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ABSTRACT

Low-temperature nitriding of steel or iron can produce an expanded austenite phase, which is a solid solution
of a large amount of nitrogen dissolved interstitially in fcc lattice. It is characteristic that the nitogen depth
profiles in expanded austenite exhibit plateau-type shapes. Such behavior cannot be considered with a standard
analytic solution for diffusion in a semi-infinite solid and a new approach is necessary. We formulate a model of
interdiffusion in viscoelastic solid (Maxwellmodel) during the nitriding process. It combines themass conservation
and Vegard’s rule with the Darken bi-velocity method. The model is formulated in any dimension, i.e., a mixture is
included in R

n, n= 1, 2, 3. For the system in one dimension, n= 1, we transform a differential-algebraic system of
5 equations to a differential system of 2 equations only, which is better to study numerically and analytically. Such
modification allows the formulation of effective mixed-type boundary conditions. The resulting nonlinear strongly
coupled parabolic-elliptic differential initial-boundary Stefan type problem is solved numerically and a series of
simulations is made.
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List of symbols

1, 2 Components, 1 ≡ Fe, 2 ≡N
�i Partial molar volume of the i-th component
� Molar volume of the mixture
Di Diffusivity of the i-th component
Bi Mobility of the i-th component
T Temperature
t Time
R Gas constant
ci(t, x) Concentration of the i-th component
Ni(t, x) Molar ratio of the i-th component
Ns
L (t) Surface nitrogen concentration at the left boundary

Ns
L,∞ Steady-state nitrogen concentration at the left boundary
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yi(t, x) Volume concentration of the i-th component
c(t, x) Overall concentration of the mixture
μi(t, x) Chemical potential of the i-th component
μ◦
i Chemical potential of a reference state of the i-th component

ai(t, x) Activity of the i-th component
fi(t, x) Activity coefficient of the i-th component
θi(t, x) Thermodynamic factor of the i-th component
Ji(t, x) Overall flux of the ith component
Jdi (t,x) Diffusional flux of the i-th component
P(t, x) Local pressure (stress)
v(t, x) Local material velocity (drift velocity) velocity
η Viscosity coefficient, η∗ = 4

3η

E The Young modulus
νP The Poisson number
u0 The lattice parameter
u(N2) A linear dependence between the lattice parameter and nitrogen content in Fe
[�1(t), �2] Domain in R

Initial and boundary conditions
Y (x) Initial condition for the Fe volume concentration
PL(t) Dirichlet boundary condition for the dynamic pressure at x=�1(t)
YL(t) Dirichlet boundary condition for the Fe volume concentration at x=�1(t)
β Constant parameter in Ns

2 (t) function
ϕ(t) Time dependent function used to express YL(t)
kf , kb, F Constants used in the Chang-Jaffé boundary condition for nitrogen concentration at �1(t)

1 Introduction

Nitriding is a thermochemical surface treatment carried out below eutectoid temperature.
In the method, a surface of a solid substrate is modified by inserting (diffusion) of nitrogen
from the gas atmosphere, which leads to the development of a compound layer and diffusion
zone near the substrate surface [1–3]. Nitriding has shown the potential to enhance mechanical
properties of the surface layer. The compound layer can improve wear and corrosion resistance [4].
The diffusion zone, which grows beneath the compound layer, is responsible for the enhancement
of fatigue strength.

Depending on a medium providing nitrogen, the nitriding process can be pack, salt-bath, gas,
or plasma nitriding. In the pack nitriding, nitrogen-containing organic compounds are used as
a nitrogen source. Salt-bath nitriding is carried out in a molten salt bath. In the gas nitriding
process, nitrogen is supplied from the gas atmosphere, usually ammonia, NH3. Plasma-discharge
technology is a basis for plasma nitriding [5–9]. Basically, it is a glow discharge process in a
mixture of nitrogen and hydrogen gases. A bias voltage applied to the substrate causes ions to
collide with the surface and enhancing the nitriding effect. Plasma nitriding is the most versatile
nitriding process and has many advantages over conventional salt-bath and gas nitriding [10–15].

For the last 30 years, it has been reported in many papers that it is possible to nitride stainless
steel in such way that a phase of so called expanded austenite is formed, in which nitrogen
concentration can reach 38% but remains in solid solution [13,15–30]. Expanded austenite, also
known as S phase or γN phase, is a metastable supersaturated solid solution of nitrogen (or
carbon) in austenite that forms as a case by diffusion [31,32]. It provides high hardness and high
resistance against wear, corrosion and fatigue, which is a consequence of compressive residual
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stresses. Such stresses appear due to lattice expansion while the core material constraints the
expansion. The composition-induced expansion accommodates elasto-plastically [33–35]. It has
been also demonstrated that when nitriding is carried out with the use of high-intensity nitrogen
plasma pulses the expanded austenite phase can be formed in ARMCO α-iron. The pure iron,
initially in α phase, can be transformed into the γ austenite structure, in which expanded austenite
is present [36,37]. Typical N-depth profiles in expanded austenite show high value at the surface,
an abrupt decrease following a nearly constant plateau and final decrease to a matrix value. Such
behavior clearly deviates from the Fickian diffusion and several models have been proposed to
predict formation of the expanded austenite. Williamson et al. [38] theorized that if the Cr atoms
are present in the alloy they tend to trap N atoms nearby octahedral sites. When all the Cr
traps are occupied, additional N atoms rapidly diffuse to the edge of the γN layer. This model
has been mathematically formalized by Parascandola et al. [39] basing on the diffusion equation
with trapping and detrapping and has been accepted by many authors [19,20,31,32]. In several
papers [18,21,22], the non-Fickian distribution of nitrogen has been modeled by assuming a
presence of composition-dependent internal stress gradient generated by the nitrogen penetration.
The stress gradient yields an additional driving force for the diffusion, next to the concentration
gradient.

