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ABSTRACT

In quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR)
studies, computation of topological indices is a vital tool to predict biochemical and physio-chemical properties of
chemical structures.Numerous topological indices have been inaugurated to describe different topological features.
The ev and ve-degree are recently introduced novelties, having stronger prediction ability. In this article, we derive
formulae of the ev-degree and ve-degree based topological indices for chemical structure of Si2C3− I[a,b].
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1 Introduction

Researchers have found applications of graph theory and topological models in various
scientific research fields during last decades. Theoretical physics, toxicology, computer sciences,
pharmacology, pharmaceutical chemistry, engineering and architecture are diverse areas utiliz-
ing graph theory and models to make numerous improvements in existing scientific literature
[1–4]. Consequently, the collaboration of chemistry and graph theory leads towards foundation of
extensive research work. Topological indices (TIs) are result of this alliance, which are numeric
parameters used to describe characteristics of molecular graphs of chemical compounds and
help in quantitative structure-property relationship (QSPR) and quantitative structure-activity
relationship (QSAR), see [5–7].

TIs assist in the course of investigation and prediction of the physio-chemical and biochemical
properties, i.e., dipole moment, charge density, stability, melting and boiling points, inter-molecular
forces and bond lengths, without laboratory experiments, which reduces consumption of time
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and cost [1,8–12]. Randíc index, Zagreb index, atom-bond connectivity index, geometric index,
harmonic index, etc. [13–19] are some well-known TIs. Recently, Chellali et al. [20] introduced two
new degree novel approaches in graph theory, known as ev-degree and ve-degree. Mathematical
concepts related to ve-degree and ev-degree are also discussed by Horoldagva et al. [21]. Randíc
and Zagreb indices are calculated in [22–24] using ev-degree and ve-degree concepts and found
that predicting power of ve-degree Zagreb index is stronger than that of classic Zagreb index.

Silicon, the second most abundant element on earth, has unique physical and chemical prop-
erties due to its semi-conductance and nontoxic nature. Silicon carbides has diverse industrial
applications because of thermal and chemical stability, high erosion resistance, high melting point,
non oxidizing behavior [25–27]. These characteristics and low cost production techniques give
superiority to silicon carbides over other semi conductors. Different metal components used in
digital gadgets are replaced by silicon carbides due to its power saving property [28,29]. These are
widely used in wind turbines, electrical vehicles, solar cells along with different high radiation and
temperature tolerant applications.

The main objective of the article is to derive formulae to calculate the ev-degree and ve-degree
based TIs for Si2C3− I [a,b] and study the behavior of the obtained results through mathematical
tools.

2 Preliminaries

Let G(V ,E) be a graph with V vertex set and E edge set. The degree of a vertex ν is the
number of edges incident to ν. Two vertices in a graph are said to be adjacent if these are
connected with each other by an edge. Open neighborhood of a vertex ν, denoted by N(ν) is the
set of vertices adjacent to ν and if we include ν itself, then set is called closed neighborhood of
ν, denoted by N[ν]. The ev-degree of an edge e= νμ is the number of vertices in union of closed
neighborhood sets of ν and μ, denoted by dev(e) and number of edges incident to different vertices
in closed neighborhood of ν is ve-degree of a vertex ν, denoted by dve(ν). Some recent results
on the ev-degree and ve-degree based topological indices can be seen in [30]. The definitions of
ev-degree and ve-degree based versions of some topological indices are the following:

The first ve-degree based Zagreb alpha index is as follows:

ZIανe
1 (G)=

∑
ν∈V(G)

(dνe (ν))2 (1)

The first ve-degree based Zagreb beta index is defined as:

ZIβνe
1 (G)=

∑
ν1ν2∈E(G)

(dνe (ν1)+ dνe (ν2)) (2)

The second ve-degree based Zagreb index is given by the formula:

ZIνe
2 (G)=

∑
ν1ν2∈E(G)

(dνe (ν1)× dνe (ν2)) (3)

The ve-degree based Randíc index is as follows:

RIνe (G)=
∑

ν1ν2∈E(G)

(dνe (ν1)× dνe (ν2))
− 1

2 (4)
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The ev-degree based Randíc index is defined as:

RIeν (G)=
∑

e∈E(G)

deν (e)−
1
2 (5)

The ve-degree based atom-bond connectivity index is given by the formula:

ABCIνe (G)=
∑

ν1ν2∈E(G)

√
dνe (ν1)+ dνe (ν2)− 2
dνe (ν1)× dνe (ν2)

(6)

The ve-degree based geometric-arithmetic index is as follows:

GAIνe (G)=
∑

ν1ν2∈E(G)

2
√
dνe (ν1)× dνe (ν2)

dνe (ν1)+ dνe (ν2)
(7)

The ve-degree based harmonic index is defined as:

HIνe
1 (G)=

∑
ν1ν2∈E(G)

2
dνe (ν1)+ dνe (ν2)

(8)

The ve-degree based sum-connectivity index is given by the formula:

SCIνe (G)=
∑

ν1ν2∈E(G)

1√
dνe (ν1)+ dνe (ν2)

(9)

We compute these indices by using the vertex partition strategy, the edge partition tech-
niques, expository strategies, sum of degrees of neighboring techniques, degree checking and
combinatorial techniques. We use Matlab and Maple for some calculations and verification
purpose.

3 The ev and ve Degree Based Indices

Consider the two dimensional molecular structure of Si2C3−I [a, b] as shown in Fig. 1 having
b rows and a number of unit cells in each row. Before proceeding further, we include the following
tables which will be used to achieve our results. In Table 1, the total number of vertices and edges
are given for our molecular structure having b rows and a number of unit cells in each row. The
Table 2 gives the partition of vertex set on the basis of degree of vertices.

Table 1: Frequency of vertex and edges of Si2C3− I [a,b]

Total Vertices 10ab

Total Edges 15ab-2a-3b
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Table 2: Vertex degree of Si2C3− I [a,b] with corresponding frequency

d(ν) Number of vertex

1 2
2 4a+6b-4
3 10ab-4a-6b+2

Figure 1: The unit cell and Si2C3− I [3,4], respectively
4 Main Results

• The ev-degree based Zagreb index

To compute the ev-degree based Zagreb index of Si2C3−I [a, b], we use ev-degree based edges
frequency given in Table 3:

ZIeν (Si2C3− I) =
∑

e∈E(Si2C3−I)
deν (e)2

= 1× 32+ 1× 42+ (a+ 2b)× 42+ (6a+ 8b− 9)× 52

+ (15ab− 9a− 13b+ 7)× 62

= 540ab− 158a− 236b+ 52.

Table 3: Number of edges of Si2C3− I [a, b]

(d(ν1), d(ν2)) Number of edges

(1,2) 1
(1,3) 1
(2,2) a+2b
(2,3) 6a+8b-9
(3,3) 15ab-9a-13b+7
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• The first ve-degree based Zagreb Alpha index

To compute the first ve-degree based zagreb alpha index of Si2C3− I [a, b], we use ve-degrees
given in Table 4 of vertices partition:

ZIανe
1 (Si2C3− I) =

∑
ν∈V(Si2C3−I)

dνe (ν)2

= 1× 22+ 1× 32+ 2× 42+ (2a+ 4b− 2)× 52+ (2a+ 2b− 4)× 62

+ 1× 52+ (2a+ 2b− 2)× 72+ (2a+ 2b− 7)× 82

+ (10ab− 8a− 12b+ 10)× 92

= 810ab− 300a− 446b+ 115.

Table 4: Ve-degrees of vertices of Si2C3− I [a,b] with corresponding frequency

d(ν) ν e-degree Number of vertices

1 2 1
1 3 1
2 4 2
2 5 2a+4b-2
2 6 2a+2b-4
3 5 1

3 6
{
1 for a= 1 and b≥ 1
0 for a> 1 and b≥ 1

3 7
{
4b− 4 for a= 1 and b≥ 1
2a+ 2b− 2 for a= 1 and b≥ 1

3 8 2a+4b-7 for a= 1 and b≥1
3 9 10ab-8a-12b+10 for a= 1 and b≥1

• The first ve-degree based Zagreb Beta index

To compute first ve-degree based Zagreb beta index of Si2C3 − I [a, b], we use ve-degrees of
end vertices of each edge given in Table 5:

ZIβνe
1 (Si2C3− I) =

∑
ν1ν2∈E(Si2C3−I)

(d (ν1)+ d (ν2))

