding indicator function of each element ssik is depicted as follows:

ssik =
{
1, s(k)≤Ci;

0, others,
(6)

where N is the number of the pattern class; Ci denotes the threshold value and it satisfies that
Ci = ci+ ri.

The measurement technology of random repeatability test is employed to design the input
u(k). The size of input cycle is set to be t(t > 2n) and the number of cycles is l. Therefore, the
noise free output dx(k) is an unmeasurable signal with cycle equal to t. Totally t · l rows of vector
data

{
ssT(k)

}
and a data matrix Q(t·l)·N is produced. It is known from Assumption 2.3 that the

probability distribution of υ(k) is F(s), and it can be derived from the random repeatability test

technology that the occurrence probability of event d̂x(k) ≤ Ci at time instant k is pi, e.g., the

occurrence probability of event ssik = 1 is pi = P
{
d̂x(k)≤Ci

}
= P

{
dx(k)+υ(k)≤Ci

}
= F(Ci −

dx(k)), and then dx(k) = Ci − F−1(pi). Due to the influence of υ(k), the corresponding output

s(k) obtained from each test may differ under the identical test conditions. Let ξ il = 1
l

∑l−1
j=0 ss

i
k+t·j.

It is known from the probability statistics that
{
ssi(k+ t · l)} is the result of Bernoulli tests and

it satisfies that E
(
ξ il

) = pi). Therefore, it follows that ξ il is the estimated value of pi. Further,

the estimated value of dx(k) can be gained that d̃x(k) = Ci − F−1(ξ il ) and the estimation error

e(k) = d̃x(k) − dx(k). In terms of the estimation error e(k), there exists two Lemmas and one
conclusion as follows.

Lemma 3.1 ([31]) For the model (4) and the output sequence
{
ssi(k+ t · l)} generated by

repeatability test, the estimation error sequence
{
e(k) : e(k)= d̃x(k)− dx(k)

}
is a time-varying

sequence with mean 0 and bounded variance, and the estimation error e(k) converges to 0
according to probability 1.

Lemma 3.2 ([31]) Under the full order input sequence {u(k+ t · j)} , 1≤ k≤ t, 0≤ j ≤ l− 1 with
cycle equal to t(t> 2n), the signals to be identified generated by model (4) have the property of
persistent excitation, e.g.,

1
k

k∑
i=1

ϕ(k0− i+ 1)ϕT (k0 − i+ 1)≥ αI , (7)

where α > 0; k0 denotes the starting time; I is an identity matrix.

According to Lemma 3.1 and Lemma 3.2, the estimation error sequence {e(k),�k} is regarded
as a martingale difference sequence defined in a probability space {	,�,P}, and it satisfies the
following conditions:

A1) E [e(k)|�k−1]= 0,a.s.;
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A2) E
[
e2(k)|�k−1

]= σ 2
e (k)≤Mσ 2

ς <∞,

where {�k} is an σ algebra sequence generated by {e(k)} and σ 2
e =Mσ 2

ς .

3.2 Design of M-AM-SGRA

To accomplish the identification task, it is necessary to determine the probability estimate ξ il
and find the corresponding threshold Ci firstly. Considering the presence of υ(k) , it is required
to determine the corresponding threshold segmentation point Ci of s(k) at the occurrence time of
event ssik = 1. For the matrix Q(t·l)·N , the corresponding row k is the demonstrative vector ssT (k),

and it is known from its definition that if ssT (k), then ssjk = 1, j ≥ i. The ξ il and threshold value
Ci are determined by the following formula:

ξ il =
⎧⎨⎩argmaxi

{
ξ il : ξ

i
l = 1

l

∑l−1
j=0 ss

i
k+t·j

}
, 0< ξ il < 1, i= 1, 2, . . . ,N;

Num; ξ il = 0 or ξ jl = 1, i, j ∈ [1,N] ,
(8)

1) If ξ il ∈ (0, 1), the maximum value of ξ il and its corresponding interval number i can be
found. Further, the corresponding threshold Ci is determined.

2) If ξ il is equal to 0 or 1, then corresponding interval number i can be determined when

the first ξ il = 1. Further, the corresponding threshold Ci is determined. Furthermore, e.g., let ξ il =
Num= 0.99,which is a truncation data.

