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ABSTRACT

Inertial system platforms are a kind of important precision devices, which have the characteristics of difficult
acquisition for state data and small sample scale. Focusing on the model optimization for data-driven fault state
prediction and quantitative degreemeasurement, a fast small-sample supersphere one-class SVMmodelingmethod
using support vectors pre-selection is systematically studied in this paper. By theorem-proving the irrelevance
between the model’s learning result and the non-support vectors (NSVs), the distribution characters of the support
vectors are analyzed. On this basis, a modeling method with selected samples having specific geometry character
from the training sets is also proposed. Themethod can remarkably eliminate theNSVs and improve the algorithm’s
efficiency. The experimental results testify that the scale of training samples and the modeling time consumption
both give a sharply decrease using the support vectors pre-selection method. The experimental results on inertial
devices also show good fault prediction capability and effectiveness of quantitative anomaly measurement.
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1 Introduction

As the emerging growth of demand for systems’ health monitoring and reliability estimation,
the fault diagnosis and prediction problems have become a research focus at present [1–4]. To
realize the full-process heath management of system, the data collection, real-time detection, state
measurement, modeling, prediction and anomaly evaluation have become more and more impor-
tant, especially for some precision devices and complex systems requiring high reliability [5,6].
Inertial system platforms are a kind of important precision devices used in many industrial fields,
such as navigation, guidance and aerospace, which have the characteristics of difficult acquisition
for state data and small sample scale, so the fault trend of the devices should be discovered as
early as possible based on the limited data samples to prevent the occurrence of serious damages
to the whole system. The fault state of system is actually an abnormal phenomena deviating from
the normal state, so the early warning of fault may be realized by novelty recognition before the
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fault completely occurs [7–10]. The concrete method based on this idea is as follows: build the
system’s normal working state space directly using the system’s normal features, and recognize the
novel samples by detecting whether the deviation from the normal features is existed.

For system fault diagnosis and prediction problems using data-driven methods [11–14], one-
class SVM (OCSVM) is a typical classification tool, which can identify the known object
class(normal sample) and the unknown object class(novel sample). As a popular method, a lot of
improved OCSVM algorithms are studied. For example, FernaNdez-Francos et al. [15] presented
a υ-SVM based OCSVM. Amer et al. [16] proposed an enhanced OCSVM for unsupervised
method of anomaly detecting. Yin et al. [17] and Xiao et al. [18] studied the robust OCSVM
algorithms. Yan et al. [19] introduced the OCSVM algorithm to fault prediction in the online
condition. Huang et al. [20] combined the wavelet T-F entropy and OCSVM, and applied the
method to mechanical system fault prediction. In addition, the one-class classification and the
learning algorithms are suitable for data-driven modeling of black-box problems, especially for
some pattern recognition applications [21–23]. In the past few years, the OCSVM methods are
also used for faults detection, identification and diagnosis [24,25]. To detect the novelty sample
effectively, Yi et al. [26] presented a supervised novelty detection SVM, which is extended from
OCSVM and has a fast learning speed. Miao et al. [27] presented a distributed model and
its online learning method with OCSVM for anomaly finding. Moreover, although most of the
OCSVMs are applied for the classification fields, Bhland et al. [28] extended the model to the
regression modeling and automated design process. As another data-driven modeling method,
the extreme learning machine model is also introduced to the prediction application field [29].
With the widespread utilization of deep learning, the idea of OCSVM is also applied in some
deep neural networks. For example, by means of the combination of OCSVM and deep neural
networks [30], the deep OCSVM algorithm is proposed [31,32], the one-class convolutional neural
network and its applications are also studied [33]. Moreover, by introducing the idea of the
adversarial learning, some one-class classification and the anomaly detection methods are pro-
posed based the adversarial framework [34,35]. Considering the small sample scale and the online
monitoring conditions of precision inertial devices fault prediction, the training samples’ scale for
modeling is too small and the training speed is too fast for all of the deep neural network models.
As a result, the deep learning methods are not the ideal solutions in this application situation.

