
echT PressScience
Computer Modeling in
Engineering & Sciences

DOI: 10.32604/cmes.2022.018665

ARTICLE

Theoretical Investigation of Two-Dimensional Nonlinear Radiative
Thermionics in Nano-MHD for Solar Insolation: A Semi-Empirical
Approach

Usman Inayat1,*, Shaukat Iqbal1 and Tareq Manzoor2

1School of Systems and Technology, University of Management and Technology, Lahore, 54000, Pakistan
2Energy Research Centre, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
*Corresponding Author: Usman Inayat. Email: usman.inayat@umt.edu.pk

Received: 09 August 2021 Accepted: 02 September 2021

ABSTRACT

In this contemporary study, theoritical investigation of nanofluidic model is thought-out. Two-dimensional nano-
materials based mixed flow is considered here. Convective solar radiative heat transport properties have been
investigated over a nonlinearly stretched wall in the presence of magneto-hydrodynamic (MHD), by innovative
application of semi analytical “optimal homotopy asymptotic method (OHAM)”. OHAM does not require any
discretization, linearization and small parameter assumption. OHAM describes extremely precise 1st/2nd order
solutions without the need of computing further higher order terms, therefore, fast convergence is observed.
Nanofluidic governing model is transformed into system of ordinary differential equations (ODEs) by exploitation
of similarity transformation. To study the significance of radiation parameter alongwith thermophoresis parameter,
a semi analytical solver is applied to the transformed system. In this work, Brownianmotion , influence of magnetic
field, Lewis number, Prandtl number, Eckert number and Biot number have investigated on velocity, temperature
and nanoparticle concentration profiles. The study provides sufficient number of graphical representations to
demonstrate the inspiration of mentioned parameters.
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1 Introduction

The most abundance renewable energy source for best alternative to conventional fossil fuel-
based generation is solar energy. Electric energy and heat energy can be generated through sun
light using photoelectric effect on photovoltaic panels and photothermal conversion on concen-
trated solar thermal plants, respectively. The increasing rate of solar absorption helps in improving
energy output production of both photovoltaic panels and concentrated solar thermal plants. The
efficient absorption of solar energy results in reliable use of renewable energy and better conver-
sion into thermal energy, which results in least dependence on fossil fuels. However, the current
heat collectors and photovoltaic panels suffer from inefficient sunlight absorption that results in
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signification energy loss and low efficiency. In this regard, water dispersed nanoparticles are being
extensively studied for improving sunlight absorption. Various nanomaterials have been proposed
and tested for ameliorating sunlight absorption efficiency. The sunlight absorption capability is
improved by using photoactive nanomaterials for polymeric photovoltaic panels. It is known that
these polymeric photovoltaic panels absorb photons with bandgap of 2-ev. Therefore, nanomateri-
als are needed to widen this energy bandgap for absorbing more sunlight. In this regard, a hybrid
solar cell was proposed for more solar energy absorption from visible to near-infrared energy
band.

The heterojunction photovoltaic cells were examined for analyzing their solar absorption
enhancement capability using half-coaxial crystalline silicon nanowire arrays [1]. High bandgap
solar cell was integrated with upconverter at its for stronger sunlight absorption in the near
infrared region [2]. The broadband absorption enhancement was achieved in Si films by their
crystallization in liquid phase on textured glass. The absorption enhancement was increased by
36.3% as compared to planar reference film [3]. A two-dimensional photonic-structured perovskite
photovoltaic cell was investigated, which provided 65.7% more absorption efficiency over the
visible range [4]. Photonic crystals were placed on the top surface of microcrystalline silicon solar
cells to enhance light absorption with the exploitation of resonant effects in photonic crystal. The
efficiency was reported to be increased by 11% due to enhanced short circuit current density [5].
The dye-sensitized photovoltaic cells were combined with uncapped lead sulfide nanocrystals to
achieve increase in absorption capability by 7.9% [6].