The {e(k),�k} is considered as a non-stationary martingale difference sequence with mean 0 in
Section 3.1. Therefore, one can establish a new identification model by using the estimated value

d̃x(k) such as:

d̃x (k)= dx (k)+ e (k)= ϕT (k) θ + e (k) . (9)

Due to the unknown variables dx(k − 1), · · · ,dx(k − n) exist in (9), an auxiliary model is
established as follows:

dxa(k)= ϕ̃T (k)θ̃(k), (10)

where θ̃ (k) is an estimate of θ , and ϕ̃(k) =
[
dxa(k− 1), · · · ,dxa(k− n),u(k− 1), · · · ,u(k− n)

]T
is

an estimate of ϕ(k) at time instant k.

By introducing a convergence index ε(12 < ε ≤ 1) and using the auxiliary model (10), a mod-
ified auxiliary model stochastic gradient recursive algorithm (M-AM-SGRA) for the parameter
vector θ is designed as follows:

θ̃ (k)= θ̃ (k− 1)+ ϕ̃ (k)
rε (k)

π (k) , θ̃ (0)= 12n
p0

,p0> 0; (11)

π (k)= d̃x (k)− ϕ̃T (k) θ̃ (k− 1) ; (12)

r (k)= r (k− 1)+‖ϕ̃ (k)‖2 , r (0)= 1; (13)

dxa (k)= ϕ̃T (k) θ̃ (k) ,dxa (−i)= 1
p0

, i= 0, 1, · · · ,n; (14)
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d̃x (k)=Ci−F−1 (ξ il ) , ξ il = argmax
i

⎛⎝ξ il : ξ il = 1
l

l−1∑
j=0

ssik+t·j

⎞⎠or Num. (15)

Remark 3.1 A truncation method is adopted to get the value ξ il . The determination of
truncation rules depends on prior information. The truncated empirical measure method was
proposed in [25], and the asymptotic efficiency of the algorithm was proved. This paper chooses
a reasonable truncation value of ξ il by referring to [25].

4 Main Results

For the designed M-AM-SGRA, the following Lemma is given and its convergence is to be
proved.

Lemma 4.1 ([31]) For the given M-AM-SGRA (11)–(15), the following inequalities hold.

k∑
i=1

‖ϕ̃(i)‖2
r(i)

≤ ln r (k) ,a.s.; (16)

∞∑
i=1

‖ϕ̃(i)‖2
rη(i)

<∞,a.s.η > 1 (17)

where a.s. means almost surely.

Theorem 4.1 For the model (9) and the corresponding M-AM-SGRA (11)–(15), under the
conditions that A1) and A2) are satisfied, if A(q) is strictly positive real, r(k)→∞, letting

R(k)=
∞∑
i=1

ϕ̃(i)ϕ̃T(i) ∈R2n·2n (18)

and it is assumed that the following inequality holds

rε(k)≥ 1
2
‖ϕ̃(k)‖2 , (19)

thus, the estimation error vector θ̌ (k)(θ̌(k)=
(
θ̃ (k)− θ

)
) satisfies that

∥∥∥θ̃ (k)− θ∥∥∥2 = o

{
r2−ε (k)
λmin [R (k)]

}
,a.s.. (20)

Proof.

It is concluded from (11) that

θ̌ (k)= θ̌ (k− 1)+ ϕ̃(k)
rε(k)

π(k)= θ̌ (k− 1)+ ϕ̃(k)
rε(k)

[
ϕ̃T(k)θ + e(k)− ϕ̃T (k)θ̃(k− 1)

]
= θ̌ (k− 1)+ ϕ̃(k)

rε(k)

[
−ϕ̃T (k)θ̌(k− 1)+ e(k)

]
= θ̌ (k− 1)+ ϕ̃(k)

rε(k)

[−y̌(k)+ e(k)
]
, (21)

where y̌(k)= ϕ̃T (k)θ̌(k− 1).
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Taking the norm of both sides of (21), one has∥∥∥θ̌ (k)∥∥∥2 = ∥∥∥∥θ̌ (k− 1)+ ϕ̃(k)
rε(k)