The OCSVM model has good sparseness, namely, the specific form of the model is only
decided by part of the samples in the training set, namely the support vectors (SVs). Even so,
the modeling efficiency is still greatly decreased as the calculation of a large number of NSVs
in the model optimization process. To enhance the modeling efficiency of the fault diagnosis and
prediction applications, a synthetical method using SV pre-selection is proposed aiming at the
precision inertial device fault prediction in the small sample condition, which realizes data-driven
fault diagnosis, state prediction, anomaly detection and quantitative measurement. Considering an
OCSVM model, the distribution characteristics of the support vectors in the high dimensional
space from are analyzed, respectively. On this basis, a modeling method with the samples owning
some geometry characters selected from the training set is also executed. The fault prediction
efficiency can be greatly improved using the pre-selection of the non-support-vector samples in
the condition of having no effect on the fault prediction capability of OCSVM.

In the remainder of this paper, the sections are organized as follows: in Section 2, the
OCSVM method in fault prediction field and the supersphere models for OCSVM are intro-
duced. The support vector pre-selection method for the supersphere model is studied detailedly in
Section 3, the number calculation of pre-selected samples and the algorithm’s complexity are also
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analysed. In Section 4, the fault prediction and quantitative anomaly measurement using SV pre-
selection OCSVM is studied. Several experiments and result analysis are carried out in Section 5.
Finally, we conclude in Section 6.

2 Supersphere Models for OCSVM

2.1 OCSVMMethod in Fault Prediction Field
Suppose the system’s state can be represented with a d-dimensional variable x =

{x1,x2 . . . ,xd} ∈ R
d . Let the sample set collected from the normal working state is D = {xi},

i= 1, 2, . . . , l. With the generation of new sample x′, it is necessary to judge if the sample indicate
the existence of the fault trend. The sample has the characteristic of non-output and unlabeled
in the above mentioned problem. The key point of the problem lies in how to build the fault
prediction model based on the sample set D. In this fault prediction condition, the samples
representing the system normal working state are seemed as samples in the target class, and the
target class samples commonly have the similar distribution in the feature space. Correspondingly,
the samples representing the system anomaly working state belong to the non-target class, which
have a scattering distribution, so the one-class target information can be regard as the main
information source. Unlike the general supervised classification with two values, this classification
method can be seemed as the semi-supervised classification. Through the above analysis, it can be
concluded that the OCSVM model can be used for fault prediction problems.

In the research field of SVM, the OCSVM is first introduced from Schölkopf in 1999, which is
originally applied to probability density estimation of functions. The main thought of the method
is: suppose a dataset in the given input space R

n is given, and it satisfies a distribution with
probability P. We hope to find a simple data sub-set S in the input space and approximate the
distribution, subject to the probability, that the sample with the P distribution falling into the
outside of S, satisfies a certain given probability v(0 < v < 1) . The OCSVM is an extension of
the standard SVM, which has two realization approaches. We will introduce the main thought of
the methods in the following subsections.

2.2 Supersphere Model of OCSVM

The form of training samples on the supersphere model of OCSVM is D = {xi ∈ R
d |i =

1, . . . , l}. To build the supersphere model, we firstly should map the samples to a new feature
space with a nonlinear mapping function ϕ(·). Secondly, seeking for a minimum sphere with
the center aand the radius Rin the new space, which can contain all the samples. For some
sample points, some error may exist, we can introduce the ξi as the control variables. At the same
time, the calculation of inner product in the new space could conveniently be substituted by the
kernel functions satisfying the Mercer conditions. Namely, find a kernel function k(x1,x2) and let
k(x1,x2)= ϕ(x1) ·ϕ(x2), as a result, the optimization problem is

minR2+ 1
vl

l∑
i=1

ξ i

s.t. [ϕ(xi)−a][ϕ(xi)−a]T ≤R2+ ξ i

ξ i≥ 0, i= 1, 2, . . . , l

(1)

