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ABSTRACT

In this paper, a novel hybrid texture feature set and fractional derivative filter-based breast cancer detection model
is introduced. This paper also introduces the application of a histogram of linear bipolar pattern features (HLBP)
for breast thermogram classification. Initially, breast tissues are separated by masking operation and filtered by
Grümwald–Letnikov fractional derivative-based Sobel mask to enhance the texture and rectify the noise. A novel
hybrid feature set usingHLBP and other statistical feature sets is derived and reduced by principal component anal-
ysis. Radial basis function kernel-based support vector machine is employed for detecting the abnormality in the
thermogram. The performance parameters are calculated using five-fold cross-validation scheme using MATLAB
2015a simulation software. The proposedmodel achieves the classification accuracy, sensitivity, specificity, and area
under the curve of 94.44%, 95.55%, 92.22%, 96.11%, respectively. A comparative investigation of different texture
features with respect to fractional order α to classify the breast malignancy is also presented. The proposed model
is also compared with a few existing state-of-art schemes which verifies the efficacy of the model. Fractional order
α offers extra adaptability in overcoming the limitations of thermal imaging techniques and assists radiologists in
prior breast cancer detection. The proposed model is more generalized which can be used with different thermal
image acquisition protocols and IoT based applications.
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1 Introduction

Breast cancer has become a widely occuring disease among women and the reason of rapidly
increasing death rate due to its late diagnosis [1]. Breast cancer is caused by a genetic mutation of

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2022.016065


924 CMES, 2022, vol.130, no.2

Deoxyribonucleic acid (DNA) in the cells of breast tissues and these cells keep reproducing the
same muted cells. These abnormal cells cluster together to form a tumor which becomes cancerous
when these abnormal cells metastasize to rest of the body parts through the bloodstream or
lymphatic system [2]. The most significant factors of developing breast cancer are advancing age
and inheritance [3]. Therefore, early and accurate screening of breast cancer offers a major role
in treating breast malignancy and reducing the mortality rate.

There are various screening techniques which aim at an early revelation of breast disease.
These techniques depend on light, sound, heat, X-ray, nuclear, magnetism, microwave, and fusion
of different methods. Among these techniques, digital mammography is believed to be the gold
standard and widely used technique for tumor detection and classification [4]. But mammography
shows low sensitivity (true positive) with high specificity (true negative) whereas Magnetic Reso-
nance Imaging (MRI) reveals high sensitivity with reduced specificity for premature detection of
breast cancers [5]. Also, the patients must bear intense pain during the process of mammography.
Thus, the limitations of present screening and diagnostic modalities necessitate the development
of an advance and more effective technique with higher sensitivity and specificity for premature
stage breast cancer detection [6].

Thermography has immense potential for screening breast diseases as it has already been
reported that breast disease can be detected decay prior to the conventional technique like mam-
mography [2]. Thermography is an unobtrusive, contactless, painless, radiation-free, temperature
screening imaging technique. It is being regarded as a consistent add-on tool nowadays with high
sensitivity and specificity [5]. Most of the breast cancer screening techniques focus on finding the
tumor or cancerous regions by detecting physical changes in cell structures, but, thermal imaging
has the potential in finding the thermal disruption due to functional changes in the cells which
helps in investigating the presence of pre-stage of early cancer [6,7]. It has already been reported
that clinically healthy breast tissues have predictable and regular heat patterns on the skin surface
while unhealthy breast tissues have irregular heat patterns due to physiological processes such as
vascular disturbances and inflammation [1–3].

Thermal patterns emitted by human skin are recorded by a thermal camera and a heat
signature is generated called the thermogram [5]. But the thermograms alone are not adequate for
clinical experts to make an exact diagnosis, so some expository tools, for example, bio-measurable
strategies, automation of the different steps involved in the procedure, artificial intelligence, or
computer vision techniques are required to assist and analyze the thermograms objectively. In
this regard, several computer-aided diagnosis schemes have been developed to detect the disease
accurately [6].

Most of the computer-aided schemes reported in the literature have performed bilateral
asymmetry analysis which limits the performance for the cases where malignancies closely resemble
in both breasts [7]. The detection accuracy of such schemes is reliant on the difference between
features of left and right breast tissues. Since thermograms are low-intensity images with small
signal-to-noise ratio therefore the detection accuracy may be limited and the false negative detec-
tion rate may be higher [8,9]. However, many schemes reported in literature have also analyzed
each breast separately to overcome the above limitation [10,11]. Such schemes may suffer from
the problem of false positive error if the selection of feature and feature quality is not proper.
Therefore, selection of features and feature quality play a vital role as one kind of feature may
not suit other imaging modalities.
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In thermogram-based breast cancer detection schemes reported in the literature, statistical,
Gabor, HOG, etc., texture features have been exploited to improve the detection accuracy [9–
15]. But, the comparative performance evaluation of popular texture feature sets is missing in
the literature. Secondly, bias correction and image registration are required in thermograms due
to misalignment and inconsistency in the acquisition process. Any inaccuracy in these operations
directly affects the performance of cancer detection. Recently, a number of fractional-order mathe-
matical models have been developed for analyzing and treating various diseases [16–18]. Fractional
derivative-based filtering has shown its suitability in overcoming the above problems due to its
tuning parameter (fractional order parameter) and also enhancing the low-intensity texture [19].
Also, the effect of fractional derivative filters on computer-aided breast cancer detection schemes
using thermogram has not been reported yet.

Therefore, within this paper, a computer-aided breast cancer or malignancy detection model
using thermograms is presented which processes breast tissues (non-asymmetry based) using frac-
tional derivative-based Sobel filter. The comparative performance of different popular texture
feature sets is also performed with respect to fractional derivative order parameter alfa (α). This
parameter alfa provides an additional degree of flexibility in compensating errors. Moreover, a
hybrid feature set is also derived and compared. The comparative analysis shows its superiority
over the other feature sets. The major contributions of this paper are:

• A new hybrid feature set is derived by combining different feature sets and analyzed for
breast cancer detection.

• This paper introduces a histogram of linear bipolar pattern features (HLBP) for breast
thermogram classification.

• Comparative analysis of thermogram texture features used for breast cancer classification is
also presented, which aids the literature.