[−y̌(k)+ e(k)
]∥∥∥∥2

=
∥∥∥θ̌ (k− 1)

∥∥∥2+ 2
rε(k)

θ̌T(k− 1)ϕ̃(k)
[−y̌(k)+ e(k)

]+ ‖ϕ̃(k)‖2
r2ε(k)

[−y̌(k)+ e(k)
]2

=
∥∥∥θ̌ (k− 1)

∥∥∥2− 2rε(k)−‖ϕ̃(k)‖2
r2ε(k)

y̌2(k)+
2
[
rε(k)−‖ϕ̃(k)‖2

]
r2ε(k)

y̌(k)e(k)+ ‖ϕ̃(k)‖2
r2ε(k)

e2(k)

≤
∥∥∥θ̌ (k− 1)

∥∥∥2− 2rε(k)−‖ϕ̃(k)‖2
r2ε(k)

y̌2(k)+ ‖ϕ̃(k)‖2
r2ε(k)

e2(k)+ 2
rε(k)

y̌(k)e(k). (22)

Since e(k) is uncorrelated with θ̌ (k), y̌ (k) , r(k), and ϕ̃(k), and it is �k−1 measurable, according
to (16)-(17) and taking the conditional expectation of (22) with respect to �k−1, one gets

E
[∥∥∥θ̌ (k)∥∥∥2 ∣∣�k−1

]
≤
∥∥∥θ̌ (k− 1)

∥∥∥2− 2rε(k)−‖ϕ̃(k)‖2
r2ε(k)

y̌2(k)+ ‖ϕ̃(k)‖2
r2ε(k)

Mσ 2
ς (23)

According to Lemma 4.1, the sum of the third term on the right side of (23) from t= 1 to
t=∞ is finite. Based on the condition (19), it can be concluded from the martingale convergence

Theorem (Lemma d.5.3 in [39]) that
∥∥∥θ̌ (k)∥∥∥2 uniformly converges to a finite random variable C

and it is noted as

lim
k→∞

∥∥∥θ̌ (k)∥∥∥2 =C <∞,a.s.. (24)

It can be also derived from the martingale convergence Theorem that

∞∑
k=1

2rε(k)−‖ϕ̃(k)‖2
r2ε(k)

y̌2(k) <∞,a.s.. (25)

Letting ε= 1, it is easy to conclude that (19) is tenable to get and one has

∞∑
k=1

2rε(k)−‖ϕ̃(k)‖2
r2ε(k)

y̌2(k)=
[ ∞∑
k=1

2r(k)−‖ϕ̃(k)‖2
r2(k)

y̌2(k)

]
ε=1

=
∞∑
k=1

r(k)+ r(k− 1)
r2(k)

y̌2(k)

≥
∞∑
k=1

1
r(k)

y̌2(k)≥
[ ∞∑
k=1

1
r2−κ(k)

y̌2(k)

]
1
2<κ≤1

(26)
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One can sequentially get

∞∑
k=1

[
1
r(k)

y̌2(k)
]
≤

∞∑
k=1

[
2rε (k)−‖ϕ̃ (k)‖2

r2ε (k)
y̌2 (k)

]
, (27)

[ ∞∑
k=1

1
r2−k (k)

y̌2(k)

]
1
2<κ≤1

≤
∞∑
k=1

[
2rε (k)−‖ϕ̃ (k)‖2

r2ε (k)
y̌2 (k)

]
. (28)

Further, using the Kronecker Lemma (Lemma d.5.3 in [38]) for inequalities (27), (28) to yield

limk→∞
1
r(k)

k∑
i=1

y̌2(i)= 0, (29)

and

limk→∞
1

r2−ε(k)

k∑
i=1

y̌2(i)= 0. (30)

It is known from the above proof process that the parameter estimation error is continuous
and bounded. Using (21), one obtains

θ̌ (k)= θ̌ (k− i)+
i−1∑
j=0

ϕ̃ (k− j)
rε (k− j)

[−y̌ (k− j)+ e (k− j)
]
, i≥ 1.