Galdikas et al. [40] considered a simple case, namely the diffusion flux of nitrogen JN being
proportional to the gradient of chemical potential μN(cN ,T , p), depending on the nitrogen concen-
tration cN , temperature T , and pressure p. Moreover they examined a degenerated situation when
the pressure p in solids is proportional to internal stresses: p=−σ . In simple words the pressure
is the hydrostatic part of the stress tensor, is analogue of the hydrostatic pressure. They neglected
the interdiffusion in Fe-N system, consequently a drift was not analyzed and ignore plastic
deformation (in our work we consider the Maxwell solid). They had also different, mathematically
complicated boundary conditions on the nitrogen concentration cN given by a suitable differential
equation. Kücükyildiz et al. [41] modeled the low temperature plasma nitriding, T ∈ [420◦C,
445◦C], of austenitic stainless steels, i.e., the reactive diffusion of nitrogen in isotropic elasto-
plastic material. At such temperature the diffusivities of metals are very low and interdiffusion
process is negligible. The one-dimensional model combines the diffusion of nitrogen, DN (cN ,T),
the elasto-plastic accommodation of the lattice expansion, the solid solution-strengthening by
nitrogen and the reactions (trapping of nitrogen by chromium atoms). A very good agreement
was foud between the predicted and experimental composition-depth profiles.

A treatment, which takes into account internal stresses, stress relaxation and the resulting
convective transport has been developed by Stephenson [42,43]. In his works, Stephenson focuses
on the solution in an arbitrary binary system but a discussion of binary conditions is lacking. In
this research, we use a similar approach as it has been presented by Stephenson in [42,43] and in
our earlier paper [44]. Namely, we combine the Darken bi-velocity method with the Vegard rule,
the Maxwell model of viscoelestic material and the Gibbs-Duhem equation on chemical potentials.
We formulate the model in any dimension. In one dimensional case, we equivalently transform
such a differential-algebraic system of 5 equations to a differential system of 2 equations only.
This modification allows us giving effective mixed type boundary conditions. The open boundary
changes with time. Such a nonlinear strongly coupled parabolic-elliptic differential initial-boundary
Stefan type problem is solved numerically using the constructed implicit finite difference methods.
They are generated by some linearization and spliting ideas. From a numerical and analytical point
of view, it is better to study the reduced differential system of 2 equations than the differential-
algebraic system of 5 equations proposed by Stephenson. The interdiffusion during the nitriding
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is simulated in one dimension and different boundary conditions are discussed. A comparison
of our numerical simulations with simulations obtained with the use of some known physically
simpler models, for example given in [40], we will present in our future papers.

2 Theory

The overall interdiffusion process can involve a variety of interactions between the diffu-
sive transport, internal stresses, convection (drift) and deformation (plastic strain). Fundamental
studies of Larche et al. [45] concerning the stress generated during the interdiffusion and its contri-
bution to a diffusion potential neglect stress relaxation and convective transport due to the plastic
deformation. In the Darken method, the potential necessary to drive the plastic deformation is
neglected and it is assumed that plastic flow occurs sufficiently rapidly. In such case, the diffusion
of a “faster” component is rate-limiting. At relatively small distances, like in the surface layer,
the diffusion of “slower” component can become the rate limiting step. When it is true, a simple
diffusion equation is not sufficient to describe the overall interdiffusion. A treatment which takes
into account both internal stresses, stress relaxation and the resulting convective transport has
been developed by Stephenson [42,43]. In the present study, we extend this idea and consider
interdiffusion vector fluxes Ji = Ji (t,x) ∈ R

n, x ∈ � = � (t) ⊂ R
n, n = 1, 2, 3, i = 1, . . . , s in the s

component system given constitutive equations:

Ji =−Bici (∇μi+�i∇P)+ civ, i= 1, . . . , s, (1)

where Bi, �i, ci = ci(t, x), μi = μi(t, x) are mobility, partial molar volume, concentration of the
ith specie and its chemical potential. It is assumed that Bi and �i are constant, i.e., composition
independent. P= P(t, x) is the local pressure and v= v(t, x) is the local material velocity (drift)
common for all components [46–48].

The first term in (1) describes chemical diffusion due to the gradient of the chemical potential.
The second and third terms represent diffusion due to the non-uniform stress and convective
transport, respectively. Convection generates viscous flow and the use of proper constitutive
relation is mandatory at low temperatures. A good choice is the Maxwell solid.

Viscoelasticity is a property of materials that exhibits both viscous and elastic characteristics
when undergoing deformation. The Maxwell model predicts that when a material is put under
stress, the strain has two components: (i) an elastic component occurring instantaneously and
corresponding to the spring, which relaxes immediately upon release of the stress; (ii) viscous
component that decreases with time as long as the stress is applied which seems accurate for
interdiffusion at short distances.

Let us use a simple example of the two-component interdiffusion, s= 2, for example between
the solid metallic substrate (Me) and nitrogen (N) from a gas atmosphere. It is assumed that par-
tial molar volumes and the diffusivities of the Me, N components are constant, i.e., concentration
independent. Consider the following physical equations.