• A fractional derivative-based Sobel filter is applied for texture enhancement, noise reduc-
tion, and providing robustness against variations and degradations in thermograms. It also
offers the vitality of optimizing the classification results.

• The proposed model is more generalized and hence it can be applied to analyze thermal
images acquired by different protocols/cameras used in different applications also such as
skin cancer detection, peripheral vascular disease identification, night vision, surveillance,
disease and pathogen detection in plants, etc.

The rest of the article is arranged in the following manner as: Section 2 describes the
background theory of materials and methods. The proposed methodology including data-set and
data pre-processing is provided in Section 3. Results and discussions are presented in Section 4.
Section 5 and Section 6 give a brief discussion and conclude the findings, respectively.

1.1 Related Work
Owing to the limitations of currently used imaging modalities, thermal imaging is continu-

ously being evaluated for breast cancer screening and detection. A brief literature review based
on the wide range of research publications related to breast cancer detection and classification is
being presented in this section.

The medical thermogram analysis is directly dependent on the quality of the thermogram
which mainly depends on acquisition protocol, used thermal camera, and signal to noise ratio
of thermogram [1]. The current status of infrared thermal imaging techniques in breast cancer
detection, classification, and a few protocols to acquire thermograms have been studied by [3,6].
In general, all computer-aided automated and semi-automated thermogram-based cancer detection
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systems involve three basic steps, i. Pre-processing and segmentation of the region of interest
(ROI): it normally includes background removal and ROI separation for further processing,
ii. Texture enhancement and noise reduction in thermogram, iii. Appropriate feature extraction
and classification [9–13,20–26].

Thermal images have a low-intensity gradient, absence of clear edges, and high noise to
signal ratio [27]. Therefore, the precise segmentation of ROI and analysis of breast cancer become
inaccurate and difficult. Thus, many researchers have also reported manual segmentation of
ROI and Left/Right regions for symmetrical analysis [10–15,20,21]. In the case of breast cancer
detection, the segmentation of ROI indicates the separation of breast tissues from the rest of
the body and the background. Various semi-automatic and fully automatic ROI segmentation
methods based on image processing techniques such as edge detection [15,20], region growing [21],
thresholding [25,26], and morphological approaches have been delineated in literature [14,26]. Since
the proposed work focuses only on breast cancer detection and classification, the ground truth
masks of respective ROIs of the breast thermal images which are available in the user database
have been utilized to achieve the maximum analysis accuracy [28].

In order to improve detection accuracy, researchers have applied several image enhancement
and de-noising techniques in spatial and transform domains. The spatial filters such as gaussian,
wiener filter and median filter, etc., blur the edges. While the transform-domain techniques like
contourlet, wavelet, and curvelet with diffusion and adaptive anisotropic diffusion filtering have
been widely employed to enhance and de-noise the thermal images. As thermal images have
smooth transitions in intensity values, the wavelet-based de-noising also does not assist well the
thermal images [27]. Some other techniques such as the BM3D technique based on enhanced
sparse representation have been reported which are capable of sharpening and de-noising low
contrast thermograms [7]. Recently, fractional derivative-based techniques have been applied to
enhance the texture of various images as it preserves the weak textures while suppressing the
noise in the images [29]. This approach has also been explored to enhance and segment medical
images [19]. The tissue malignancy or tumors have abrupt textures in comparison to the normal
tissues due to the process of angiogenesis. Therefore, the features having texture discrimination
properties have been employed on thermal images for the segmentation of suspected regions,
detection, and classification in many medical applications [30].

Consecutively, to automate the process of abnormality detection and classification in breast
thermograms, different asymmetry-based analyses using machine learning techniques have been
applied. A brief summary of the state-of-the-art schemes reported in the literature with user
database, types of features, classifier, and the values of performance parameters accounted in the
scheme are summarized in Table 1.

Table 1: Brief description of the state-of-the-art-techniques

Authors Database (size) Features Classifiers

Schaefer et al. [9] Private database (150) Statistical-features
(Homogeneity,
Contrast, Energy,
Symmetry, first four
moments)

Fuzzy rule based

Acharya et al. [10] SGH (50) Texture features:
GLCM,
GLRLM

SVM

(Continued)
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Table 1 (Continued)

Authors Database (size) Features Classifiers

Mookiah et al. [11] SGH (50) DWT +GLCM,
GLRLM

Decision tree and fuzzy
rule

Acharya et al. [13] SGH (36) Randon transform,
HOS features

SVM and ANN (3-fold)

Araujo et al. [14] PROENGE
(50)

symbolic data analysis
(SDA), Statistical
features, GLCM,
GLRLM

linear discriminant
classifier, mahalanobis

Etehad et al. [15] Multiple images (32) Randon transform
projections- invariant
features from bispectral
(Higher order spectra)

Adaboost classifier

Etehad et al. [20] Multiple images (40) Wavelet + statistical,
GLCM

Adaboost classifier

Francis et al. [21] Private (27) Statistical, GLCM SVM
Suganthi et al. [12] PROENGE

(20)
Gabor –

Francis et al. [23] Private (22) Curvelet, statistical,
GLCM

SVM

Raghvendra et al. [24] SGH (50) HOG +KLPP Decision tree
Silva et al. [1] DMR (80) K-mean K-Star and bayes Net
Garduno et al. [25] DMR (dynamic) (454) Temperature features Watershed based
Gogoi et al. [26] DMR (145) SVD SVM
Chebbah et al. [31] DMR (80) Texture features and

statistical analysis
SVM

Singh et al. [32] DMR (56) GLCM, GLRLM,
PCA,

Random forest

Zuluaga-Gomez
et al. [33]

DMR (57) Tree parzen estimator
for optimization

CNN

Sánchez-Ruiz et al. [34] DMR (175) Genetic algorithm ANN

2 Background

In this section, the back ground theory of material and methods, required for implementation
of the proposed model are presented.

2.1 Fractional Differential Filter
The Grümwald–Letnikov definition of the fractional differential is a basic extension of the

natural derivative to fractional one and is widely being used in image processing applications [29].
It is described for a function f (x) ∈ [a,b] using Eq. (1):

D∝
G−Lf (x)= lim

h→0

1
hα

∞∑
m=0

(−1)m
(∝
m

)
f (x−mh) (1)
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where ≤ x≤ b,h= (x−a)
n , n ∈ N, α is the order that is real number and includes fractional number.