Replacing k with k− i in y̌= ϕ̃T (k)θ̌(k− 1) yields

ϕ̃T(k− i)θ̌(k)= y̌(k− i)+ ϕ̃T (k− i)
i∑

j=0

ϕ̃(k− j)
rε(k− j)

[−y̌(k− j)+ e(k− j)
]
. (31)

Taking the square on both sides of (31) and adopting the inequality (a+ b)2 ≤ 2
(
a2+ b2

)
,

one gets

[
ϕ̃T (k− i)θ̌(k)

]2 =
⎧⎨⎩y̌(k− i)+ ϕ̃T (k− i)

i∑
j=0

ϕ̃(k− j)
rε(k− j)

[−y̌(k− j)+ e(k− j)
]⎫⎬⎭

2

≤ 2y̌2(k− i)+ 2‖ϕ̃(k− i)‖2
∥∥∥∥∥∥

i∑
j=0

ϕ̃(k− j)
rε(k− j)

[−y̌(k− j)+ e(k− j)
]∥∥∥∥∥∥

2

. (32)
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Since e(k− j) is uncorrelated with y̌(k− j), r(k− j), and ϕ̃(k− j), and it is �k−1 measurable,
according to (16), (17) and taking the conditional expectation on both sides of (32) with respect
to �k−1, one has

E{
[
ϕ̃T (k− i) θ̌ (k)

]2 |�k−1} ≤ 2y̌2(k− i)+ 2‖ϕ̃(k− i)‖2
i∑

j=0

{
‖ϕ̃ (k− i)‖2
r2ε (k− j)

[
y̌2 (k− i)+Mσ 2

ς

]}
. (33)

Taking the sum from i= 0 to i= k− 1 on both sides of (33) and dividing by r2−ε(k) yield

E

⎧⎨⎩
k−1∑
i=0

[
ϕ̃T(k− i)θ̌(k)

]2 |�k−1

⎫⎬⎭ 1
r2−ε(k)

≤ 2
r2−ε(k)

k−1∑
i=0

y̌2(k− i)

+ 2
k−1∑
i=1

‖ϕ̃(k− i)‖2
r2−ε(k)

i∑
j=0

[
‖ϕ̃ (k− j)‖2
r2ε (k− j)

y̌2 (k− j)

]
+ 2

k−1∑
i=1

‖ϕ̃(k− i)‖2
r2−ε(k)

i∑
j=0

[
‖ϕ̃ (k− j)‖2
r2ε (k− j)

Mσ 2
ς

]
,

where

ψ1 (k)= 2
k−1∑
i=1

‖ϕ̃(k− i)‖2
r2−ε(k)

i∑
j=0

[
‖ϕ̃ (k− j)‖2
r2ε (k− j)

Mσ 2
ς

]
,

and

ψ2 (k)= 2
k−1∑
i=1

‖ϕ̃(k− i)‖2
r2−ε(k)

i∑
j=0

[
‖ϕ̃ (k− j)‖2
r2ε (k− j)

y̌2 (k− j)

]
.

According to Lemma 4.1, the following two inequalities can be obtained.

ψ1 (k)= 2
k−1∑
i=1

‖ϕ̃ (k− i)‖2
r2−ε (k)

i∑
j=0

[
‖ϕ̃ (k− j)‖2
r2ε (k− j)

Mσ 2
ς

]

= 2
2

r2−ε(k)

⎧⎨⎩ [r (k− 1)− r (0)]‖ϕ̃ (k)‖2
r2ε (k)

Mσ 2
ς +

k−1∑
i=1

[
[r (k− 1)− r (0)]‖ϕ̃ (k)‖2

r2ε (k)
Mσ 2

ς

]⎫⎬⎭
≤ 2
r2−ε(k)

‖ϕ̃(k)‖2
r2ε−1(k)

Mσ 2
ς +

2
r2−ε(k)

k−1∑
i=1

[
‖ϕ̃(k)‖2
r2ε−1(i)

Mσ 2
ς

]

= 2Mσ 2
ς

r2−ε(k)

k∑
i=1

[
r2−2ε ‖ϕ̃(i)‖2

r(i)

]
≤ 2Mσ 2

ς ln(r(k))

rε (k)
→ 0,a.s.,k→∞,

1
2
< ε ≤ 1.