Continuity equations:

∂ci
∂t

=−∇ · Ji, i= 1, 2, 1≡Me, 2≡N. (2)

The overall flux Ji of the specie in (2) is given by (1). The symbol “·” stands for the standard
inner product in R

n.
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Vegard rule:

�1c1+�2c2 = 1. (3)

Maxwell solid:

∇ · v= 1
η∗
P, (4)

where η∗ = 4
3η and η is the viscosity coefficient. The Maxwell solid equation determines kinetics

of the plastic strain (viscous flow) and combines the convection velocity v with the pressure P.

The nonideal solute chemical potential is assumed

μi =μ◦
i +RT lnai =μ◦

i +RT ln (fiNi) , i= 1, 2, (5)

where μ◦
i , ai = ai(Ni), fi = fi(Ni) denote the chemical potential of a reference state, the component

activity and the activity coefficient, and Ni =Ni(t, x) is a molar ratio of the component, Ni = ci
c ,

c= c1 + . . .+ cs, R is the gas constant and T means the temperature. The activity coefficient will
be taken a function of hydrostatic pressure, see Part 3.1. Assume that f2 can be expressed by the
suitable explicit formula as a function of N2 (see (29)) but there is not known an explicit formula
on f1. We treat μ2 as a known function expressed by N2 (or equivalently c1, c2) and μ1 as an
unknown.

We postulate local-equilibrium, isothermal, isobaric conditions which imply

Gibbs-Duhem equation:

c1∇μ1+ c2∇μ2 = 0, (6)

or equivalently

N1∇μ1+N2∇μ2 = 0. (7)

It is easy to verify that from (2) and (3) we get

Volume continuity equation:

∇ · (�1J1+�2J2)= 0. (8)

Our object to study is the differential-algebraic system (2)–(4), (6) of 5 equations
with (4 + n) unknowns: c1, c2, v, P and μ1. It is because of v ∈R

n. Using (1) and (8) this system
can be equivalently written in the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂c1
∂t

=−∇ · (−B1c1 (∇μ1+�1∇P)+ c1v) ,

∇ · (�1B1c1 (∇μ1+�1∇P)+�2B2c2 (∇μ2+�2∇P)− v)= 0,
�1c1+�2c2 = 1,

∇ · v= 1
η∗
P,

c1∇μ1+ c2∇μ2 = 0.

(9)

Limiting cases of the above system are:

(1) Rapid plastic flow (Darken bi-velocity).
(2) No plastic flow.
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Rapid plastic flow. In the Darken bi-velocity method, it is assumed that the plastic flow occurs
rapidly and P= const, ∇P = 0. Then the system (9) is simplified to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂c1
∂t

=−∇ · (−B1c1∇μ1+ c1v) ,

∇ · (�1B1c1∇μ1+�2B2c2∇μ2− v)= 0,
�1c1+�2c2 = 1,
c1∇μ1+ c2∇μ2 = 0,

(10)

with the unknowns c1, c2, v and μ1. Consider the case n= 1. By Eq. (5), we have

∂μ1

∂x
= RT

N1
θ1

∂N1

∂x
, (11)

where the thermodynamic factor θ1 = 1+ d ln f1
d lnN1

. In view of the Gibbs-Duhem Eq. (7), ∂μ2
∂x can be

expressed as

∂μ2

∂x
=−N1

N2

∂μ1

∂x
. (12)

Hence the volume continuity equation, Eq. (8), takes the form

∂

∂x

(
v−RT (�1B1−�2B2)cθ1

∂N1

∂x

)
= 0 (13)

and in consequence

v=RT (�1B1−�2B2) cθ1
∂N1

∂x
+K (t) , (14)

where K(t) is an arbitrary function. Assume that the domain � ⊂ R is an interval and �1J1 +
�2J2 = 0 on one boundary of �. It implies that K(t) = 0 and the interdiffusion flux is as follows:

J1 =−RT (B1N2 +B2N1)�2c2θ1
∂N1

∂x
. (15)

When f1 = 1 (ideal solution) and �1 =�2 =�= c−1 one gets the Darken simple relation

J1 =− (N2D1 +N1D2)
∂c1
∂x

, (16)

where the diffusivity Di =RTBi, i= 1, 2.

No plastic flow. If the material velocity is negligible, v= 0, there is no plastic deformation, and
the system (9) is reduced to⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂c1
∂t

=−∇ · (−B1c1 (∇μ1+�1∇P)) ,

∇ · (�1B1c1 (∇μ1+�1∇P)+�2B2c2 (∇μ2+�2∇P))= 0,
�1c1+�2c2 = 1,
c1∇μ1+ c2∇μ2 = 0,

(17)
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with the unknowns c1, c2, P and μ1. Consider the case n = 1. Reasoning similarly as in the
previous situation, for the rapid plastic flow, we get

∂P
∂x

=RT
�2B2−�1B1

�2
1B1N1 +�2

2B2N2
θ1

∂N1

∂x
. (18)

Elementary calculations lead to the relation for the interdiffusion flux

J1 =−RT B1B2

�2
1B1N1+�2

2B2N2
�2θ1

∂N1

∂x
. (19)

If c= const, then

J1 =−D∂c1
∂x

, (20)

where

D=RT
B1B2θ1(

�2
1B1N1 +�2

2B2 (1−N1)
)
c2
. (21)

Moreover if B2 	B1 and �1 =�2 =�= c−1, then (21) simplifies to

D=RT
B2θ1

�2
1N1c2

=RT
B2θ1

N1
(22)

and for an ideal solid solution, for which f1 = 1, we obtain

D= D2

N1
. (23)

The above means that, when v= 0 then the slower component is rate limiting.