= 1× 6+ 1× 8+ 2× 9+ (a+ 2b− 2)× 10+ 1× 11+ 1× 10+ 1× 11

+ (2b+ 2)× 12+ (2a+ 2b− 5)× 13+ (4a+ 2b− 7)× 13+ (2b− 2)× 14

+ 1× 15+ (2a+ 2b− 3)× 16+ (a+ 2b− 4)× 16+ (2a+ 4b− 7)× 17

+ (15ab− 14a− 21b+ 20)× 18

= 270ab− 82a− 122b+ 28.
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Table 5: Ve-degrees of end vertices of each edge of Si2C3− I [a, b]

(d(ν1), d(ν2)) ν e-degree Number of edges

(1,2) (2,4) 1
(1,3) (3,5) 1
(2,2) (4,5) 2

(5,5) a+2b-2

(2,3) (4,6)
{
1 for a= 1 and b≥ 1
0 for a> 1 and b≥ 1

(4,7)
{
1 for a= 1 and b≥ 1
0 for a> 1 and b≥ 1

(5,5)
{
2 for a= 1 and b≥ 1
1 for a> 1 and b≥ 1

(5,6)
{
2 for a= 1 and b≥ 1
1 for a> 1 and b≥ 1

(5,7)

⎧⎨
⎩

0 for a, b= 1
4b− 4 for a= 1 and b> 1

2b+ 2 for a, b> 1
(5,8) 2a+ 2b− 5 for a, b> 1

(6,7)

⎧⎨
⎩

0 for a, b= 1
4b− 4 for a= 1 and b> 1
4a+ 2b− 7 for a, b> 1

(6,8)
{
2b− 2 for a> 1

0 for a= 1

(3,3) (7,7)
{

0 for a> 1
2b− 2 for a= 1

(7,8)
{
1 for a> 1
0 for a= 1

(7,9)
{
2a+ 2b− 3 for a> 1

0 for a= 1

(8,8) a+ 2b− 4 for a> 1
(8,9) 2a+ 4b− 7 for a> 1
(9,9) 15ab− 14a− 21b+ 20 for a> 1

• The second ve-degree based Zagreb index

To compute the second ve-degree based Zagreb index of Si2C3− I [a, b], we use ve-degrees of
end vertices of each edge given in Table 5:

ZIνe
2 (Si2C3− I) =

∑
ν1ν2∈E(Si2C3−I)

(d (ν1)× d (ν2))

= 1× 8+ 1× 15+ 2× 20+ (a+ 2b− 2)× 25+ 1× 28+ 1× 25+ 1× 30
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+ (2b+ 2)× 35+ (2a+ 2b− 5)× 40+ (4a+ 2b− 7)× 42+ (2b− 2)× 48

+ 1× 56+ (2a+ 2b− 3)× 63+ (a+ 2b− 4)× 64+ (2a+ 4b− 7)× 72

+ (15ab− 14a− 21b+ 20)× 81

= 1215ab− 527a− 779b+ 303.

• The ve-degree based Randíc index

To compute the ve-degree based Randíc index of Si2C3 − I [a, b], we use ve-degrees of end
vertices of each edge with corresponding frequency as given in Table 5:

RIνe (Si2C3− I) =
∑

ν1ν2∈E(Si2C3−I)
(d (ν1)× d (ν2))

− 1
2

= 1× (8)−
1
2 + 1× (15)−

1
2 + 2× (20)−

1
2 + (a+ 2b− 2)× (25)−

1
2 + 1× (28)−

1
2

+ 1× (25)−
1
2 + 1× (30)−

1
2 + (2q+ 2)× (35)−

1
2 + (2a+ 2b− 5)× (40)−

1
2

+ (4a+ 2b− 7)× (42)−
1
2 + (2b− 2)× (48)−

1
2 + 1× (56)−

1
2 + (2a+ 2b− 3)

× (63)−
1
2 + (a+ 2b− 4)× (64)−

1
2 + (2a+ 4b− 7)× (72)−

1
2

+ (15ab− 14a− 21b+ 20)× (81)−
1
2

= 5
3
ab+ a

(
1√
10

+ 4√
42

+ 2

3
√
7
+ 1

3
√
2
− 443

360

)

+ b
(

2√
35

+ 1√
10

+ 2√
42

+ 1

2
√
3

+ 2

3
√
7
+ 1

3
√
2
+ 5

12
+
(

1

2
√
2
+ 1√

15
+ 1√

5

+ 1

2
√
7
+ 1√

30
+ 2√

35

)
.