The binomial coefficient is calculated using Eq. (2):(∝
m

)
= ∝ (∝−1) (∝−2) . . . (∝−m+ 1)

m!
(2)

If I(x, y) be the image of size MXN, fractionalize image �αI(x,y) can be represented by
using fractionalization algorithm described in Eqs. (3)–(6):

lim∝→n
�∝f (t)=�nf (t) , n= 0, 1, 2, . . . . (3)

(�∝I(x,y))i,j =
(
�∝
x I (x,y)

)
i,j ,
(
�∝
y I (x,y)

)
i,j

(4)

where � represents an arbitrary operator

(
�∝
x I (x,y)

)
i,j =

W∑
k=0

(−1)kC∝
k I(x,y)i−k,j (5)

(
�∝
y I (x,y)

)
i,j
=

W∑
k=0

(−1)kC∝
k I(x,y)i,j−k (6)

and W ≥ 3 is an integer constant, C∝
k = �(α+1)

�(k+1)�(α−k+1) , and � is gamma function.

2.2 Texture Based Features
In this section, various textures-based features are discussed briefly.

2.2.1 First Order Statistical Features (FOS)
The first-order statistic features report gray intensity dispersion in an image. The commonly

used features are mean, variance, kurtosis, skewness, energy, and entropy [8]. The details of FOS
features are given in Appendix A.

2.2.2 Second Order Statistical Features (SOS)
The features calculated from second-order statistics provide the relative information or posi-

tion of different gray levels within the image. SOS features measure the regularity, coarseness,
and smoothness of the image pixels. The widely used methods for texture discriminations are
mentioned below:

(a)Gray level co-occurrence matrix features (GLCM)

GLCM describes the textural details of an image and it is useful for classifications of images.
These features are found using a co-occurrence matrix where pixels are considered in pairs and
the gray level co-occurrence matrix reflects the relationship amongst all pixels or groups of
pixels [35]. The GLCM represents a two-dimensional histogram which itself is a component of
two parameters, the relative detachment between two pairs of pixels estimated in pixel numbers
(d = 1, 2, 3 . . .) and their relative direction θ(i.e., θ = arctan(�y/�x)). The θ is the quantized
orientation (00, 450, 900, and 1350) in four orientations, i.e., horizontal, diagonal, vertical, and
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anti-diagonal respectively. Also, the normalized co-occurrence matrix Cθ ,d is given by the Eq. (7)
as:

Cθ ,d (k, l) (Tn {((x1,y1) , (x2,y2)) ∈ (M ×N)× (M×N) |P} /K) (7)

where; P is a primary condition which satisfies the values: {Δx = dsinθ ,Δy = dcosθ , I (x1,y1) =
i, I (x2,y2)= j. Tn and K are the number of elements in the set and the total number of pairs of
pixels respectively [27]. The detailed explanation with formulae of GLCM features are given in
Appendix B [35].

(b) Grey level run length matrix features (GLRLM)

GLRLM is a method towards extracting second-order statistical features. The study shows
that GLRLM can discriminate textures which can not be discriminated by GLCM based features
extraction. This method computes the figure of gray level runs of different lengths. Where a gray
level run is a set of linearly adjoining pixels of alike gray level values and the number of pixels
within the run is gray level run length [36]. The GLRL matrix is represented by R(θ)= [r(k, l|θ)]
where each element r(k, l|θ) specifies an approximation to the number of instances in an image
and includes a run with length l for intensity k in directions of angle θ . Four GLRL matrices can
be calculated for (00, 450, 900, and 1350) [36]. These GLRLM features are defined mathematically
in Appendix C [36].

(c) Linear binary pattern features (LBP)

Discriminative power, computational simplicity, and rotation invariant linear binary pattern
operator is a very popular approach in various applications of classification. This texture operator
tags the image pixel by thresholding its neighborhood and specifies binary numbers to their neigh-
bors as a result. It generates a P-dimensional histogram which is used as a texture descriptor [37].
The LBPP,R number that characterizes the image texture around the center pixel (xc,yc) with gray
level value νc is given by Eq. (8):

LBPP,R =
P−1∑
P=0

S (vP− vC)2P, S(v)=
{
1 if v≥ 0

0 else

}
(8)

where, P denotes the number of equally spaced pixels (with value vp) on a circle of radius
R(R> 0) symmetrical about centre pixel.

(d) Histogram of oriented gradient features (HOG)

HOG feature descriptor outperforms significantly the other feature sets including wavelets
for some applications. HOG is determined on an intense grid of equally gapped cells and also
applies overlapping local contrast normalizations for better accomplishments. This is achieved by
acquiring the local histogram over larger spatial regions labeled as blocks and using the outcome
to normalize all of the cells in the block. The length LHOG of the HOG feature is based on the
image size and some function parameter values as in Eq. (9) [38]:

LHOG = (Blocks per image)× (Blocksize)× (Number of bins)

BlocksPerImage=
[{(imagesize/Cellsize)−Blocksize}

(Blocksize−Blockoverlap)
+ 1

]
(9)
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2.2.3 Gabor Wavelet Features
Gabor features are particularly suitable for texture representation and discrimination. This fea-

ture fundamentally examines if there are any explicit frequency contents in particular orientations
in a local area about a point or a region. A 2D Gabor function is achieved by modulating a
2D Gaussian kernel function by a complex sinusoidal plane wave with angular frequency ω as
expressed in Eq. (10), where, σx and σy are spatial spreads, and θ represents the direction.

g
(
x,y,ω, θ ,σx,σy

)= 1
2πσxσy

exp

[
−1
2

{(
x
σx

)2

+
(
y
σy

)2
}
+ jω(xcosθ + ysinθ)

]
(10)

Thus, Gabor features are constructed by using multiple filters on several frequencies (scale)
and orientations θ [12].