We will consider in this paper the case n = 1. If n ≥ 2, then the number of the equations
in (9) (also in Eqs. (2)–(4), (6)) and the unknowns is different so the problem is mathematically
badly posed. If n= 2 or n= 3, � is a simply connecting region and rot v = 0, then there exists
a scalar potential � of the drift v, i.e.,

−∇�= v (24)

(see [49–51]). The same remarks are true for (10) and (17). Such a situation will be studied
in the future. Add that existence, uniqueness and some properties of solutions to one-dimensional
interdiffusion model with the drift, but without the chemical potentials and pressure, were proved
in [52].

3 Formulation of Practical Model

In this section, we consider a mathematical model of the nitrogen transport during the nitrid-
ing in one-dimensional case, n= 1. The model includes the diffusional and convective transport,
stress formation and plastic flow. We will transform the system (9) to a system of two equations
with the unknowns y1 and P. Such a system will be better from a mathematical and numerical
point of view.



784 CMES, 2022, vol.130, no.2

The assumptions are:

1. s = 2, 1 ≡ Fe, 2 ≡ N, the binary one-dimensional system in � = [Λ1 (t) ,Λ2] ⊂ R, free
for nitrogen at the left boundary, x=�1(t), while the right boundary, x=�2, is a center of the
sample.

2. The diffusing components have various diffusivities (D1 �= D2) and various partial molar
volumes (�1 �= �2), the diffusivities and partial molar volumes are constant, i.e., composition
independent.

3. Temperature T = 723 K.

We introduce new variables

y1 =�1c1, y2 =�2c2, (25)

which are interpreted as volume concentrations. It is clear that

y1+ y2 = 1, (26)

because of the Vegard rule.

3.1 Chemical Potential
The chemical potentials of iron and nitrogen are given by (5), where especially RT ln f2 =

−�2σh, f2 = f2(N2) means the activity coefficient of nitrogen. The hydrostatic stress σh = σh(N2)
can be expressed by the compressive residual stress parallel to the surface σh = 2

3σ‖. It can be
calculated from the lattice dilatation due to the nitrogen penetration, as it results from the Vegard
rule

σh=
2
3

E
1− νP

u0− u
u0

, (27)

where E is the Young modulus of Fe (we neglect here a dependence of E on the nitrogen content
and assume the value for pure Fe), νP is the Poisson ratio, u0 means the Fe lattice constant
and u= u(N2) = u0 + u1N2 represents a linear dependence of the lattice constant on the nitrogen
content. Hence

σh=
2E

3 (νP− 1)
u1
u0
N2, (28)

where u0, u1, E, νP are known constants. Therefore, the activity coefficient f2 can be written as

f2 = e
E�2
RT

2u1
3u0(1−νP)

N2. (29)

By Eq. (5), we have

∂μi

∂x
= RT

Ni
θi

∂Ni

∂x
, i= 1, 2, (30)

where the thermodynamic factors θi = 1+ d ln fi
d lnNi

. In view of the Gibbs-Duhem equation we obtain

∂μ1

∂x
=−N2

N1

∂μ2

∂x
. (31)
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Note that N1 +N2 = 1, by the definition. Eqs. (30) and (31) imply

θ1 = θ2. (32)

It follows from (29), the form of θ2 and Appendix A that

θ2 = 1+ 2�1�2Eu1 (1− y1)
3RTu0 (νP− 1) (�1+ (�2−�1)y1)

. (33)

In this way, θ1 can be expressed as a function of y1.

3.2 System of Equations
Taking into account the Maxwell solid equation, the following relation holds

v (t,x)= 1
η∗

∫ x

�1(t)
P (t, s)ds+K (t) , x ∈ [�1 (t) ,�2] . (34)

Upon assuming that at the right boundary v(t, �2) = 0, the time-dependant function K(t)
can be calculated

K (t)=− 1
η∗

∫ Λ2

Λ1(t)
P (t, s)ds (35)

and hence the drift velocity is

v (t,x)=− 1
η∗

∫ �2

x
P (t, s)ds. (36)

In consequence, the first equation in (9) becomes

∂y1
∂t

=B1
∂

∂x

(
y1

(
∂μ1

∂x
+�1

∂P
∂x

))
− 1

η∗
y1P+ 1

η∗
∂y1
∂x

∫ �2

x
P (t, s)ds. (37)

Combining the volume continuity equation with the Vegard, Maxwell solid and Gibbs-Duhem
equations gives

∂

∂x

((
B1y1−B2 (1− y1)

c1
c2

)
∂μ1

∂x

)
+ ∂

∂x

(
(�1B1y1+�2B2 (1− y1))

∂P
∂x

)
= P

η∗
. (38)

By Eq. (5), we have

∂μ1

∂x
= RT

N1
θ1

∂N1

∂x
, (39)

where the thermodynamic factor θ1 = 1+ d ln f1
d lnN1

. It follows from Appendix A that:

∂μ1

∂x
= RT�1

y1 (�1+ (�2−�1)y1)
θ1

∂y1
∂x

(40)

and Eq. (38) becomes

S (y1)
∂2P
∂x2

+ ∂y1
∂x

∂P
∂x

+QP=G (y1) , (41)
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where

S (y1)= �2B2

�1B1−�2B2
+ y1,

Q=− 1
(�1B1−�2B2) η∗

,

G (y1)=−RT ∂

∂x

(
1

�1+ (�2−�1)y1
θ1

∂y1
∂x

)
.