The index-guiding microstructured optical fiber, which is ionic-liquid adorned, were adopted
to construct an optical fiber light detector by splicing it with two air holes in innermost layer. It
was reported to have power density sensitivity to achieve value of 1.529 dB/(mW.mm2) [7]. The
titanium nitride nanoparticles were investigated in water with experimental results to report higher
sunlight absorption efficiency as compared to carbon nanoparticles [8]. The surface mounted
gold particles based copper-doped TiO2 nanocomposites were synthesized using a facile step
method. It was observed that they were able to enhance more visible light spectrum absorption as
compared to pure TiO2 and copper-doped TiO2 [9]. The light energy concertation was achieved
at mesoscale volumes using light-absorbing nanoparticles contained aqueous solutions. The high
efficiency steam was obtained using sunlight even in case of having far below boiling temperature
of the bulk fluid [10]. The experimental results were presented to show that the rapid water
vaporization with sunlight can be achieved using silicon nanoparticles in water [11]. Rapid sunlight
to heat conversion was achieved using plasmonic nanocomposites with filler concentration at
volumetric ppm level [12]. Collocation and optimal homotopy asymptotic methods had been
used for investigation of third grade non-Newtonian blood fluid [13]. Similarly, third grade non-
Newtonian blood flow had also been investigated by solving their partial differential equations
using differential quadrature method [14]. The performance of optimal homotopy asymptotic
method (OHAM) found better as compared to fourth order Runge–Kutta numerical method,
while investigating micropolar fluid [15]. OHAM had also been used for computational analysis of
micropolar fluid flow [16]. The heat transfer analysis of solar collectors had been performed using
OHAM and homotopy perturbation method [17]. Peristaltic nanofluid flow had been analyzed
using differential tranformation method to study the impacts of Brownian and thermophoresis
motions on its flow for drug delivery applications [18]. The fourth order Runge–Kutta numer-
ical method with shooting technique had been adopted for solving the governing equations of
nanofluid towards a stretching sheet [19]. The solar energy induced stagnation-point fluid flow
was investigated using Rooseland approximation and shooting technique–based fourth–fifth order
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Runge–Kutta method. It was reported that the liquid absorbed higher solar radiations due to
excessive mobility of nanoparticles [20]. The numerical study magneto–hydrodynamic (MHD)
nanofluid flow was performed to analyze the effect of solar energy on fluid flow using Keller–Box
numerical approach [21]. The summary of existing solution methods and fluid types for different
applications has been presented in Table 1. Besides these, the dynamics of nanofluidic problems
have also been discussed in the literature for different application fields.

Table 1: Overview of existing solution methods and fluid types for different applications

Reference Fluid application Solution methods

[13] Third grade non-Newtonian blood Collocation and optimal homotopy
asymptotic methods

[14] Pulsatile blood flow in femoral and
coronary arteries

Differential quadrature method

[15] Two dimensional micropolar fluid
between two porous disks

Optimal homotopy asymptotic
method

[16] Micropolar fluid between porous and
non-porous disk

Optimal homotopy asymptotic
method

[17] Air-heating flat-plate solar collectors Optimal homotopy asymptotic and
homotopy perturbation methods

[18] Peristaltic nanofluid for drug delivery Differential transformation method
[19] Nanofluid towards a stretching sheet fourth order Runge–Kutta numerical

method
[20] Solar energy induced

stagnation-point fluid flow
fourth–fifth order Runge–Kutta
method

[21] Solar energy incuded
magneto–hydrodynamic nanofluid
flow

Keller–Box numerical method

This conducted research explored nanofludics systems numerically and graphically. The less
research has been performed on the application of the two-dimensional non-linear radiative heat
transfer in the nanofluid flow. The major contributions of the proposed work are:

• Optimal homotopy asymptotic method has been proposed for the numerical solutions of
two-dimensional non-linear radiative heat transfer in the nanofluid.

• The performance of OHAM method has been analyzed in terms of convergence rate and
the results prove its faster convergence.

• The dynamics of the nanofluid have also been analyzed in respect of Velocity, Nanoparticle
concentration profiles, and Temperature profiles studied with the effect of Magnetic param-
eter, Radiation parameter, Lewis number, Eckert number, Biot number, Prandtl number,
Thermophoresis parameter, and Brownian motion.

Rest of the paper is organized as follows: Section 2 presents modeling of nanofluid flow over
a stretched sheet, Section 3 discusses optimal homotopy asymptotic method for the numerical
solutions, Section 4 provides solution and results to show effectiveness of the proposed method,
and Section 5 concludes the proposed research.
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2 Modeling of Two-Dimensional Nonlinear Radiative Thermionics in Nano-MHD

Suppose the flow of nanofluid over stretched sheet shown in Fig. 1, with convective heating at
y= 0. Along x-direction the stretching velocity is μω = αx. B0 is the magnetic field perpendicular
to the flow. μ∞(x) = βx is the free stream velocity. The analysis of heat transfer is done under the
influence of viscous dissipation, Joule heating and thermal radiations, with the combined effect of
thermophoresis and Brownian motion.

Figure 1: Coordinate system for the physical stretched sheet model

The governing equations of the heat flow under typical boundry conditions can be expressed
as [22,23]:
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In above Eqs. (1)–(4) velocity component along x-axis is μ and along y-axis is υ. KB is the
Brownian parameter, KT is the thermophoretic diffusion parameter. ζ is the base fluid thermal
diffusivity, χf is the density of base fluid, heat capacities are denoted by (χC)f and (χC)p,
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mr represents parameter of radioactive heat flux and nanoparticale concentration is represented
by C, where,

mr =−4
∑

3n∗
∂T4

∂y
(5)

In Eq. (5), σ denotes the Stefan-Boltzman constant, n* represents the mean absorption
coefficient. Eqs. (2)–(4) can be transformed to:
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The boundary conditions will be of the form:

g′(0)= 0, g′(∞)→ γ , g′(0)= 1,
θ(0)= 1, θ(∞)→ 0,

φ′(0)=−λ[1−φ(0)], φ(∞)→ 0.