3 The Proposed Model

The proposed automated breast cancer detection and classification model using fractional
Sobel filter and support vector machine (SVM) with distinct texture features are described in
this section. However, many schemes for breast cancer detection using thermogram with SVM
reported in the literature have used either integer order filters or power-law transformation to get
better signal-to-noise ratio and textural quality of thermal images [25]. Moreover, comparative
analysis of different texture features of thermogram commonly used with SVM or any other
classifier is also missing in the literature. A new thermogram-based model for breast cancer
detection using fractional derivative-based fractional Sobel filter and SVM is presented in this
manuscript. Also, a comparative analysis of different texture features with fractional derivative
filter is presented [39–43].

RGB color mapped thermograms obtained from the camera are first converted to gray images.
This gray image conversion is essential because radiologists favor grayscale images as they com-
prise a greater resemblance to the mammographic images [1]. These gray scale thermograms are
further processed for 1: Segmentation of breast tissues from the background (pre-processing and
ROI segmentation), 2: Fractional Sobel filtering, 3: Extraction of different features and feature
reduction employing Principal component analysis (PCA), 4: Training the RBF-kernel based SVM
classifier using the reduced set of features and 5: Classification of breast tissues as normal or
abnormal one. Steps involved in the proposed model are also depicted in Fig. 1. The evaluation of
the efficacy of various feature sets with the RBF-SVM classifier is also performed by calculating
performance parameters. The detail of the different steps of the proposed model is described
below.

3.1 Pre-Processing and Region of Interest (ROI) Segmentation
The performance of the algorithm can greatly be enhanced by accurate segmentation of ROI.

In this step, the breast tissues are separated from the background region. Following are the steps
used:

(1) All the input thermograms I(i, j) are converted to grayscale images.
(2) The background subtraction is done by masking the thermal images with respective ground

truth images [28]. The regions other than breast tissues such as shoulders, neck, armpits,
and the region below the infra-mammary are cropped out manually.

(3) The uniformity in the size of images is maintained while achieving the ROIs, i.e., IROI(i, j).
Two groups of normal and abnormal ROIs are prepared.
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Figure 1: Schematic-diagram of the proposed thermogram adaptive breast cancer detection

3.2 Fractional Derivative Based Sobel Filtering
Fractional derivative-based Sobel filter termed as fractional Sobel filter in this paper is

employed to enhance the ROI segmented thermograms IROI(i, j). The fractional derivative based
filter improves the thermal image texture quality and intensity gradient while restraining the noise
enhancement [26]. Thegradient components of Sobel operator can be formed to get fractional
order differential forms as shown in Eqs. (11), (12) using Eqs. (5), (6):

Gα
x =

1
2

(
∂αI(x+ 1,y− 1)

∂xα
+ 2

∂αI(x+ 1,y)
∂xα

+ ∂αI(x+ 1,y+ 1)
∂xα

)
(11)

Gα
x =

1
2

(
∂αI(x− 1,y+ 1)

∂xα
+ 2

∂αI(x,y+ 1)
∂xα

+ ∂αI(x+ 1,y+ 1)
∂xα

)
(12)
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Thus, a fractional-order Sobel convolution operator for x and y directions are found by

approximating Eqs. (11) and (12) and are shown in Fig. 2. Where, C∝
k = �(α+1)

�(k+1)�(α−k+1) , Γ is

gamma function, k= 0, 1, 2, 3 . . .

Further, this fractional Sobel filter is applied on all thermograms. Eq. (13) depicts the masking
operation on image IROI with fractional mask wα(p,q), where a and b have the values k/2 and 1,
respectively.

I∝ROI (i, j)=
a∑

p=−a

b∑
q=−b

w∝ (p,q) IROI (i+ p, j+ q) (13)

Figure 2: 3 × 3 Fractional-order Sobel convolution operators (a) For x and (b) For y directions

Also, Fig. 3 shows the fractional derivative based Sobel masks (W∝
y , W∝

x ) along with the
values of filter coefficients in terms of fraction α and W∝

x is transpose matrix of W∝
y [19].

Figure 3: Fractional derivative-based Sobel mask

The Sobel fractional derivative filter masks of size 5×3 are applied to cut the computational
complexity of filtering step and to enhance the discriminative power of texture features.

3.3 Feature Extraction and Dimensionality Reduction
In the proposed model, two well-founded and proficient texture feature sets are extracted

from enhanced ROIs such as first-order statistical features (FOS), higher-order statistical features
(HOS). Higher-order statistical features include gray level co-occurrence matrix (GLCM), gray
level run length matrix (GLRLM), histogram of oriented gradient (HOG), and Histogram of a
linear binary pattern (HLBP). These features imitate the association among the intensities of two
image pixels or pixel sets and determine the image properties related to FOS and HOS. Gabor
wavelet features capture the locality, frequency, orientation, and generate multi-resolution texture
information concerning both spatial and frequency domains is also calculated. A hybrid set of
statistical features is also formed by combining first and second-order statistical features, HOG,
and HLBP features. The principal component analysis is done for reducing the dimensionality of
the feature sets.
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3.3.1 Feature Extraction
With the purpose to characterize breast thermogram and to generate a dataset for classifica-

tion total of six feature extraction methods, based on effective texture are employed. First-order
statistical features, second-order statistical features (GLCM, GLRLM), HOG, HLBP, Gabor
wavelet, and a hybrid set of statistical features as described in Section 2 are extracted and
quantified as explained below:

(1) First-order statistical features Mean, standard deviation, variance, kurtosis, skewness,
entropy, and energy are extracted.

(2) Twenty-one GLCM features are extracted at distance d = 1 and 2 in four orientations θ =
0◦, 45◦, 90◦, and 135◦, respectively.

(3) Seven GLRLM features such as SRE, LRE, GLN, RLN, RP, LGLRE, and HGLRE are
also extracted in four orientations θ= 0◦, 45◦, 90◦, and 135◦, respectively.

(4) HOG features are based on horizontal and vertical gradients. The image is divided into
cells having several evenly spaced orientation bins. An unsigned gradient of 0◦ to 180◦
divided into bins is used here. A nine bins histogram corresponding to the orientation of
each pixel is generated using linear-gradient voting. The contrast normalization of local
responses is also performed on overlapping blocks for every cell. Each block consists of
4 non-overlapping cells of size [8× 8] with 9 histogram bins. Therefore, a total of 1, 764
features (36 features per block) are found. The performance of the descriptor is directly
proportional to the size of histogram bins which characterizes the texture of tissue regions.