ψ2 (k)= 2
k−1∑
i=1

‖ϕ̃(k− i)‖2
r2−ε(k)

i∑
j=0

[
‖ϕ̃ (k− j)‖2
r2ε (k− j)

y̌2 (k− j)

]
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= 2
‖ϕ̃(k− 1)‖2
r2−ε(k)

[
‖ϕ̃(k)‖2
r2ε(k)

y̌2(k)+ ‖ϕ̃(k− 1)‖2
r2ε(k− 1)

y̌2(k− 1)

]

+ 2
‖ϕ̃(k− 2)‖2
r2−ε(k)

[
‖ϕ̃(k)‖2
r2ε(k)

y̌2(k)+ ‖ϕ̃(k− 1)‖2
r2ε(k− 1)

y̌2(k− 1)+ ‖ϕ̃(k− 2)‖2
r2ε(k− 2)

y̌2(k− 2)

]
+ · · ·

+ 2
‖ϕ̃(1)‖2
r2−ε(k)

[
‖ϕ̃(k)‖2
r2ε(k)

y̌2(k)+ ‖ϕ̃(k− 1)‖2
r2ε(k− 1)

y̌2(k− 1)+ . . .+ ‖ϕ̃(1)‖2
r2ε(1)

y̌2(1)

]

= 2
r2−ε(k)

[r(k− 1)− r(0)] ‖ϕ̃(k)‖2
r2ε(k)

y̌2(k)+ 2
r2−ε(k)

k−1∑
i=1

[
[r(i)− r(0)]‖ϕ̃(i)‖2

r2ε(i)
y̌2(i)

]

≤ 2
r2−ε(k)

2rε(k)
r2ε−1(k)

y̌2(k)+ 2
r2−ε(k)

k−1∑
i=1

[
2rε(k)
r2ε−1(i)

y̌2(i)
]

= 4
r2−ε(k)

k∑
i=1

[
1

rε−1(i)
y̌2(i)

]
≤ 4
r (k)

k∑
i=1

y̌2 (i)→ 0,a.s.,k→∞,
1
2
< ε ≤ 1.

Using the above two inequalities, one has

E

⎧⎨⎩
k−1∑
i=0

[
ϕ̃T(k− i)θ̌(k)

]2 |�k−1

⎫⎬⎭ 1
r2−ε(k)

=
E
{
θ̌T (k)R(k)θ̌(k)|�k−1

}
r2−ε(k)

≤ 2
r2−ε (k)

k−1∑
i=0

y̌2 (k− i)+ψ1 (k)+ψ2 (k)→ 0,a.s. k→∞,
1
2
< ε≤ 1.

Therefore,

E
{
θ̌T (k)R(k)θ̌(k)|�k−1

}
r2−ε(k)

→ 0,a.s.,k→∞.

and ∥∥∥θ̃ (k)− θ∥∥∥2 = o

{
r2−ε (k)
λmin [R (k)]

}
,a.s..

The proof of this Theorem is completed.
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5 Numerical Examples

Example 1: Consider a SISO linear output error model with multi-threshold quantized obser-
vations which has been established based on pattern-moving and hybrid metrics as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∧
dx(k)= 0.5dx(k− 1)+ 0.3dx(k− 2)+ u(k− 1)+ 0.7u(k− 2)+ v(k)

s(k)=D(M(

∧
dx(k)))=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c1, c1− r1 ≤
∧
dx(k)≤ c1+ r1;

c2, c2− r2 <
∧
dx(k)≤ c2 + r2;

...

c13, c13− r13<
∧
dx(k)≤ c13+ r13,

where ϑ(k)∼ N (
0, 0.252

)
denotes the model noise; u (k)∼ N (

0, 22
)
represents the system input;

θ = [a1,a2,b1,b2]T = [0.5, 0.3, 1.0, 0.7]T is the model parameter vector to be identified; the detail
property values of pattern classes are known and shown in Table 1.