OHAM is used to solve Eqs. (6)–(8) under given boundary conditions.

3 Numerical Method

3.1 Formulation of OHAM
The idea of optimal homotopy asymptotic method (OHAM) is discussed in [24–29]. Govern-

ing differential equation is written as:

B(u(κ))+w(κ)= 0, κ ∈Ω (9)

A(u)= 0 (10)

B(u) = L(u) +S(u) where L is a linear component and S is the nonlinear component. It is
worth noting that we have a great freedom to choose the L part from the model, therefore it does
not need to get the first solution (initial guess). κ is independent variable, � is domain, u(κ) is
unknown function, w(κ) is a known function. Substituting B(u) in (9),

L(u(κ))+w(κ)+S(u(κ)) = 0, (11)

by applying OHAM on (11):

(1− q)[L(Φ(κ,q))+w(κ)=H(q)[L(Φ(κ,q))+w(κ)+S(Φ(κ,q))]′, (12)

A(Φ(κ,q))= 0
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where q ∈ [0, 1] is an embedding parameter, nonzero auxiliary function H(q) at q �= 0 with H(0)
= 0, �(κ, q) is an unknown function. For q=0, 1

Φ(κ, 0)= u0(κ), Φ(κ, 1)= u(κ) (13)

With the change in value of P from 0 to 1, �(κ, q) varies from u0(κ) to u(κ). Putting q=0
in (12):

L(u0(κ))+w(κ)= 0, A(u0)= 0 (14)

Auxiliary function will be of the form:

H(q)= qC1+ q2C2+ q3C3+ · · · , (15)

where C1, C2, C3,. . . are con stants to be evaluated. By applying Taylor’s series with respect to q
for expansion we get:

Φ(κ,q,Ci)= u0(κ)+
∞∑
n=1

un(κ;Ci)qn, i= 1, 2, 3, . . . .. (16)

Comparing (16) and (12), we get following coefficients

L(u1(κ))=C1S0(u0(κ)), A(u1)= 0, (17)

L(u2(κ))−L(u1(κ))=C2S0(u0(κ))+C1[L(u1(κ))+S1(u0(κ),u1(κ))] (18)

A(u2)= 0 (19)

where Sn- i(u0(κ), u1(κ),. . ., un- i(κ)) is the coefficient of qn- i. expansion of S(�(κ;q)) gives that

S(Φ(κ;q,Ci))= S0(u0(κ))+
∑
n≥1

sn(u0,u1, . . . ,un)q
n. (20)

Convergence of the Eq. (16) depends on the values of auxiliary constants C1,C2,C3,C4 . . . For
q=1

u′(κ;Ci)= u0(κ)+
∑
n≥1

un(κ;Ci) (21)

From (21) and (11), we get the residual expansion

R(κ;Ci)=L(ú(κ;Ci))+w(κ)+S(ú(κ;Ci)) (22)

We will get exact solution of ú(κ;Ci) if R(κ;Ci) = 0, it is not always true for nonlinear systems.
For the determinations of auxiliary constants C1,C2,C3,. . ., following methods can be used:

• Galerkin’s Method,
• Ritz Method,
• Least Squares Method and
• Collocation Method
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To find the optimal values of auxiliary constants. Method of least square is the most common
method to optimize the errors by taking the square of the residuals over the given domain to get
the following functional:

J(Ci)=
∫ x2

x1
R2(κ,C1,C2,C3, . . .)dκ, (23)

where x1 and x2 are the values depending on the given system. The optimal values of C1, C2,
C3,. . . can be evaluated with minimum error from:

∂J
∂C1

= ∂J
∂C2

= ∂J
∂C3

= . . .= ∂J
∂Cn

= 0. (24)

Solving the above system of algebraic equations obtained in Eq. (24), we get the values of C1,
C2, C3,. . .. Replacing the values of C1, C2, C3,. . .Ci in Eq. (10), we get the approximate solution.
Fig. 2 explains the process of modeling and solution of MHD problem using OHAM.

3.2 Validation of OHAM
Validation of the OHAM technique is an essential part of a theoretical study. The aim of

validation is to ensure the computations are reliable. For this purpose, we considered singular
initial value Lane-Emden [30] model to evaluate our semi-empirical technique. Indeed, OHAM is
known for its easy implementation, effectiveness for solving singular phenomena, and producing
efficient results with minimum computations. The general representation of Lane-Emden equation
is given as follows:

v′′ + n
x
v′ + f (v)= g(x), 0< x< 1,n≥ 1. (25)

with initial conditions

v(0)= γ , v′(0)= δ.