(5) HLBP features are extracted by generating a p-dimensional histogram of the image. The
values of P= 8 and R= 1 are taken for the purpose of this study.

(6) Gabor wavelet features are computed by convolving Gabor-wavelet filters with the image.
Gabor wavelet filters are generated for five distinct scales in eight orientations respectively
with a window of size of 39×39. Down-sampling is also applied to reduce the number of
Gabor features.

(7) Hybrid feature set is formed by combining first and second-order statistical features, HOG
features as well as HLBP features. The experimentations are performed by taking different
combinations of feature sets. However, the Gabor feature captures the local texture in the
frequency domain but the detection accuracy is low and dimensionality is very high, hence
not included in the hybrid feature set.

Fig. 4 depicts the total sets of features extracted from thermograms. Total 7 FOS features,
168 GLCM features, 28 GLRLM features, 1764 HOG features, and 256 HLBP features make a
1967-dimensional statistical feature vector and Gabor feature vectors with the dimension of 40960
are extracted.
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3.3.2 Dimensionality Reduction of Features
The feature vectors attained from the previous step are of very high dimensions and it

becomes computationally intensive to process such big data. Therefore, a linear dimension reduc-
tion technique principal component analysis is employed to slash down the dimensions of feature
vector sets. Dimensionality reduction also makes the algorithms more efficient to generate more
accurate predictions using machine learning algorithms. As described in [8], “PCA orthogonally
transforms a set of (possibly) correlated variables in a minor set of uncorrelated variables called
principal components and the number of principal components is same or less than the original
variables present in dataset”. The first principal component locates the maximum variability
(eigenvalue) in data and each of the succeeding components has variability in decreasing order.
If PCA has Vn non-zero eigenvectors, the optimal number of eigenvectors Vp must be picked
according to the Eq. (14) to keep the average projection error to be less than 0.01.∑Vp

i=1 Si∑Vn
i=1 Si

≥ 0.99 (14)

where, Si represents the ith eigen value. The dataset must be normalized to zero mean and unit
variance before applying PCA on it and 99% of the variance is kept by the feature vectors used
for the next step of training and testing the classifier. Reduced sets of feature vectors for all types
of texture features are also depicted in Fig. 4.

3.4 Classification and Performance Evaluation
The reduced sets of feature vectors extracted from thermal images are presented as a binary

classification problem and the dataset consists of feature vectors of normal and malignant classes.
These vectors are further employed to train a supervised learning technique, support vector
machine (SVM) with RBF kernel for classification. An SVM makes a hyper plane or a group of
hyper planes in a large or infinite-dimensional space. These hyper-plane are used to distinguish
the two classes as the transformed dataset develops into more distinguishable in comparison to
the original input dataset [10]. hyper-planes are decision boundaries that facilitate to classify
the data points and the dimension of these hyperplanes is decided by the number of features.
Support vectors are data points that are closer to the hyperplane and affect the orientation of
the hyperplane. The data points residing on either side of the hyperplane can be characterized to
different classes.

In the present work, SVM-RBF is trained with the training set of feature vectors and
predictions are made for the unseen testing set. A five-fold cross-validation technique is owned
to validate the model. The performance of trained classifier to identify the breast malignancy
is evaluated in provisions of parameters; Specificity, Sensitivity, Accuracy and Area under the
curve [15–17]:

3.4.1 Sensitivity
It is the percentage of actual positives rightly identified as positives by the classifier and is

computed as:

Sensitivity= TP
(TP+FN)

∗ 100 (15)
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3.4.2 Specificity
It is also known as true negative rate and is the capacity to spot the negative samples. It is

computed as:

Specificity= TN
(TN+FP)

∗ 100 (16)

3.4.3 Accuarcy
Accuracy defines the measure of the correctness of the classifier. It can be calculated as:

Accuracy= (TP+TN)

TotalData
∗ 100 (17)

3.4.4 Area under the Curve (AUC)
AUC measures the quality of the classifier. AUC is the amount of area under the receiver

operating characteristics (ROC) curve which is obtained by plotting sensitivity vs. (1-specificity). Its
value is between 0 and 1. The quality of diagnostic test is better if it has AUC value approaching
to 1, where, TN: True negative, TP: True positive, FP: False positive and FN: False negative.

4 Results and Discussion

4.1 Experimental Set-Up and Dataset
Computer simulation outcomes of the anticipated model using MATLAB are presented in this

section. Breast thermograms for this research work are taken from the database readily available
under the project PROENG, captured by FLIR Thermal Cam S45. The acquisition method,
protocol, and other details of the thermograms are given by [28] for further study. Sample breast
thermograms taken from the selected database are depicted in Fig. 5 [28], which shows the normal
and abnormal thermal patterns indicating the presence or absence of suspicious regions in the
breast tissues. Total of randomly selected 130 (83 normal and 47 abnormal) IR images of size 320
× 240 are used for implementing the method. However, to avoid the overfitting problem, a few
images have been augmented and a database of 180 (90 normal and 90 abnormal) IR images have
been prepared. The number of thermal images used is also comparable with state-of-art schemes.

Figure 5: Sample breast thermogram images (a) Both normal (b)–(d) [28]

4.2 Results
The pre-processing, ROI segmentation, and fractional Sobel filtering with order α = 0.2 results

for four sample test thermograms used to verify the proposed model, are shown in Fig. 6. In
pursuance of separating the background and segmenting the breast tissues, the required ground
truth masks available in the database are used [28]. Fig. 6a shows gray-scale normal IR_3830,
IR_0737 and abnormal IR_4149, IR_8285 breast thermograms, their respective ground truth
region of interest (ROI), and masks are shown in Figs. 6b and 6c, respectively. Fig. 6d shows the
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background subtracted thermograms, whereas Fig. 6e depicts the background-subtracted thermo-
grams with breast tissues only. The segmented thermograms (ROIs) are now processed through
a fractional derivative-based Sobel filter as explained in Section 3.2 to enhance the images. It
is noted here that the fractional-order derivative filter (FODF) considers more information of
neighboring pixels, extracting more image details. Thus, it enhances the edges and preserves the
weak and medium textures details simultaneously, removing the noise [27].