In (1), v ∈ (0, 1) plays a compromise role between the radius of the supersphere and the
training samples’ number containing in the sphere. The slack factors can guarantee that more
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training samples are containing in the supersphere as far as possible under the condition of the
supersphere is maximally compressed. To calculate the center a and the radius R, formula (1) can
be transformed into its dual form (2), the deduce process is

min
l∑

i,j=1
αiαjk(xi,xj)−

l∑
i=1

αik(xi,xi)

s.t.
l∑

i=1
αi= 1

0≤ αi≤ 1
v·l , i= 1, 2, . . . , l

(2)

Solve the optimization problem (2), it can be found that most of the αi are 0, for the αi
unequal to 0, the corresponding samples are still called support vectors, and the form of the
supersphere is only decided by support vectors. We may analysis the relative location relationship
of the sample between the high-dimensional space and the supersphere based on the different
values of αi according to the following three situations:

1) If αi ∈ (0,
1
v · l ), it means that xi satisfies [ϕ(xi)−a][ϕ(xi)−a]T =R2, namely xi is a boundary

sample, and locates at the surface of the supersphere as a support vector.

2) If αi = 1
v · l , it means that xi satisfies [ϕ(xi) − a][ϕ(xi) − a]T > R2, namely xi is not a

boundary sample, and locates outside of the supersphere as a non-support vector.

3) If αi = 0, it means that xi satisfies [ϕ(xi)− a][ϕ(xi)− a]T < R2, namely xi locates inside of
the supersphere as a non-support vector.

Let ISV is a set of support vectors, and lSV is the support vectors’ number, the center of

the obtained supersphere is a = ∑αiϕ(xi)
i∈ISV . According to the KKT condition, for the sample xi

corresponding to 0< αi <
1
v · l , we can get

R2− [k(xi,xi)− 2
∑
j∈ISV

αjk(xj,xi)+ c2]= 0 (3)

As a result, the radius R can be obtained. For a new sample z,

f (z)= [ϕ(z)− a][ϕ(z)− a]T −R2

= k(z, z)− 2
∑
i∈ISV

αik(z,xi)+
∑
i∈ISV

∑
j∈ISV

αiαjk(xi,xj)−R2 (4)

If f (z)≤ 0, we can conclude that z is normal point, if not, z is a novel point.
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3 Sample Set Optimization for the Supersphere Model

The OCSVM model is sparse, namely the decision form of the supersphere is only depend on
the support vectors, so the algorithm’s complexity may be reduced through simplifying the training
set, which is similar to the two-class model of SVM. It also can be found that the probability
distribution of the SVs in the high-dimensional mapping space has some characteristics, which
provides possibility for the SV pre-selection. Now, we’ll discuss how to realize the support vectors
pre-selection from the training sample set, namely the sample set optimization, and how to
improve the training efficiency of OCSVM.

Definition 1: Suppose a sample set D= {xi ∈ R
d |i= 1, 2, . . . , l} is known, let the mapping form

to the high-dimension feature space is ϕ(·), the central point of the feature space is m, so m has
a form as

m= 1
l

l∑
i=1

ϕ(xi) (5)

Definition 2: Suppose two sample points xandyare known, the vectors from the original point to
the two sample points are respectively �x and �y. Let the included angle of the two vectors in the
high-dimensional space is θ(�x, �y), its form is

θ(�x, �y)= arccos
(

(ϕ(x) ·ϕ(y))
||ϕ(x)||||ϕ(y)||

)
(6)

Definition 3: Suppose two sample points x1 and x2 are known, let the distance of these two points
is d(x1,x2), the form is

d(x1,x2)= ||ϕ(x1)−ϕ(x2))|| =
√
k(x1,x1))− 2k(x1,x2))+ k(x2,x2) (7)

Definition 4: If the sample points x1 and x2 are mapping to the feature space with ϕ(·), the
distance of the two points in the feature space satisfies Eq. (8), which implies the Eq. (7).

d2(x1,x2)= ||ϕ(x1)−ϕ(x2)||2 = ϕ(x1) ·ϕ(x1)− 2ϕ(x1) ·ϕ(x2)+ϕ(x2) ·ϕ(x2)