where f (v) is a real valued continuous function, γ , δ and n are constants. The most common
form of f (v) = vλ, here λ is tropic index. From literature it observed that the solutions of the
Lane-Emden equation could be given in closed form if tropic index is 0≤ λ≤ 5. For λ= 3, n=2
and g(x) = x5 + 30, Eq. (25) will become:

d2v(x)
dx2

=−2
x

(
d(v(x))
dx

)
− v+x5 + 30, 0< x≤ 1, (26)

with boundary conditions v(0) = 0 and v′(0) = 0. The exact solution of the Eq. (26) is
v(x) = x5 [31].
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Figure 2: Schematic representation for the MHD flow analysis of nanofluid over a non-linear
stretching sheet

For λ= 1, n=2 and g(x) = x6 + 6, Eq. (25) will become:

d2v(x)
dx2

=−2
x

(
d(v(x))
dx

)
− v3 +x6 + 6, 0< x≤ 1, (27)

having boundary conditions v(0) = 0 and v′(0) = 0. The exact solution of the Eq. (27) is
v(x) = x2 [31].

By applying OHAM scheme Eqs. (12)–(24) subject to the given boundary conditions to eval-
uate solutions denoted by vOHAM . As shown in Table 2, the effectiveness of OHAM is validated
using absolute errors |vExact − vOHAM |, for Eqs. (26) and (27). Table 2 verifies that accuracy is
achieved even with the second order approximations.
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Table 2: Validation of OHAM using absolute errors comparison for Lane-Emden model

x Model 1 (Eq. (26)) Model 2 (Eq. (27))

vExact vOHAM |vExact− vOHAM | vExact vOHAM |vExact−vOHAM |
0 0 0 0 0 0

0.1 0.00001 0.00001 1.9129 × 10−13 0.01 0.01 5.08092 × 10−14

0.2 0.00032 0.00032 2.32418 × 10 –11 0.04 0.04 1.30061 × 10−11

0.3 0.00243 0.00243 3.62995 × 10−10 0.09 0.09 3.3304 × 10−10

0.4 0.01024 0.01024 2.38195 × 10−9 0.16 0.16 3.31194 × 10−9

0.5 0.03125 0.03125 9.45552 × 10−9 0.25 0.25 1.94424 × 10−8

0.6 0.07776 0.07776 2.6459 × 10−8 0.36 0.36 8.02049 × 10−8

0.7 0.16807 0.16807 5.5833 × 10−8 0.49 0.49 2.49742 × 10−7

0.8 0.32768 0.32768 9.05342 × 10−8 0.64 0.640001 5.89492 × 10−7

0.9 0.59049 0.59049 1.11444 × 10−7 0.81 0.810001 9.84671 × 10−7

1.0 1 1.0000001 1.12014 × 10−7 1 1.000001 1.09369 × 10−6

4 Solutions and Results

In this section, OHAM is applied to nonlinear ODE’s Eqs. (6)–(8). The homotopy of Eq. (6)
is constructed as:

(1− q)(g′′′(η))− (qC1 + q2C2+ q3C3)(g
′′′(η)+ gg′′(η)− g′(η)2+M(γ − g′(η))= 0, (28)

We consider g(η) as follows:

g(η)= g0(η)+ qg1(η)+ q2g2(η) (29)

By solving Eqs. (28) and (29), after simplification and equating like powers of q-terms, we get

q0 : g′′′0 (η)= 0, (30)

q1 :−γMC1+MC1g
′
0(η)+C1g

′
0(η)2 − g0(η)C1g

′′
0(η)− g′′′0 (η)−C1g

′′′
0 (η)− g′′′1 (η)= 0, (31)

q2 :−γMC2+MC2g
′
0(η)+C2g

′
0(η)2 +MC1g

′
1(η)+ 2C1g

′
0(η)g′1(η)− g1(η)C1g

′′
0(η)− g0(η)C2g

′′
0(η)

−g0(η)C1g
′′
1(η)−C2g

′′′
0 (η)−C1g

′′′
1 (η)− g′′′1 (η)+ g′′′2 (η)= 0. (32)

The homotopy of Eq. (7) is constructed as:

(1− q)(KRφ′′(η))− (qC1+ q2C2+ q3C3)(B+PR(gφ′(η)+NBφ′(η)θ(η)+NTφ′(η)2 +ECg′′(η)2

+MEC(γ − g′(η))2))= 0.
(33)

We consider φ(η) as follows:

φ(η)= φ0(η)+ qφ1(η)= 0 (34)

By solving Eqs. (33) and (34), after simplification and equating like powers of q-terms, we get

q0 :KRφ′′
0 (η)= 0, (35)
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q1 :−PRECγ 2MC1 + 2PRECγMC1g0′(η)− 2PRECγMC1g0′(η)2

−PRg0(η)C1φ0′(η)−NTPRC1φ0′(η)2

−3KRφωC1φ0(η
2)φ′

0(η)2 −NBPRC1φ
′
0(η)θ ′0(η)−PRECC1g0

′′(η)2 −KRφ
′′
0(η)−KRC1φ

′′
0(η),

+3KRC1φ0(η)2φ0(η)2 +KRC1φ0(η)3φ′′
0 (η)−KRφωC1φ0(xi)3φ′′

0 (η)+KRφ′′
1 (η)= 0. (36)