Table 1: Property values of pattern classes for Example 1

Class No. Class center ci Class radius ri Threshold Ci

1 –7.8750 2.6250 –5.2500
2 –3.9375 1.3125 –2.6250
3 –1.9688 0.6563 –1.3125
4 –0.9844 0.3281 –0.6563
5 –0.4922 0.1641 –0.3281
6 –0.2461 0.0820 –0.1641
7 0.0000 0.1641 0.1641
8 0.2461 0.0820 0.3281
9 0.4922 0.1641 0.6563
10 0.9844 0.3281 1.3125
11 1.9688 0.6563 2.6250
12 3.9375 1.3125 5.2500
13 7.8750 2.6250 10.5000

The size of input cycle is initially set as t= 3000, and the number of cycles is l = 300. The
initial conditions are dx (1+ i · l) = dx (2+ i · l) = 0; i = 0, 1, · · · , l − 1. It can be collected 900000
groups of data with the corresponding input sequence {u(k)} and output sequence {s(k)}. Since
the distribution of model noise and pattern class thresholds are known,

{
d̃x (k)

}
can be estimated

by the sequence
{
ssT (k)

}
. Using the input series {u(k)} and

{
d̃x (k)

}
, the model parameters can

be identified by the designed M-AM-SGRA, and the identification processes with different con-
vergence indexes such as ε = 0.99, 0.98, 0.97, 0.96 respectively are shown in Fig. 1. The parameter

estimates and the estimation error ratios (δ =
∥∥∥θ̃ (k)− θ∥∥∥ /‖θ‖) with different convergence indexes

at time instant k= 3000 are shown in Table 2.
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Figure 1: Convergence process of the M-AM-SGRA for Example 1

Table 2: The parameter estimates and their errors ratios for Example 1

ε a1 a2 b1 b2 �(%)

0.99 0.4544 0.3672 1.0162 0.7609 7.92
0.98 0.4525 0.3752 1.0223 0.7677 8.00
0.97 0.4429 0.3791 1.0337 0.7804 8.39
0.96 0.4312 0.3858 1.0481 0.7957 9.03
The values 0.5 0.3 1.0 0.7

It is shown from Fig. 1 and Table 2 that the convergence index ε is smaller, the parameter
estimate converges faster, and the estimation error ratio becomes larger. One can get a good
strategy which is to choose a small convergence index at the beginning, and then let it gradually
increase with time instant k, and finally approach unity. Therefore, the system identification
accuracy can be satisfied by choosing and adjusting the appropriate convergence index ε.

Example 2: Consider a SIMO unknown nonlinear system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
y1(k)= u(k− 1)

1+ u2(k− 1)
+ u(k− 2)+ϑ(k)

y2(k)= 0.1y2(k− 1)+ 0.5y2(k− 2)+ u(k− 1)
1+ u2(k− 1)

+ u(k− 2)+ϑ(k)

y3(k)= 0.2y3(k− 1)+ u(k− 1)
1+ u2(k− 1)

+ u(k− 2)+ϑ(k)

where ϑ(k)∼N (
0, 0.12

)
denotes the system noise; u(k)∼N (0, 1) is the system input.

1) Design of System input. The size of input cycle and the number of cycle are set the same
as Example 1. The initial condition is set as yj (1+ i · l) = yj (2+ i · l) = 0; i = 0, 1, · · · , l − 1; j =
1, 2, 3. It can be collected 900000 groups of data with the corresponding input sequence {u(k)}
and output sequences

{
yj(k)

}
. The outputs are normalized and a PCA method [32] is used to

handle the normalized data to get the first principal component information {y(k)}.
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2) Classification and determining the actual output s(k), class quantity N, class center ci, class
radius ri, and class threshold Ci. A modified quantized control classification method (M (·)) [39]
is adopted and described in the following formula:

s(k+ 1)=D(M(y(k+ 1)))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

y̆(k+ 1), if
1

1+�κi < y(k+ 1)≤ 1
1−�κi

0, if − 1
1+�κN < y(k+ 1)≤ 1

1+�κN

−y̆(k+ 1), if − 1
1−�κi < y(k+ 1)≤− 1

1+�κi

(34)

where y̆ (k+ 1)= 1+ρ0
4

κi

(
ρi−1
0 +ρi0

)
;ρ0 ∈ (0, 1) ;κi = ρi0κ0;�= 1−ρ0

1+ρ0
;κ0 is the maximum work-

ing range of y (k) (κ0 ≥max (|y (k)|)) ; i= 1, 2, · · · ,N.