• The ev-degree based Randíc index

To compute the ev-degree based Randíc index of Si2C3− I [a, b], we use ev-degree based edge
partition with corresponding frequency given in Table 6:

RIeν (Si2C3− I) =
∑

e∈E(Si2C3−I)
deν (e)−

1
2

= 1× (3)−
1
2 + 1× (4)−

1
2 + (a+ 2b)× (4)−

1
2 + (6a+ 8b− 9)× (5)−

1
2

+ (15ab− 9a− 13b+ 7)× (6)−
1
2

= 15√
6
ab+ a

(
1
2
+ 6√

5
− 9√

6

)
+ b

(
1+ 8√

5
− 13√

6

)
+
(
1
2
+ 1√

3
+ 7√

6
− 9√

5

)
.



878 CMES, 2022, vol.130, no.2

Table 6: Frequency of edges with ev-degrees of Si2C3− I [a, b]

(d(ν1), d(ν2)) eν-degree Number of edges

(1,2) 3 1
(1,3) 4 1
(2,2) 4 a+2b
(2,3) 5 6a+8b-9
(3,3) 6 15ab-9a-13b+7

• The ve-degree based atom-bond connectivity index

To compute the ve-degree based atom-bond connectivity index of Si2C3− I [a, b], we use ve-
degrees of end vertices of each edge with corresponding frequency as given in Table 5:

ABCIνe (Si2C3− I) =
∑

ν1ν2∈E(Si2C3−I)

√
dνe (ν1)+ dνe (ν2)− 2
dνe (ν1)× dνe (ν2)

= 1×
√
4
8
+ 1×

√
6
15

+ 2×
√

7
20

+ (a+ 2b− 2)×
√

8
25

+ 1×
√

9
28

+ 1×
√

8
25

+ 1×
√

9
30

+ (2b+ 2)×
√
10
35

+ (2a+ 2b− 5)×
√
11
40

+ (4a+ 2b− 7)×
√
11
42

+ (2b− 2)×
√
12
48

+ 1×
√
13
56

+ (2a+ 2b− 3)

×
√
14
63

+ (a+ 2b− 4)×
√
14
64

+ (2a+ 4b− 7)×
√
15
72

+ (15ab− 14a− 21b+ 20)×
√
16
81

= 20
3
ab+ a

(√
11
10

+ 2

√
11
7

+ 2

√
2
3

+
√
14
8

+
√
15

3
√
2
− 16

9

)

+ b

(√
11
10

+
√
11
7

+ 2
√
2

3
+

√
14
4

− 25
3

)

+
(
2
√
2√
7

+
√
13

2
√
14

−
√
2−

√
14
2

+ 11
√
15

6
√
2

+ 71
9

)
.
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• The ve-degree based geometric-arithmetic index

To compute the ve-degree based geometric-arithmetic index of Si2C3 − I [a, b], we use ve-
degrees of end vertices of each edge with corresponding frequency as given in Table 5:

GAIνe (Si2C3− I)=
∑

ν1ν2∈E(Si2C3−I)

2
√
dνe (ν1)× dνe (ν2)

dνe (ν1)+ dνe (ν2)

= 1× 2
√
8

6
+ 1× 2

√
15
8

+ 2× 2
√
20
9

+ (a+ 2b− 2)× 2
√
25

10
+ 1× 2

√
28

11

+ 1× 2
√
25

10
+ 1× 2

√
30

11
+ (2q+ 2)× 2

√
35

12
+ (2a+ 2b− 5)× 2

√
40

13

+ (4a+ 2b− 7)× 2
√
42

13
+ (2b− 2)× 2

√
48

14
+ 1× 2

√
56

15
+ (2a+ 2b− 3)

× 2
√
63

16
+ (a+ 2b− 4)× 2

√
64

16
+ (2a+ 4b− 7)× 2

√
72

17

+ (15ab− 14a− 21b+ 20)× 2
√
81

18

= 15ab+ a

(
8
√
10

13
+ 8

√
3

7
+ 3

√
7

4
− 12

)
+ b

(√
35
3

+ 8
√
10

13
+ 3

√
7

4

+ 48
√
2

17
− 17

)
+
(
41

√
15

36
− 218

√
2

51
− 67

√
7

88
+ 2

√
30

11
+

√
35
3

− 20
√
10

3
− 8

√
3

7
+ 4

√
14

15
− 25

)
.