For detailed derivation of (41) see Appendix B. Hence the system (9) can be written in the
form⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂y1
∂t

=RT�1B1
∂

∂x

(
1

�1+ (�2−�1)y1
θ1

∂y1
∂x

)
+�1B1

∂

∂x

(
y1

∂P
∂x

)

− 1
η∗
y1P+ 1

η∗
∂y1
∂x

∫ �2

x
P (t, s)ds,

S (y1)
∂2P
∂x2

+ ∂y1
∂x

∂P
∂x

+QP=G (y1) ,

(42)

with the unknowns y1 and P (see (32), (33)).

Eq. (42) is a parabolic-elliptic system of nonlinear nonlocal strongly coupled differential
equations on the domain [�1(t), �2], where �1(t) is the solution of the initial value problem{
�′

1 (t)= v (t,�1 (t)) ,
�1 (0)= 0, (43)

that by (36) can be written in the form{
�′

1 (t)=− 1
η∗
∫ �2
�1(t)

P (t, s)ds,
�1 (0)= 0.

(44)

For the system (42), we formulate the initial condition at t= 0,

y1 (0,x)=Y (x) , x ∈ [0,�2] , (45)

where Y is a given function. The boundary conditions will be discussed in the next section of the
paper.

3.3 Boundary Conditions

For Eq. (42) we give the following mixed boundary conditions BC.

1. At the right boundary, x=�2, the Neumann BC for y1 and P,⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂y1
∂x

(t,�2)= 0,

∂P
∂x

(t,�2)= 0.

(46)
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2. At the left boundary, x=�1(t), the Dirichlet BC for P,

P (t,�1 (t))=PL (t) , (47)

where PL is a given function.

3. Two types of BC for y1 are considered at the left boundary, x= �1(t): the Dirichlet and
the Chang-Jaffé.

(a) The Dirichlet BC

y1 (t,�1 (t))=YL (t) , (48)

where YL is a given function. The question is what YL to propose. For this purpose, the surface
nitrogen concentration is given by the function [53],

Ns
2 (t)=Ns

2,∞
(
1− e−βt) , (49)

where Ns
2,∞ = const is a surface-nitrogen concentration at t→∞ (equilibrium steady-state surface

concentration) and β is a constant parameter that tells how fast Ns
2 (t) approaches Ns

2,∞. For the

boundary condition (48) and experimental depth profiles, Christiansen et al. [22] determined, by
inverse modeling, the β parameter to be 0.0001. By noting that y1 =�1N1 (�2− (�2−�1)N1 )−1

as has been calculated in Appendix A, we get

YL (t)= �1ϕ (t)
�2− (�2−�1) ϕ (t)

, (50)

where ϕ (t)= 1−Ns
2,∞

(
1− e−βt

)
.

(b) Instead, because the left boundary is open for the nitrogen flux, it is reasonable to consider
the boundary as an interface and assume that there is no accumulation of nitrogen “within” it.
In such a case, we can write

J2 (t,�1 (t))= kf F − kbc2 (t,�1 (t))= kf F − kb
�2

y2 (t,�1 (t)) , (51)

where kf , kb, F are given constants. Equivalently, it can be expressed in the term of y1,

J1 (t,�1 (t)) : =−�2kf F

�1
+ kb

�1
(1− y1 (t,�1 (t)) , (52)

by (26) and Appendix C. In consequence, using (36) and (40), we get

B1RT�1

�1+ (�2−�1)y1
θ1

∂y1
∂x

+B1�1y1
∂P
∂x

+ 1
η∗
y1

∫ �2

�1(t)
P (t, s)ds=�2kf F − kb (1− y1) (53)

at the points (t, �1(t)) (see (32), (33)). The above formula is called the non-local Chang-Jaffé BC.
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3.4 Data and Results
For the system (37)–(41), the set of data have been applied, Tab. 1. Constant diffusivities

(mobilities), i.e., concentration independent, have been used. Most of the computations have been
made assuming for Fe the highest diffusivity in the α phase (equal to the lowest diffusivity in the γ

phase) [54]. For this diffusivity, a plateau appears at the nitrogen concentration profile, Figs. 1–3,
5–7, which is according to the expectations. Such a choice agrees with the supposition that the
diffusion in the expanded austenite is faster that it is expected from chemical diffusion [18].

Table 1: The data used in the simulations

Temperature T [K] 723

Lenght L [m] 0.00005
Fe elastic constants Young modulus1 E [Pa] 2 · 1011

Poisson number νP [-] 0.33
Partial molar volumes �2

1 [m3/mol] 7.09 · 10−6

�3
2 [m3/mol] 4.24 · 10−6

Thermodynamic pressure u0 [m]4 2.86 · 10−10

u1 [m]5 0.60 · 10−10

Mobilities B6
1 [mol · s/kg] 8.32 · 10−21

B7
2 [mol · s/kg] 3.6 · 10−20

Viscosity coefficient η, [Pa · s]-experimental8 2.5 · 103

η, [Pa · s]-calculated9 1.8 · 104÷ 1011

Initial and boundary conditions Y (x) [−] 1

Ns
2,∞ [at.%] 0.25

PL(t) [Pa] 0

kf

[
mol
m2 · s

]10
0.5 · 10−9

kb

[
mol
m2 · s

]10
0.5 · 10−9

F
[
mol
m3

]10
6.0 · 103

Notes:
1Reference [55]; 2Reference [56]; 3Reference [57]; 4Reference [58]; 5Reference [59]; 6Highest mobility in the α phase, Reference [54];
7Reference [60]; 8Reference [61]; 9Calculated from Eq. (54): 10Fitted to Ns