= k(x1,x1)− 2k(x1,x2)+ k(x2,x2)
(8)

3.1 Support Vector Pre-Selection Method for the Supersphere Model

Theorem 1: Suppose the training sample set is D = {xi ∈R
d |i = 1, 2, . . . , l}, according to the

Eq. (2), the supersphere model can be constructed, and the optimal solution of the supersphere
is α = {α1, . . . ,αl}. The samples with the non-zero Lagrange multipliers are selected from D, with
which we can obtain new sets D̃= {xi|αi �= 0, i = 1, 2, . . . , l}, and α̃ = {αi �= 0|, i= 1, 2, . . . , l}. If
the kernel function and model parameters are all the same, and suppose the optimal solution of
the supersphere based on D̃ is β̃, it can be concluded that β̃ = α̃.

Proof: Let the numbers of element in D̃ and α̃ are both lSV , ISV = {i|αi �= 0, i= 1, . . . , l}, and
the optimal solution is β̃ = {β̃ i|i= ISV (1), . . . , ISV (lSV )}.
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Set the optimization problem based on D is L1

minL1(α)=
l∑

i,j=1

αiαjk(xi,xj)−
l∑

i=1

αik(xi,xi)

s.t.
l∑

i=1

αi= 1

0≤ αi ≤ 1
v·l , i= 1, 2, . . . , l

(9)

and the optimization problem based on D̃ is L2

minL2(β̃)= ∑
i,j∈ISV

β̃ iβ̃ jk(xi,xj)−
∑
i∈ISV

β̃ ik(xi,xi)

s.t.
∑
i∈ISV

β̃ i = 1

0≤ β̃ i ≤
1
v·l , i= ISV (1), . . . , ISV (lSV )

(10)

If β̃ is extended to β with the relationship βi =
{

β̃ i i ∈ ISV
0 i /∈ ISV

, i= 1, . . . , l, it can be obviously

find that
∑
i∈ISV

β̃ i = 1 and 0 ≤ β̃i ≤ 1
vl
, so β is the feasible solution of L1. As α is the optimal

solution of L1, it can be concluded that L1(α)≤L1(β), because

L1(β)=
l∑

i,j=1

βiβjk(xi,xj)−
l∑

i=1

βik(xi,xi)

=
∑
i,j∈ISV

β̃iβ̃jk(xi,xj)−
∑
i∈ISV

β̃ik(xi,xi)=L2(β̃)

(11)

L1(α)=
l∑

i,j=1

αiαjk(xi,xj)−
l∑

i=1

αik(xi,xi)

=
∑
i,j∈ISV

α̃iα̃jk(xi,xj)−
∑
i∈ISV

α̃ik(xi,xi)=L2(α̃)

(12)

In summary, L2(α̃) ≤ L2(β̃). It is obvious that α̃ is the feasible solution of L2, and β̃ is the
optimal solution of L2, then we have L2(α̃)≥ L2(β̃), as a result, L2(α̃)= L2(β̃). Considering the
uniqueness of the optimal solution of L2, it can be concluded that β̃ = α̃.

From Theorem 1, it can be concluded that the trained supersphere model won’t be damaged
if the NSVs are removed. The support vector pre-selection principle of the supersphere model
is shown as Fig. 1. In the figure, there are five sample points x1∼x5. Based on the construction
principle of supersphere, we can know that x1∼x3 are non-support-vectors, x4 and x5 are support
vectors. Let the central point of the sample set is m, we can easily find that the sample points x4
and x5, which are far away from m, are more likely becoming the support vectors.
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Figure 1: Support vector pre-selection principle of the supersphere model

Through the above analysis, we can conclude the supersphere model’s support vector pre-
selection algorithm as the following 3 steps:

Step 1: For a given sample set D = {xi ∈R
d |i = 1, 2, . . . , l}, calculate the sphere center

m= 1
l

l∑
i=1

ϕ(xi) based on the Definition 1.