The homotopy of Eq. (8) is constructed as:

(1− q)(θ ′′(η)− (qC1+ q2C2+ q3C3)

(
θ ′′(η)+LEgθ ′(η)+ NT

NB
φ′′(η)

)
= 0. (37)

We consider θ(η) as follows:

θ(η)= θ0(η)+ qθ1(η)+ q2θ2(η) (38)

By solving Eqs. (37) and (38), after simplification and equating like powers of q-terms, we get

q0 : θ ′′0 (η)= 0, (39)

q1 :−LEg0(η)C1θ
′
0(η)− NTC1φ

′′
0 (η)

NB
− θ ′′0 (η)−C1θ

′′
0 (η)+ θ ′′1 (η)= 0, (40)

q2 :−LEg1(η)C1θ
′
0(η)−LEg0(η)C2θ

′
0−LEg0(η)C1θ

′
1−

NTC2φ
′′
0 (η)

NB
− NTC1φ

′′
1 (η)

NB
−C2θ

′′
0 (η)

−θ ′′1 (η)−C1θ
′′
1 (η)+ θ ′′2 (η)= 0. (41)

The modified equations obtained from OHAM have been solved using boundary conditions
which are provided in Section 2. For solar application analysis of OHAM, solar radiation’s impact
in a magnetic field conducted over an extended plate with a nanofluid limit layer has been
investigated to illustrate the impact of radiation parameter Velocity profile g(η) with the magnetic
parameter M and γ which is ratio between μ∞(x) and μw(x). Influence on local Nusselt number
φ′(η) and temperature profile φ(η) are also analyzed by varying Eckert Number Ec, magnetic field
parameter M, radiation parameter Kr, Brownian motion parameter NB, Biot number λ, Prandtl
number PR, thermophoresis parameter NT , and Lewis number LE . Quantitative illustration of the
results for local Nusselt number and local Sherwood number for different physical quantities is
provided, in Table 3. The Sherwood number θ ′(η) and nanoparticle concentration Profile θ(η) are
also analyzed graphically as presented below.

Velocity profile has been presented in Fig. 3 in accordance with diverse values of the magnetic
parameter M with γ which is ratio between μ∞(x) and μw(x). The magnetic parameter M causes
the velocity profile to decrease. Fig. 4 illustrates the diverse values of γ with fixed value of
the magnetic parameter on velocity profile. It is observed with the increase in value of γ , g′(η)
increases.
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Table 3: Local Nusslet and local Sherwood numbers for λ= 0.5, γ = 0.5, Pr = 2, LE, Ec =0.1 and
θw =1

Kr NT NB M −θ ′(0) −φ′(0) φ(0)

1 0.1 0.1 0.5 0.4664598246120293 0.26141498328150586 0.4771700334369882
2 0.1 0.1 0.5 0.5209896415637669 0.24716682675923912 0.5056663464815216
3 0.1 0.1 0.5 0.5442978732983028 0.23639158308557312 0.5272168338288539
4 0.1 0.1 0.5 0.5570914728351142 0.22923538494661175 0.5415292301067764
1 0.1 0.1 0.5 0.4664598246120293 0.26141498328150586 0.4771700334369882
1 0.3 0.1 0.5 0.37429846565406766 0.2595320125095193 0.48093597498096136
1 0.5 0.1 0.5 0.34622408550534034 0.2575302528333817 0.48493949433323646
1 0.7 0.1 0.5 0.33324873038809033 0.2554051792471895 0.48918964150562094
1 0.1 0.2 0.5 0.5231685965170045 0.2598771943047885 0.48024561139042277
1 0.1 0.3 0.5 0.5610775175261665 0.2565021697146164 0.48699566057076704
1 0.1 0.4 0.5 0.5754219014831572 0.25269787029430274 0.4946042594113944
1 0.1 0.8 0.5 0.5829394984132731 0.2484357738931433 0.5031284522137133
1 0.1 0.1 0 0.4708067434668121 0.2632332254073311 0.4735335491853378
1 0.1 0.1 1 0.4620367334127816 0.25957432652351636 0.4808513469529673
1 0.1 0.1 2 0.4529787582506981 0.2558032538839282 0.4883934922321435
1 0.1 0.1 3 0.4436266499078204 0.25163717722937007 0.49672564554125986

Figure 3: Velocity profile g′(η) for different choices of M at γ = 0.5

The impact of radiation parameter Kr is depicted in Fig. 5. Kr impact on temperature profile
φ(η) is studied in detail. It is observed that increase in Kr, first increases the temperature profile
φ(η), followed by a decrease, and lastly, an increase is illustrated. Fig. 6 shows the Nusselt Number
φ′(η) for diverse variations of radiation parameter Kr. It is observed that increase in Kr, first
decreases the φ′(η), followed by an increase, and lastly, a decrease is noted. Illustration of the
influence of Prandtl number PR onto the dependent variable temperature profile φ(η) is presented
in Fig. 7. Decreasing trend is observed in φ(η) with the increase in PR. Effect of Prandtl Number
PR is studied on Nusselt number φ′(η) in Fig. 8. Increment in the PR makes φ′(η) to increase and
decrement of PR causes φ′(η) to decrease. Hence, an increasing trend is comprehended by φ ′(η).
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Figure 4: Velocity profile g′(η) for different choices of γ at M =1