• The ve-degree based harmonic index

To compute the ve-degree based harmonic index of Si2C3− I [a, b], we use ve-degrees of end
vertices of each edge with corresponding frequency as given in Table 5:

HIνe
1 (Si2C3− I) =

∑
ν1ν2∈E(Si2C3−I)

2
dνe (ν1)+ dνe (ν2)

= 1× 2
6
+ 1× 2

8
+ 2× 2

9
+ (a+ 2b− 2)× 2

10
+ 1× 2

11
+ 1× 2

10
+ 1× 2

11

+ (2b+ 2)× 2
12

+ (2a+ 2b− 5)× 2
13

+ (4a+ 2b− 7)× 2
13

+ (2b− 2)× 2
14

+ 1× 2
15

+ (2a+ 2b− 3)× 2
16

+ (a+ 2b− 4)× 2
16

+ (2p+ 4q− 7)× 2
17
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+ (15pq− 14p− 21q+ 20)× 2
18

= 5
3
ab+ 14147

79560
a+ 4203

15470
b+ 305727

6126120
.

• The ve-degree based sum-connectivity index

To compute the ve-degree based sum-connectivity index of Si2C3− I [a, b], we use ve-degrees
of end vertices of each edge with corresponding frequency as given in Table 5:

SCIνe (Si2C3− I) =
∑

ν1ν2∈E(Si2C3−I)

1√
dνe (ν1)+ dνe (ν2)

= 1× 1√
6
+ 1× 1√

8
+ 2× √

9
+ (a+ 2b− 2)× 1√

10
+ 1× 1√

11
+ 1

× 1√
10

+ 1× 1√
11

+ (2b+ 2)× 1√
12

+ (2a+ 2b− 5)× 1√
13

+ (4a+ 2b− 7)

× 1√
13

+ (2b− 2)× 1√
14

+ 1× 1√
15

+ (2a+ 2b− 3)× 1√
16

+ (a+ 2b− 4)× 1√
16

+ (2a+ 4b− 7)× 1√
17

+ (15ab− 14a− 21b+ 20)× 1√
18

= 5
6
ab+ a

(
1√
10

+ 2√
13

+ 2√
17

+ 23
36

)
+ b

(
2√
10

+ 1√
3
+ 2√

13
+ 4√

17
− 1

6

)

+
(

1√
6
+ 1

2
√
2
− 2√

10
+ 2√

11
+ 1√

3
− 5√

13
− 7√

17
+ 1

)
.

5 Graphical Analysis

In this section, we present the graphical analysis of the computed topological indices for
Si2C3 − I [a,b], see Figs. 2–6 which indicate that, numerical values of these descriptors increase
with the increment of a and b in the given molecular structure.
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Figure 2: (a) The ev-degree based Zagreb index, (b) The first ve-degree based Zagreb α index

Figure 3: (a) The first ve-degree based Zagreb β index, (b) The second ve-degree based Zagreb
index

Figure 4: (a) The ev-degree based Randíc index, (b) The ve-degree based Randíc index
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Figure 5: (a) The ve-degree based atomic-connectivity index, (b) The ve-degree based geometric-
arithmetic index

Figure 6: (a) The ve-degree based harmonic index, (b) The ve-degree based sum-connectivity index

6 Conclusion

In this article, we have provided results related to the ve-degree Zagreb alpha index, first
ve-degree Zagreb beta index, second ve-degree Zagreb index, ve-degree Randíc index, ev-degree
Randíc index, ve-degree atom-bond connectivity index, ve-degree geometric-arithmetic index, ve-
degree harmonic index and ve-degree sum-connectivity index for the two dimensional molecular
structure of Si2C3 − I [a,b]. Secondly, we have presented the graphical analysis of the obtained
results. At the end, under some assumptions, the comparison among the values of the computed
indices has been shown through graphs, see Fig. 7.
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Figure 7: Comparison of indices by keeping one parameter fixed

The Fig. 7 shows that, generally, there are two types of the trends in the out put of the
formulae of these indices. The values of the some indices increase rapidly, whereas other values
does not show rapid increase. Due to strong prediction ability of ev-degree and ve-degree based
topological indices, our results and analysis have potential to play vital role in study of Silicon
carbides.
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