2,∞ = 0.25 at.%.
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To study an effect of viscosity on the nitrogen transport, we have made the simulations for
the experimentally found viscosity coefficient, 2.5 · 103 Pa · s (see [61]) and repeated them for the
two extreme values calculated theoretically for the pure Fe and Fe with 0.25 N at.%; 1.8 · 104 and
1011 Pa · s, respectively. In calculations of these extreme viscosity coefficients, the Stokes-Einstein
relation, which combines the viscosity with diffusivity has been used. For the binary system it
is [43]:

η = cd2RT
γDNP

, (54)

where c=�−1, d is a distance between the atoms, DNP is the Nernst-Planck interdiffusion coeffi-
cient and γ is a geometric factor, γ ≈ 10. An effect of a sample thickness on the stress distribution
and concentration profiles has been also studied and the simulations have been repeated for 4
different sample thicknesses. Besides, the computations for various boundary conditions have been
made.

The programming has been performed using the Chesbyshev-Gauss-Lobatto and power grids.
In Fig. 1, we show that the results don’t depend on the choice of the grid. Therefore, we have
arbitrarily decided to perform the remaining computation using the program based on the power
grid.

Figure 1: Comparison of the nitrogen concentration-depth profiles (a) and spatial pressure distri-
bution (b), computed using the Chesbyshev-Gauss-Lobatto and power grids. The results after 15
h of the nitriding. The data simulated for the Dirichlet BC and experimental viscosity coefficient

In Fig. 2a comparison of simulations made for the two types of boundary conditions for
nitrogen concentration at the open boundary is presented. We consider the Dirichlet and Chang-
Jaffé boundary conditions. Although in the case of the Chang-Jaffé condition, the nitrogen
concentration at the open boundary is calculated in the self-consistent way, without assuming
given values, the both curves clearly overlap. The results also show that the concentration profile
after 30 min of the processing exhibits an inflection, which at longer times transforms into a
plateau characteristic for the non-Fickian diffusion in the expanded austenite.
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Figure 2: (a) Time evolution of the nitrogen concentration-depth profiles simulated with the use
of the Dirichlet and Chang-Jaffé boundary conditions for the nitrogen concentration at the free
left boundary �1(t); (b) spatial pressure distribution after 15 h of the processing. The data for
the experimental viscosity coefficient

An effect of partial molar volume (here partial molar volume of nitrogen) is presented in
Fig. 3, where we show the nitrogen concentration and pressure after 15 h of the processing.
The assumed values are: �2 = 4.24 · 10−6 m3/mol–according to Jesperson [57] and �2 = 1.73 ·
10−5 m3/mol–according to ChemGlobe. It is seen that the variation of the �2 affects mainly a
case depth while the characteristic plateau does not dissappear. This fact confirms the validity of
our model.

Figure 3: (a) Time evolution of the nitrogen concentration-depth profiles simulated for the nitro-
gen partial molar volume �2 = 4.24 · 10−6 m3/mol given in [57], and the nitrogen partial
molar volume �2 = 1.73 · 10−5 m3/mol given in https://chemglobe.org/ptoe/; (b) spatial pressure
distribution after 15 h of the processing. The data simulated for the Dirichlet BC and experimental
viscosity coefficient

https://chemglobe.org/ptoe/
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When we assume the Fe mobility equal to that at 723 K [54], B1 = 1.66 · 10−22 mol · s/kg,
the results are qualitatively different. The plateau disappears and the sample becomes elongated,
Fig. 4. Pressure distribution is also qualitatively different. It is because the computational time
is too short for such a small mobility B1. For the plateau to appear, the time would have to be
around 1500 h.

Figure 4: Time evolution of the nitrogen concentration-depth profiles (a) and spatial pressure
distribution (b), simulated for B1 = 1.66 · 10−22 mol · s/kg (the Fe mobility in 723 K). The
profiles after 10, 30 min, 3 and 15 h of the nitriding. The data simulated for the Dirichlet BC
and experimental viscosity coefficient

In Fig. 5, the results for 4 samples of different thicknesses are presented. It is seen that the
amount of the nitrogen dissolved and the case depth decrease when the layer thickness increases,
Figs. 5e–5f. The observed differences are due to various stress distribution in the samples of
various thicknesses. The pressure changing with the depth (pressure gradient) implies an additional
driving force for the diffusion. It is seen that the pressure gradient decreases at longer times.
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Figure 5: (a–d) Time evolution of the nitrogen concentration together with the spatial pressure
distribution (in insets) simulated for the samples of various thicknesses, the respective profiles after
10, 30 min, 3 and 15 h of the nitriding; (e) comparison of nitrogen concentration profiles after
15 h of the nitriding of the samples of various thicknesses; (f) amount of nitrogen dissolved in the
samples vs. time. The data simulated for the Dirichlet BC and experimental viscosity coefficient
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Only quantitative differences are seen when the final nitrogen concentration at the open
boundary is increased from 0.25 at.% to 0.35 at.%, Fig. 6.