Figure 6: Pre-processing, ROI segmentation and fractional derivative filtering using fractional
Sobel filter of order α = 0.2 steps for four sample test thermograms (1. IR_3830, 2. IR_0737, 3.
IR_4149 and 4. IR_8285 [28]) (a) Original thermograms (b) Ground truth segmentation bound-
aries [28] (c) Respective ground truth masks [28] (d) Background-subtracted thermograms (e)
Background subtracted thermograms with breast tissues only (ROIs) (f) Fractional Sobel filtered
ROI thermograms

A fractional-order Sobel mask with k = 4 is used and α is varied from 0 to 1 with interval
0.1. Fig. 6f shows the fractional-order derivative filtered (FODF) thermal images for the value
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of fraction α = 0.2 in fractional Sobel filter (5× 3Wx and 3× 5Wy) for k = 4. Experiments are
performed for different values of k, but the results are better for the masks of size k = 4, i.e.,
5× 3 Wx and 3× 5Wy, Hence these values are selected in the proposed model.

To study the effect of fractional derivative Sobel filter on thermal images; the quantitative
analysis of gray level co-occurrence matrix (derived from the database of normal and abnormal
images) which describes the comprehensive information of texture is done. A set of GLCM
features (described in Section 2) is extracted in four directions 0◦, 45◦, 90◦, and 135◦). It is
observed that the magnitude of features extracted in different directions varies in a similar manner
irrespective of the direction of extraction. Thus, Tables 2 and 3 represent a few of selected features
(Energy, Contrast, Entropy, Correlation, Sum of average, Sum of entropy, Information measure
of Correlation 1, Information measure of Correlation 2) which are extracted in direction (0◦). It
can clearly be observed that the discrimination between normal and abnormal thermograms with
respect to fraction α arises prominently between α= 0.2 and α= 0.4.

Table 2: Statistical analysis of different GLCM features with respect to derivative fractions for
normal and abnormal breast thermograms

Fraction(α) Energy
(Average ±
standard
deviation)

Contrast
(Average ±
standard
deviation)

Correlation
(Average ±
standard
deviation)

Entropy
(Average ±
standard
deviation)

Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal

0.1 0.711 ±
0.053

0.741 ±
0.067

0.220
± 0.033

0.251
± 0.058

0.982
± 0.003

0.968
± 0.002

0.606
± 0.081

0.573
± 0.104

0.2 0.703
± 0.061

0.777
± 0.067

0.210
± 0.032

0.241
± 0.057

0.983
± 0.003

0.981
± 0.002

0.641
0.113

0.63
± 0.107

0.3 0.567
± 0.160

0.669
± 0.093

0.227
± 0.038

0.246
± 0.059

0.982
± 0.003

0.981
± 0.002

0.988
0.351

0.753
± 0.202

0.4 0.278
± 0.057

0.377
± 0.158

0.293
± 0.039

0.309
± 0.069

0.967
± 0.005

0.971
± 0.004

1.729
0.166

1.554
± 0.386

0.5 0.337
± 0.093

0.390
± 0.149

0.323
± 0.044

0.342
± 0.078

0.933
± 0.010

0.942
± 0.009

1.627
0.184

1.551
± 0.334

0.6 0.347
± 0.062

0.399
± 0.099

0.371
± 0.055

0.408
± 0.073

0.868
± 0.021

0.870
± 0.01

1.551
0.117

1.488
± 0.226

0.7 0.318
± 0.050

0.477
± 0.198

0.461
± 0.077

0.449
± 0.119

0.765
± 0.036

0.778
± 0.028

1.597
0.100

1.278
± 0.413

0.8 0.408
± 0.081

0.577
± 0.129

0.535
± 0.095

0.506
± 0.123

0.670
± 0.051

0.673
± 0.0459

1.355
0.152

1.047
± 0.251

0.9 0.887
± 0.011

0.888
± 0.008

0.460
± 0.089

0.522
± 0.119

0.439
± 0.034

0.667
± 0.050

0.439
0.034

0.437
± 0.028

1 0.895
± 0.010

0.903
± 0.007

0.471
± 0.098

0.551
± 0.123

0.647
± 0.062

0.612
± 0.054

0.417
0.037

0.391
± 0.024

Further, the five sets of features (as mentioned in Section 3) including, first and second-
order statistical, HOG, HLBP, Gabor, and a hybrid set of statistical features are extracted from
every segmented thermal image, respectively. As the dimensions of feature sets are very high,
PCA is applied for dimensionality reduction. Now, these feature sets are fed to SVM-RBF for
the classification of breast thermograms. It is also mentioned here that, experimentations are
performed to investigate the performance of SVM with different kernel functions such as linear,
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RBF, etc. but the results of the RBF kernel are more improved, so the RBF kernel is used in the
proposed model.

Table 3: Statistical analysis of different GLCM features with respect to derivative fractions for
normal and abnormal breast thermograms

Fraction(α) Sum of average
(Average ±
standard
deviation)

Sum of squares
(Average ±
standard
deviation)

Information
measure of
Correlation 1
(Average ±
standard
deviation)

Information
measure of
Correlation 2
(Average ±
standard
deviation)

Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal

0.1 13.767
± 0.552

13.823
± 0.622

6.370
± 1.217

6.213
± 1.58

−0.835
0.015

−0.835
± 0.013

0.76
± 0.032

0.748
± 0.057

0.2 13.747
± 0.564

13.816
± 0.622

6.374
± 1.201

6.221
± 1.578

−0.823
± 0.016

−0.840
± 0.0136

0.766
± 0.036

0.752
± 0.056

0.3 13.511
± 0.809

13.751
± 0.639

6.177
± 0.907

6.205
± 1.56

−0.760
± 0.029

−0.795
± 0.03

0.822
± 0.063

0.778
± 0.068

0.4 11.337
± 0.969

12.756
± 1.127

4.478
± 0.721

5.433
± 1.262

−0.695
± 0.028

−0.687
± 0.0315

0.916
± 0.014

0.885
± 0.064

0.5 8.762
± 0.716

9.779
± 0.854

2.453
± 0.369

2.969
± 0.684

−0.644
± 0.0307

−0.647
± 0.0416

0.885
± 0.031

0.87
± 0.063

0.6 6.563
± 0.539

7.175
± 0.470

1.420
± 0.121

1.587
± 0.329

−0.612
± 0.0387

−0.591
± 0.0479

0.863
± 0.017

0.84
± 0.042

0.7 4.767
± 0.430

5.3177
± 0.369

0.982
± 0.064

1.001
± 0.210

−0.556
± 0.046

−0.618
± 0.0687

0.840
± 0.016

0.81
± 0.058

0.8 3.587
± 0.257

3.837
± 0.150

0.811
± 0.067

0.766
± 0.138

−0.343
± 0.093

−0.531
± 0.1397

0.647
± 0.057

0.713
± 0.05

0.9 2.3145
± 0.022

2.321
± 0.038

0.721
± 0.053

0.764
± 0.128

−0.389
± 0.0398

−0.377
± 0.0354

0.436
± 0.028

0.428
± 0.013

1 2.292
± 0.023

2.292
± 0.037

0.665
± 0.056

0.708
± 0.122

−0.383
± 0.020

−0.373
± 0.0277

0.423
± 0.027

0.404
± 0.008

For evaluating the performance of distinct feature sets, significant classification parameters
such as accuracy, specificity, and sensitivity to evaluate the trained classifier are calculated. The
variation of these performance constraints for each feature set with fractional derivative parameter
alfa (α) is shown in Figs. 7–9.

It can clearly be observed from Figs. 7–9 that the performance parameters have the most
suitable values for the fraction order of α = 0.2, for all the set of features, i.e., Gabor Features,
HOGfeatures, HLBPfeatures, Statisticalfeatures, Hybrid statistical features represented as F1, F2,
F3, F4, and F5, respectively. The hybrid feature (F5) has the superior performance values for
the fractions α = 0.2, 0.3, 0.4 while the optimum values of fraction order α for statistical features,
HOG, HLBP and Gabor features are α = 0.3, 0.2, 0.2 and 0.3, respectively.

It is also observed from Table 4 that the results of the proposed model with hybrid features
at fraction α = 0.2 outperform the other feature sets with accuracy, sensitivity specificity, and area
under the curve to be 94.44%, 95.55%, 92.22%, 96.11%, respectively. Fig. 10 also confirms that the
HLBP feature performs comparatively better than other feature sets in all aspects of performance
except that of the hybrid feature set. Further, the performance of the proposed model excels



CMES, 2022, vol.130, no.2 939

the recent state-of-the-art techniques for breast cancer detection and classification as depicted in
Table 5.

Figure 7: Variation of performance parameter (Accuracy) with alfa

Figure 8: Variation of performance parameter (Sensitivity) with alfa

Figure 9: Variation of performance parameter (Specificity) with alfa
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Table 4: The performance parameters of the proposed model with Fractional Order Derivative
Filter (FODF) at α = 0.2 with five-fold cross validation scheme (computed for each feature set)

Feature set Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

F1: Gabor features 82.77 91.11 74.44 89.00
F2: HOGFeature 91.11 95.55 86.66 94.00
F3: HLBP features 90.55 92.22 88.88 95.10
F4: Statistical features 89.44 93.33 85.55 93.10
F5: Hybrid features 94.44 95.55 92.22 96.11
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Figure 10: Performance parameters of proposed hybrid feature set along with other feature sets

Table 5: Comparison of the proposed model with the state-of-the-art-techniques

Authors Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

Schaefer et al. [9] 80 79.86 79.49 –
Acharya et al. [10] 88.10 85.71 90.48 88.10
Mookiah et al. [11] 93.30 86.70 100 –
Acharya et al. [13] 90 92 88 –
Araujo et al. [14] 16 (misclassification rate) 85.7 86.5 –
Etehad et al. [15] 95 – – –
Etehad et al. [20] 86 – – –
Francis et al. [21] 83.3 – – –
Suganthi et al. [12] – – – –
Francis et al. [23] 90.91 81.82 100 –
Raghvendra et al. [24] 98 96.66 100 –
Silva et al. [1] 100 100 100 100
Garduno et al. [25] – 86.84 89.43 –
Gogoi et al. [26] 98.00 98.00 98.00 –
Chebbah et al. [31] 91.25 93.3 90 –
Singh et al. [32] 95.35 – 88.07% –
Zuluaga-Gomez et al. [33] 92 – – –
Sánchez-Ruiz et al. [34] 98.33 – – –
Proposed model 94.44 95.55 92.22 96.11
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4.3 Discussion
Asymmetry analysis-based schemes limit their performance when both breast tissues have

similar abnormalities and tissue regions, because of the features measuring the abnormality result
in the nonappearance of abnormality. The proposed model characterizes the thermal patterns of
individual breast tissues and discovers the abnormalities. Evaluation results show that the pro-
posed model with fractional order filtering, specific feature selection technique, classifier, explicit
parameters, and the five-fold cross-validation achieves the highest performance with hybrid texture
features at fraction order α = 0.2.

It is evident from the comparative analysis of the features for multiple values of alfa
(Figs. 7–9) that the performance of the feature set is sensitive to the value of fraction α, hence
providing robustness against noise and errors by providing an additional degree of flexibility.

Comparative analysis of different features (Gabor, HOG and statistical, HLBP) presented in
this paper aids the literature. HLBP features are evaluated for the first time in this paper which
gives the classification accuracy of 90.55% and other performance parameters are also comparable
to the state-of-art schemes.

It is worth mentioning here that the smaller size lesions and early detection problems of
medical imaging modalities such as mammography, MRI, etc. could be overcome up to some
extent by the proposed model. Moreover, the use of fractional order filter makes the model
more generalized with an iterative selection of fractions alfa for required performance in diverse
thermogram acquisition protocols and respective applications such as skin cancer, thyroid, diabetic
foot, peripheral vascular disease, pathogen detection in plants, in night vision and surveillance, etc.