Figure 5: Temperature profile φ(η) for different choices of radiation parameter Kr at M = 1, γ =
0.5, λ= 0.4, PR =3, NB =0.1, NT = 0.1, LE =2, Ec =0.2, φw =1 showing their exciting nature

Figure 6: Nusselt number −φ′(η) for different choices of radiation parameter Kr at M =1, γ =
0.5, λ= 0.4, PR =3, NB =0.1, NT = 0.1, LE =2, Ec =0.2, φw =1 showing their exciting nature
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Figure 7: Temperature profile φ(η) for different choices of Prandtl number PR at M =0.5, γ = 0.5,
λ= 0.5, Kr =2, NB =0.1, NT =0.1, LE = 1, Ec =0.2, φw =1 showing their exciting nature

Figure 8: Nusselt number −φ′(η) for different choices of Prandtl number PR at M =0.5, γ = 0.5,
λ= 0.5, Kr =2, NB =0.1, NT =0.1, LE = 1, Ec =0.2, φw =1 showing their exciting nature

Influence on temperature profile φ(η) in accordance with Thermophoresis parameter NT is
discussed in Fig 9. The behavioral pattern comprehends it as an increasing trend. Fig. 10 shows
the variation of NT on the local nusselt number φ′(η). This figure elucidates φ′(η) with a decreas-
ing trend in accordance with the variation of NT . Brownian motion parameter NB influences on
temperature profile φ(η) is shown in Fig. 11. The Brownian motion in nanofluids exists due to
their size and because of this size the effect of its minisicule particles play an important role
in transfer of heat. The basis of definition of Brownian motion; hint towards the kinetic energy
of nanoparticles increasing the values of φ(η) due to the chaotic motion intensity. Hence, an
increasing trend is comprehended in φ(η). Brownian motion parameter NB and its association with
local Nusselt number is illustrated in Fig. 12. A decreasing trend has been comprehended by φ′(η)
with the increase of NT .
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Figure 9: Influence of NT on φ(η) at M = 0.5, γ = 0.5, λ = 0.5, PR =4, Kr = 2, NB =0.1, LE =1,
Ec = 0.2, φw =1

Figure 10: Variation of NT on −φ′(η) at M =0.5, γ = 0.5, λ = 0.5, PR =4, Kr =2, NB =0.1,
LE =1, Ec = 0.2, φw =1

Figure 11: Influence of NB on φ(η) at M =0.5, γ = 0.5, λ= 0.5, PR =4, Kr =2, NT =0.1, LE =1,
Ec = 0.2, φw =1
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Figure 12: Variation of NB on −φ′(η) at M =0.5, γ = 0.5, λ = 0.5, PR = 4, Kr =2, NT =0.1,
LE =1, Ec =0.2, φw =1

Magnetic parameter’s M effect on the temperature profile φ(η) is directed in Fig. 13. It is
clearly noted that an increasing trend is comprehended by the φ(η) with the increment of M.
Local Nusselt number φ′(η) and its resultant behavior associated with the effect of magnetic
parameter M is depicted in Fig. 14. Magnetic parameter M causes a decreasing trend in φ′(η).
Temperature profile φ(η) association with different values of of Lewis number LE are depicted in
Fig. 15. The behavioral pattern observed from the temperature profile φ(η) indicates it to be that
of an increasing trend. Local Nusselts Number φ′(η) association with the diverse values of Lewis
number LE are represented in Fig. 16. The effect of LE triggers the decreasing trend in φ′(η) is
depicted.

Figure 13: Temperature profile φ(η) for different choices of magnetic parameter M at Kr =3, γ =
0.5, λ= 0.4, PR = 3, NB =0.1, NT =0.1, LE =2, Ec =0.2, φw =1 showing their exciting nature
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Figure 14: Nusselt number −φ′(η) for different choices of magnetic parameter M at Kr =3, γ =
0.5, λ= 0.4, PR =3, NB =0.1, NT = 0.1, LE =2, Ec =0.2, φw =1 showing their exciting nature

Figure 15: Temperature profile φ(η) for different choices of Lewis number LE at Kr =3, γ = 0.5,
λ= 0.4, PR =3, NB = 0.1, NT =0.1, M = 1, Ec =0.2, φw =1 showing their exciting nature