Figure 6: (a) Time evolution of the nitrogen concentration together with nitrogen dissolved (in
inset) and (b) spatial pressure distribution for various steady-state nitrogen concentrations at the
free left boundary �1(t), 0.25 and 0.35 at.%. The respective profiles after 30 min, 3 and 15 h of
the nitriding. The data simulated for the Dirichlet BC and experimental viscosity coefficient

The effect of viscosity coefficient is presented in Fig. 7. It is seen that with increasing viscosity
coefficient the case depth decreases and less nitrogen is dissolved in the substrate.

Figure 7: (a) Time evolution of the nitrogen concentration together with nitrogen dissolved (in
inset) and (b) spatial pressure distribution simulated for the 3 samples of various viscosity coef-
ficients. The respective profiles after 3 and 15 h of the nitriding. The data simulated for the
Dirichlet BC
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The presented results show that the appearance of the plateau at the nitrogen concentration
profiles is conditioned by the mobilities of the species. It appears when the Fe mobility is
higher than that at 723 K. Such processing can be realized in plasma conditions. The sample
elongation is not observed. Qualitatively different results are obtained when assuming Fe mobility
at 723 K (about 5 orders lower). No plateau appears and the sample becomes elongated. The
characteristic plateau-type shape of the N-concentration depth profile has been confirmed by
many authors [4,21,28]. Christiansen et al. in [20–22,28] studied the effects of in-depth stress
gradients in expanded austenite. The obtained profiles showed a clear plateau followed by a steep
nitrogen concentration decrease. Our results agree well with these results. Also, the experimental
data measured by electron probe microanalysis (EPMA) in AISI 316 steel after low-temperature
nitriding (440◦C) for 23 hours at the nitriding potential KN = 1.41 bar−1/2 (at which the surface
nitrogen concentration is 0.25 at.%) and presented in [22] (Fig. 4) show the validity of the
calculated profiles. By comparing the thickness of the nitride zone, our simulation provides an
overestimate. The validity can be improved by adopting concentration-dependent diffusivity.

4 Summary and Conclusions

Low and intermediate-temperature nitriding of iron and stainless steel can cause a formation
of expanded austenite phase. In this research, a formation of expanded austenite is modeled using
the Darken bi-velocity method combined with the Vegard rule, the Maxwell model of viscoelastic
solid, and the Gibbs-Duhem equation. It is the first such approach, which takes into account the
interdiffusion of all components in the solid alloy. The model is formulated in any dimension
and is given by a differential-algebraic system of 5 equations. In the one dimensional case, this
system is equivalently transformed to the differential system of 2 equations only, which from
analytical point of view is better to be studied. Effective mixed type boundary conditions are
given. Such a nonlinear strongly coupled parabolic-elliptic differential initial-boundary Stefan type
problem is solved numerically. A series of simulations is made. The results confirm an appearance
of the characteristic plateau on the nitrogen concentration-depth profiles which is in agreement
with literature data (see for example [20–22,28]). The model can be improved by the way of using
concentration dependent diffusivities. It can be concluded that:

• The nitrogen transport during nitriding is advanced by means of the stress and strain
assisted interdiffusion.

• The stress enhances the diffusion.
• The interdiffusion can cause an imbalance in the volume transport and a non-uniform

stress-free strain.
• The stress and strain depend on the components’ mobilities, viscosity coefficient and

thickness of the substrate.
• Relaxation of the internal stresses generated by unbalanced diffusion fluxes can become the

rate-limiting step for the interdiffusion.

The Maxwell model is usually applied to the case of small deformations. For the large
deformations one should include non-linearity, e.g., the upper-convected Maxwell model. It can
be further improved by the way of using concentration dependent diffusivities.

The initial boundary value problem presented here can be extended and even used in practical
applications.
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Appendix A

To express the chemical potential gradient ∂μ1
∂x as a function of y1, let us notice first that

N1 = c1
c , y1 =�1c1, �1c1+�2c2 = 1 and c1+ c2 = c. We can write:

c= �1+ (�2−�1)y1
�1�2

, (55)

N1 = �1c1
�1c

= y1
�1c

= �2y1
�1+ (�2−�1)y1

, (56)

∂N1

∂x
= �1�2

(�1+ (�2−�1)y1)2
∂y1
∂x

. (57)

After introducing (56) and (57) into (39) leads to (40).

Appendix B

We want to find a differential equation on the pressure P. The formulas (38) and (40) imply
the relation

∂

∂x

((
B1y1−B2 (1− y1)

c1
c2

)
RT�1

y1 (�1+ (�2 −�1)y1)
θ1

∂y1
∂x

)
+ ∂

∂x

(
(�1B1−�2B2)y1

∂P
∂x

+�2B2
∂P
∂x

)

= 1
η∗
P. (58)

It follows from elementary calculations that

B1y1−B2 (1− y1)
c1
c2

=B1y1−B2 (1− y1)
c1�1�2

c2�1�2
= �1B1−�2B2

�1
y1. (59)

By inserting (59) to (58) we have

RT (�1B1−�2B2)
∂

∂x

(
1

�1+ (�2 −�1)y1
θ1

∂y1
∂x

)

+ (�2B2+ (�1B1−�2B2)y1)
∂2P
∂x2

+ (�1B1−�2B2)
∂y1
∂x

∂P
∂x

= 1
η∗
P (60)

and equivalently(
�2B2

�1B1−�2B2
+ y1

)
∂2P
∂x2

+ ∂y1
∂x

∂P
∂x

− 1
(�1B1−�2B2) η∗

P

=−RT
(

θ1

�1 + (�2−�1)y1

∂2y1
∂x2

+ ∂

∂x

(
θ1

�1+ (�2−�1)y1

)
∂y1
∂x

)
. (61)

In fact Eq. (61) is identical with Eq. (41).