5 Conclusion

A new fractional-order derivative and hybrid feature set dependent thermogram adaptive
computer-aided breast cancer detection model is implemented. Performance of the two new feature
sets of thermogram including HLBP and hybrid feature sets are also analyzed. The hybrid texture
feature set is derived by combining different texture features for improved classification accuracy.
A comparative study of hybrid feature set with other popular statistical and texture features for
different values of fractional order α is also performed. For fraction α = 0.2, the hybrid feature set
outperforms the other feature sets and the existing techniques as well. Similarly, the HLBP texture
feature set also outperforms the other feature sets except the hybrid feature set. The comparison
results verify the efficacy of the proposed model, hence effectively distinguishing the normal and
abnormal cases. The proposed model provides flexibility to adapt the fraction order for optimizing
the classification performance against errors and degradations in the thermogram. Therefore, it is
more generalized and can be used to analyze the thermal infrared images acquired by different
protocols/cameras for applications other than breast cancer, such as skin cancer detection, periph-
eral vascular disease identification, night vision, surveillance, disease and pathogen detection in
plants, etc. in an IoT environment.
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Appendix A

Mean(μ)=
M−1∑
k=0

kP (k) (A.1)

Standard Deviation (σ )=
M−1∑
k=0

(k−μ)1/2P(k) (A.2)

Variance
(
σ 2
)
=

M−1∑
k=0

(k−μ)2P(k) (A.3)

Skewness (μ3)= σ−3
M−1∑
k=0

(k−μ)
3 P (k) (A.4)

Kurtosis (μ4)= σ−4
M−1∑
k=0

(k−μ)4P(k)− 3 (A.5)

Energy (E)=
M−1∑
k=0

[
P (k)

2
]

(A.6)

Entropy (H)=−
M−1∑
k=0

P(k) log2[P(k)] (A.7)

where, M is maximum gray level value in the image. P(k) is the probability of the gray levels
and is given by:P(k)= n(k)/N, where n(k) and N are total number of pixels ofgray level (k) and
pixels respectively in an image.
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Appendix B

Angular second moment (Energy)=
M∑
i=1

M∑
j=1

(Cij)
2 (B.1)

Contrast=
M−1∑
n=0

n2

⎧⎨
⎩

M∑
i=1

M∑
j=1

Cij

⎫⎬
⎭ (B.2)

Correlation=
∑M

i=1
∑M

j=1(ij)−μxμy

σxσy
(B.3)

Entropy=−
M∑
i=1

M∑
j=1

Cij log2 Cij (B.4)

Inverse difference
M∑
i=1

M∑
j=1

Cij

1+ | (i− j) | (B.5)

Inverse difference moment (homo)=
M∑
i=1

M∑
j=1

Cij

1+ (i− j)2
(B.6)

Inverse Difference Moment Normalized=
M∑
i=1

M∑
j=1

Cij

1+ I(i− j)/MI
(B.7)

Inverse Difference Normalized=
M∑
i=1

M∑
j=1

Cij

1+
{
i−j
M

}2 (B.8)

Auto correlation=
M∑
i=1

M∑
j=1

(ij)Cij (B.9)

Dissimilarity=
M∑
i=1

M∑
j=1

i− j∗Cij (B.10)

Cluster Prominence=
M∑
i=1

M∑
j=1

(i+ j−μx +μy)
4Cij (B.11)

Cluster shade=
M∑
i=1

M∑
j=1

(i+ j−μx+μy)
3Cij (B.12)

Maximum probability=MAXCij
ij

(B.13)
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Sum average=
2M∑
i=2

iCx+y(i) (B.14)

Sum entropy=−
2M∑
i=2

Cx+y(i) log2 Cx+y(i) (B.15)

Sum of squares=
M∑
i=1

M∑
j=1

(i−μ)2Cij (B.16)

Sum variance=
2M∑
i=2

(i−Sum entropy)2Cx+y(i) (B.17)

Difference entropy=−
M∑
i=1

Cx−y(i) log2 Cx−y(i) (B.18)

Difference variance= variance of Cx−y (B.19)

Information measure of correlation1= Hxy−Hxy1

max(Hx,Hy)
(B.20)

Information measure of correlation2= [1− exp
(−2.0

(
Hxy2−Hxy

))]1/2 (B.21)

where Ci,j is (i,j)th entry in the normalized GLCM and the mean and standard deviation of rows
and columns are given by:

Cx (i)=∑M
j=1 C (i, j) ,Cy(i)=

∑M
j=1 C(i, j),

Cx+y (k)=∑M
i=1
∑M

j=1 Cij, (i+j=k= 2,3,. . .2M) Cx−y (k)=∑M
i=1
∑M

j=1 Cij, (i−j=k= 0,1,. . .M−1)

μx =
∑M

i=1
∑M

j=1 i.Cij, μy =
∑M

i=1
∑M

j=1 j.Cij, σx =
∑M

i=1
∑M

j=1(i−μx)
2Cij,

σy =
∑M

i=1
∑M

j=1(j−μy)
2Cij,

Hx and Hy are the entropy of Cx and Cy

Hxy =−∑M
i=1
∑M

j=1 Cij log2 Cij , Hxy1=−
∑M

i=1
∑M

j=1 Cij log2{Cx (i)Cy(j)}
Hxy2=−

∑M
i=1
∑M

j=1 Cx(i)Cy(j) log2{Cx (i)Cy(j)}

Appendix C

Short run emphasis (SRE)=
M∑
i=1

L∑
l=1

r(i, l|θ)

l2
/

M∑
i=1

L∑
l=1

r(i, l|θ) (C.1)
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Long run emphasis (LRE)=
M∑
i=1

L∑
l=1

l2.r(i, l|θ)/

M∑
i=1

L∑
l=1

r (i, l|θ) (C.2)

Gray level non-uniformity(GLN)=
M∑
i=1

(
L∑
l=1

r(i, l|θ)

)2

/

M∑
i=1

L∑
l=1

r (i, l|θ) (C.3)

Run lengt non-uniformity (RLN)=
L∑
l=1

(
M∑
i=1

r (i, l|θ)

)2

/

M∑
i=1

L∑
l=1

r (i, l|θ) (C.4)

Run percentage (RP)= 1
N

M∑
i=1

L∑
l=1

r(i, l|θ) (C.5)

Low gray level run emphasis (LGLRE)=
M∑
i=1

L∑
l=1

r (i, l|θ)

i2
/

M∑
i=1

L∑
l=1

r (i, l|θ) (C.6)

High gray level run emphasis(HGLRE)=
M∑
i=1

L∑
l=1

i2.r(i, l|θ)

/ M∑
i=1

L∑
l=1

r (i, l|θ) (C.7)

where M and N are the total figure of gray levels and pixels in an image respectively while L is
the longest run.