Figure 16: Nusselt number −φ′(η) for different choices of Lewis number LE at Kr =3, γ = 0.5,
λ= 0.4, PR =3, NB = 0.1, NT =0.1, M = 1, Ec =0.2, φw =1 showing their exciting nature
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Temperature profile and its association with different values of Eckert Number Ec are rep-
resented in Fig. 17. The different values of Ec invoke an increasing trend in the temperature
profile φ(η). Fig. 18 showcases the effect of Eckert Number Ec on local Nusselt numbers φ′(η).
The increase in Ec causes an inverse influence in φ′(η). This means that an increase in Ec will
cause a decrease in φ′(η). Hence, a decreasing trend is comprehended in φ′(η). The impact of
Biot number λ is reviewed in Fig. 19 in accordance with temperature profile φ(η). It is observed
that increase in the λ will cause an increase in the φ(η). Hence an increasing trend has been
comprehended in the temperature profile. Biot number λ and its impact on the local Nusselt
number φ′(η) is demonstrated in Fig. 20. It is observed that λ will cause an increase in φ′(η).
Therefore, an increasing trend is triggered in φ′(η).

Figure 17: Influence of Ec on φ(η) at M = 0.5, γ = 0.5, λ = 0.5, PR =4, Kr =2, NT = 0.1, LE = 1,
NB =0.1, φw = 1

Figure 18: Variation of Ec on −φ′(η) at M =0.5, γ = 0.5, λ= 0.5, PR =4, Kr =2, NT =0.1, LE =
1, NB =0.1, φw = 1
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Figure 19: Influence of λ on φ(η) at M =0.5, γ = 0.5, Ec = 0.4, PR =4, Kr =2, NT =0.1, LE =1,
NB =0.1, φw =1

Figure 20: Variation of λ on −φ′(η) at M =0.5, γ = 0.5, Ec = 0.4, PR =4, Kr =2, NT = 0.1, LE =
1, NB =0.1, φw =1

Figure 21: Nanoparticle concentration profile θ(η) for different choices of radiation parameter Kr
at M =1, γ = 0.5, λ = 0.4, PR =3, NB = 0.1, NT =0.1, LE =2, Ec = 0.2, θw =1 showing their
exciting nature
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Fig. 21 represents the Nanoparticle concentration profile θ(η) and its association with diverse
values of radiation parameter Kr. It is observed that the nanoparticles are elicited inversely with
different variations of the radiation parameter. Thus a decreasing trend has been comprehended
in θ(η). Different variations of radiation parameter Kr on Sherwood number θ ′(η) is shown in
Fig. 22. The increase in Kr also originates an increase in the θ ′(η). Therefore an increasing trend
is comprehended in θ ′(η). Different values of Prandtl number PR in association with Nanoparticle
concentration profile θ(η) are presented in Fig. 23. The effect of different variations of PR
trigger an increasing trend in θ(η). Prandtl number PR and its different values impact on the
Sherwood number θ ′(η) are revealed in Fig. 24. The different values of PR inversely effect the
θ ′(η). Therefore a decreasing trend is observed in θ ′(η).

Figure 22: Sherwood number −θ ′(η) for different choices of radiation parameter Kr at M =1, γ =
0.5, λ= 0.4, PR = 3, NB =0.1, NT =0.1, LE =2, Ec =0.2, θw = 1 showing their exciting nature

Figure 23: Nanoparticle concentration profile θ(η) for different choices of Prandtl number PR at
M =0.5, γ = 0.5, λ= 0.5, Kr =2, NB =0.1, NT =0.1, LE =1, Ec =0.2, θw = 1 showing their exciting
nature
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Figure 24: Sherwood number −θ ′(η) for different choices of Prandtl number PR at M =0.5, γ =
0.5, λ= 0.5, Kr =2, NB = 0.1, NT =0.1, LE = 1, Ec =0.2, θw =1 showing their exciting nature

The thermophoresis parameter NT and its association with Nanoparticle concentration profile
θ(η) is represented in Fig. 25. The increase in NT triggers an increasing trend in θ(η). Different
values of thermophoresis parameter NT and their impact on Sherwood number θ ′(η) is revealed
in Fig. 26. The different variations in NT cause a decreasing trend in θ ′(η). Brownian motion
parameter NB and its influence on Nanoparticle concentration profile θ(η) is discussed in Fig. 27.
The different variations of NB elicit a decreasing trend in θ(η). Brownian motion parameter NB
and its diverse values effect on the Sherwood number θ ′(η) are presented in Fig. 28. It is observed
that these variations elicit an increasing trend in θ ′(η).