Appendix C

We will show that

�1J1+�2J2 = 0. (62)
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It follows from (8) that

�1J1+�2J2 =K (t) , (63)

by one dimension n= 1. Let Jdi =−Bici
(

∂μi
∂x +�i

∂P
∂x

)
mean the diffusion terms of the fluxes Ji,

i= 1, 2 given in (1). Because at the right boundary v(t, �2) = 0 and �1Jd1 (t,�2)+�2Jd2 (t,�2)= 0,
then K(t) ≡ 0 and in consequence (62) is satisfied.

Appendix D

We will construct implicit finite difference methods for the system (42) with the initial condi-
tion (45) and two types of boundary conditions: (46)–(48)-the Robin type, and (46), (47), (53)-the
generalized non-local Robin type, respectively. These numerical methods are generated by some
linearization and spliting ideas. The date used in simulations are given in Table 1. To avoid a
double indexation, we put: y: = y1 and θ : = θ1.

Define a mesh on the set [0, ∞) × � (t) = [�1(t), �2] in the following way. Let τ > 0 stands
for the time step of the mesh and define nodal time points tν = ντ , ν ∈ N ∪ {0}. Let moreover
M ∈ N be given, �ν

1 = xν
0 < xν

1 < . . . < xν
M < xν

M+1 = �2 be at this moment arbitrarily fixed nodal
space points and let hν

m = xν
m− xν

m−1, m= 1, . . . ,M + 1 mean the space steps of the mesh. Define

new nodal space points xν
m = xm + 1

2hm+1, m = 0, . . . ,M. Note that xν
m − xν

m−1 = hm+hm+1
2 . Put

�
ν
m = hν

m+hν
m+1

2 .

For the left end of the domain �(t), the approximation of (44) is applied,

�ν+1
1 =�ν

1 −
τ

2η∗

M+1∑
m=1

hν
m

(
Pν+1
m−1+Pν+1

m

)
, �0

1 = 0. (64)

Two definitions on the space nodal points will be used in computations:

xν
m =�ν

1 +
(

m
M+ 1

)s (
�2−�ν

1

)
, m= 0, . . . ,M + 1, (65)

for s= 3/2 or s= 2;

xν
m =�ν

1 +
1+ cos

(
2M+4−m
2M+4 π

)
1+ cos

(
M+3
2M+4π

) (
�2−�ν

1

)
, m= 0, . . . ,M+ 1. (66)

Eq. (65) describes the power and Eq. (66), the Czebyshev–Gauss–Lobatto grids.

We define two linear implicit difference schemes: for the ordinary equation on pressure P and
for the parabolic equation on concentration y1 in system (42) with the initial-boundary conditions
(45)–(48). For each ν, they are algebraical systems of M+1 equations with M+1 unknowns of the
form



CMES, 2022, vol.130, no.2 801

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0m =Y (xm) , m= 0, . . . ,M + 1,

P0
0 =PL (0) ,

A0
m−1P

0
m−1+A0

mP
0
m+A0

m+1P
0
m+1 =G

(
y0m
)
, m= 1, . . . ,M,

P0
M+1 =P0

M ,

(67)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Cν+1
0 =YL

(
tν+1) ,

Cν+1
m−1y

ν+1
m−1+Cν+1

m yν+1
m +Cν+1

m+1y
ν+1
m+1 = yν

m, m= 1, . . . ,M,

Cν+1
M+1 =Cν+1

M ,

(68)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Pν+1
m =PL

(
tν+1) ,

Aν+1
m−1P

ν+1
m−1+Aν+1

m Pν+1
m +Aν+1

m+1P
ν+1
m+1 =G

(
yν+1
m

)
, m= 1, . . . ,M,

Pν+1
M+1 =Pν+1

M ,

(69)

where

A0
m−1 =

1
�0m

(
S
(
y0m
)

h0m
− 1

4�0m

(
y0m+1− y0m−1

))
,

A0
m =−S

(
y0m
)

�0m

(
1

h0m+1

+ 1
h0m

)
+Q,
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1
�0m

(
S
(
y0m
)

h0m+1

+ 1
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))
,

S
(
y0m
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�1B1−�2B2
+ y0m,
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(
y0m
)
=−RT

(
θ0m

�1+ (�2−�1)y0m

1
�0m

(
y0m+1− y0m
h0m+1

− y0m− y0m−1
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)
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(

θ0m+1

�1+ (�2−�1)y0m+1

− θ0m−1

�1+ (�2−�1)y0m−1
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y0m+1− y0m−1

4
(
�0m
)2
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(
− θ0m
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1
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(
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− y0m− y0m−1

h0m

))

+RT

⎛
⎝ (�2−�1) θ0m(

�1+ (�2−�1)y0m
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2�0m
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⎞
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Aν+1
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1
�ν
m
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m

)
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m

− 1
4�ν

m
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for ν ∈N∪ {0}.
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If we consider a finite difference method for system (42) with the initial-boundary conditions
(45)–(47), (53), then a discretization of (53) is as follows:

yν+1
0 = kf�2F − kb

B1

(
wν
1
hν
1
+�1

Pν
1−Pν

0
hν
1

)
+ 1

2η∗
∑M+1

i=1

(
Pν
i−1+Pν

i

)
hν
i − kb

. (70)