Given the upper limit of the initial class radius r0 at the working point 0 and the other

parameters such as ρ0,κ0, one can obtain L ≥ ln
(
r0
(1+�)
κ0

)
lnρ0

, and the first principal component

information {y(k)} is divided into 2L + 1 segments. Furthermore, the number of pattern class

(N = 2L+ 1), the class center ci, class radius ri = 1+ρ2
4ρ and threshold value Ci can be obtained

respectively, i= 1, · · · ,N. The initial parameters are set as ρ0 = 0.5,κ0 = 5, r0 = 0.4,L= ln
(
r0
(1+�)
κ0

)
lnρ0

.

The inputs (u(k)), first principal component information (y(k)) and class center metric values
(s(k)) in the first cycle are shown in Fig. 2, and the detail property values of pattern classes are
shown in Table 3.

Figure 2: The distribution of u(k), y(k) and s(k) for Example 2
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Table 3: Property values of pattern classes for Example 2

Class No. Class center ci Class radius ri Threshold Ci

1 –2.8125 0.9375 –1.8750
2 –1.4063 0.4688 –0.9375
3 –0.7031 0.2344 –0.4688
4 –0.3516 0.1172 –0.2344
5 0.0000 0.2344 0.2344
6 0.3516 0.1172 0.4688
7 0.7031 0.2344 0.9375
8 1.4063 0.4688 1.8750
9 2.8125 0.9375 3.7500

3) Establishing a pattern-moving-based linear output error model with multi-threshold quan-
tized observations. According to the information obtained from the above steps, the pattern-
moving-based system dynamics description Eqs. (2) and (3) is to be obtained. The input and
output orders are assumed to be known (m = n = 2), and the distribution of model noise is
assumed to be known (ϑ(k)∼ N (0, 0.12)). Therefore, a following linear output error model with
multi-threshold quantized observations is established to approximate the system (2)–(3).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∧
dx (k)= a1dx (k− 1)+ a2dx (k− 2)+ b1u (k− 1)+ b2u (k− 2)+ v (k) ;

s(k)=D(M(

∧
dx(k)))=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

c1, c1− r1 ≤
∧
dx(k)≤ c1+ r1;

c2, c2− r2 <
∧
dx(k)≤ c2+ r2;

...

c9, c9− r9 <
∧
dx(k)≤ c9+ r9,

where θ = [a1,a2,b1,b2]T is the model parameter vector to be identified.

4) Model parameters identification. The designed M-AM-SGRA is employed to identify the
model parameters. Referring to the conclusion of Example 1, the convergence factor ε is set by
segments in this example. Fig. 3 shows the curves of parameters identification with a fixed value
ε= 0.995 and some interval variable values such as ε = 0.9,k≤ 100; ε= 0.96,k≤ 200; ε= 0.99,k≤
500; ε = 0.995,k≤ 1000; ε = 0.999,k> 1000. At time instant k = 3000, the estimation vector of θ
is [0.0673, 0.1655, 0.3315, 0.9200]T while ε = 0.995, and it is [0.0815, 0.1577, 0.3270, 0.9278]T while
ε is set as the interval variable value. Fig. 3 shows that using the time-varying convergence indexs
can not only obtain a fast convergence speed at the beginning, but also gradually achieve a stable
convergence effect.

Remark 5.1 It is known to all that there exists many classifications and clustering methods
in pattern recognition technology, such as C-means, ISODATA, and so on. Here a modified
quantized control classification and class center explicit metric method is utilized. The initial
parameters setting principle is based on the quality parameters of the product. In Example 2, it is
assumed that the good quality is obtained with the output y(k) ∈ (−0.2344, 0.2344], so the initial
parameters are set to ensure that the working condition data y(k) ∈ (−0.2344, 0.2344] belongs to
one pattern class.
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Figure 3: Convergence process of the M-AM-SGRA for Example 2

6 Conclusions

According to the characteristics of classification and hybrid metrics, mappings are in line with
the set-valued system, a linear output error model with multi-threshold quantized observations
is adopted to approximate the unknown system, and an M-AM-SGRA is designed with its con-
vergence proved. Finally, the validity and desired effect of the parameter identification algorithm
is demonstrated by two numerical examples. Future works will focus on pattern-moving-based
set-valued system modeling and control methods for achieving optimal robustness.
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