Figure 25: Influence of NT on θ(η) at M =0.5, γ = 0.5, λ= 0.5, PR =4, Kr =2, NB = 0.1, LE =1,
Ec = 0.2, θw =1
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Figure 26: Variation of NT on −θ ′(η) at M =0.5, γ = 0.5, λ= 0.5, PR =4, Kr = 2, NB = 0.1, LE =
1, Ec =0.2, θw =1

Figure 27: Influence of NB on θ(η) at M =0.5, γ = 0.5, λ= 0.5, PR =4, Kr =2, NT =0.1, LE = 1,
Ec =0.2, θw =1

Figure 28: Variation of NB on −θ ′(η) at M =0.5, γ = 0.5, λ = 0.5, PR = 4, Kr =2, NT =0.1,
LE =1, Ec =0.2, θw =1
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Diverse values of Lewis Number LE and their impact on the Nanoparticle concentration
profile θ(η) is illustrated in Fig. 29. The sudden increment in LE resulted in somewhat greater dif-
ference because of it having weaker molecular diffusivity. This indicates that LE triggers decreasing
trend in θ(η). Lewis Number LE and its different variations connotation with Sherwood number
θ ′(η) are illustrated in Fig. 30. The variations of LE cause an increasing trend in θ ′(η). The
resultant values of Nanoparticle concentration profile θ(η) due to the impact of Eckert Number
Ec are discussed in Fig. 31. This indicates a decreasing trend in θ(η). Eckert number Ec and
its diverse value’s association with the Sherwood number θ ′(η) are illustrated in Fig. 32. The
Ec effects the Sherwood number θ ′(η) inversely. This indicates a decreasing trend in θ ′(η). Biot
number λ and its diverse values impact on Nanoparticle concentration profile θ(η) is presented in
Fig. 33. It is observed that the Biot Number λ elicits an increasing trend in θ(η). Fig. 34 shows
the variation of Biot number λ on the Sherwood number θ ′(η). It is observed that the variations
of λ inversely effect the θ ′(η). This indicates a decreasing trend in θ ′(η).

Figure 29: Nanoparticle concentration profile θ(η) for different choices of Lewis number LE at Kr
=3, γ = 0.5, λ = 0.4, PR =3, NB =0.1, NT =0.1, M =1, Ec = 0.2, θw =1 showing their exciting
nature

Figure 30: Sherwood number−θ ′(η) for different choices of Lewis number LE at Kr =3, γ = 0.5,
λ= 0.4, PR =3, NB = 0.1, NT =0.1, M = 1, Ec =0.2, θw =1 showing their exciting nature
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Figure 31: Influence of Ec on θ(η) at M = 0.5, γ = 0.5, λ = 0.5, PR =4, Kr =2, NT =0.1, LE = 1,
NB =0.1, θw =1

Figure 32: Variation of Ec on −θ ′(η) at M = 0.5, γ = 0.5, λ= 0.5, PR =4, Kr =2, NT =0.1, LE =
1, NB =0.1, θw =1

Figure 33: Influence of λ on θ(η) at M =0.5, γ = 0.5, Ec = 0.4, PR =4, Kr = 2, NT = 0.1, LE = 1,
NB =0.1, θw =1
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Figure 34: Variation of λ on −θ ′(η) at M = 0.5, γ = 0.5, Ec =0.4, PR = 4, Kr =2, NT =0.1, LE =
1, NB =0.1, θw =1

5 Conclusion

This study exploits semi-analytical technique with changing aspects of the system. The system
is based on a model with 2-D nanofluid flowing over a stretching sheet. This paper investigates

the impact of Velocity profile g(η), with the magnetic parameter M and γ = μ∞(x)
μw(x) . Influence on

local Nusselt number φ′(η) and temperature profile φ(η) are also analyzed by varying magnetic
field parameter M, radiation parameter Kr, Brownian motion parameter NB, Prandtl number PR,
Biot number λ, Eckert number Ec, thermophoresis parameter NT , and Sherwood number θ ′(η).
The Lewis number LE and nanoparticle concentration Profile θ(η) are also analyzed graphically.
The vital interpretations are as follows:

(1) It is observed velocity profile is decreasing with the Magnetic parameter M and increasing
with the γ which is ratio between μ∞(x) and μw(x).

(2) Temperature profile φ(η) increases with Eckert number Ec, radiation parameter Kr, ther-
mophoresis parameter NT , magnetic parameter M, Brownian motion parameter NB,
Lewis number LE, and Biot number λ. Temperature profile decreases φ(η) with Prandtl
number PR.

(3) The increase in local Nusselt number φ′(η) is invoked only with Biot number λ and
Prandtl number PR. The decrease in local Nusselt number φ′(η) is invoked with magnetic
parameter M, radiation parameter Kr, Lewis number LE , Brownian motion parameter NB,
thermophoresis parameter NT , and Eckert number Ec.

(4) Nanoparticle concentration profile θ(η) increased with Biot number λ, thermophoresis
parameter NT and Prandtl number PR. Decreasing trend for Nanoparticle concentration
profile θ(η) was observed with Brownian motion parameter NB, Lewis number LE, and
Eckert number Ec and radiation parameter Kr.

(5) Trend for Sherwood number θ ′(η) was observed to increase with radiation parameter Kr,
Lewis number LE, and Brownian motion parameter NB. Trend for Sherwood number θ ′(η)
was observed to decrease with Eckert number Ec, thermophoresis parameter NT , Biot
number λ and Prandtl number PR.
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