Step 2: Considering Definition 3, the square of distance from the sample x to m in the
high-dimensional space is

d2(x,m)=
∥∥∥∥ϕ(x)− 1

l

l∑
i=1

ϕ(xi)
∥∥∥∥
2

= k(x,x)− 2
l

l∑
j=1

k(x,xj)+ 1
l2

l∑
i=1

l∑
j=1

k(xi,xj)

(13)

As
1
l2

l∑
i=1

l∑
j=1

k(xi,xj) is a constant, to reduce the calculation amount, only the former two

items are considered.

Step 3: For each sample point xi in D, calculate si according to

si = k(xi,xi)− 2
l

l∑
j=1

k(xi,xj), (14)

and update the training set through the selection of the bigger si from D.

3.2 Number Calculation of Pre-Selected Samples
In the SV pre-selection process of the supersphere model, the number of pre-selected SVs is

an important value to be calculated. Based on (8), it can be find that α = {α1, . . . ,αl} subjects to
l∑

i=1
αi = 1, 0 ≤ αi ≤ 1

v · l , v ∈ (0, 1). Considering the SVs, set αi > 0, i = 1, 2, . . . , lsv, which means

the SV number is lsv. With regard to the NSVs, set αj = 0, j= lsv+ 1, lsv+ 2, . . . , l, as a result, it
can be easily concluded as (15)

l∑
i=1

αi =
lsv∑
i=1

αi+
l∑

j=lsv+1

αi = 1 (15)
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Then, from the relationship of values between αi and
1
vl
, it can be find that

1=
lsv∑
i=1

αi ≤ lsv× 1
vl

lsv≥ vl
(16)

From the above-mentioned equations, we can conclude that the total SVs number of the
supersphere OCSVM algorithm is vl at least, which also decides the number of pre-selected
samples. About how to calculate and obtain the pre-selected samples, the process is: Firstly, rank
the set of si(i = 1, 2, . . . , l) by the result of (14) using a descending order. Secondly, select vl
corresponding samples from the training set based on the former vl elements in the rank set, and
set the value with s′ for the vlth element. Thirdly, compare and calculate the value of difference
between the latter element in the rank set and s′ successively. If the calculated value is m, the
threshold is �, and they satisfy m< �, select the corresponding sample as a SV.

From the above-mentioned equations, we can conclude that the total SVs number of the
supersphere OCSVM algorithm is vl at least, which also decides the number of pre-selected
samples. About how to calculate and obtain the pre-selected samples, the process is: Firstly, rank
the set of si(i = 1, 2, . . . , l) by the result of (14) using a descending order. Secondly, select vl
corresponding samples from the training set based on the former vl elements in the rank set, and
set the value with s′ for the vlth element. Thirdly, compare and calculate the value of difference
between the latter element in the rank set and s′ successively. If the calculated value is m, the
threshold is �, and they satisfy m< �, select the corresponding sample as a SV.

3.3 Complexity Analysis of Algorithm
The essence of the supersphere model construction is to solve the quadratic programming

problem, the problem scale and the solving efficiency are related to the samples’ number in train-
ing set. The calculation complexity is the cubic of the summation of samples when the traditional
quadratic programming is executed. The algorithm’s space complexity is primarily decided by the
storage of kernel function matrix. Let the sample number of the supersphere is l, we can find that
the space complexity is O(l2) for the storage of kernel function matrix, and the time complexity
for model optimization is O(l3). There are two steps in the supersphere algorithm based on the
support vector pre-selection: 1) Pre-select l′ support vectors from the training set with l samples,
this operation has a space complexity of O(2l), namely two vectors which can contain l items
are required. One vector is used for the storage of the intermediate result on si, i= 1, . . . , l in (8)
and (14), the other one is used for storage of the values of si. The time complexity of this step
is O(l2), which is from the sorting of si. 2) Execute the optimization problem on the base of
support vector set and build a model. For kernel function matrix, the space complexity is O(l′2),
and the complexity of time consumption for model optimization is O(l′3) in this step. As the set
of support vectors usually is a fraction of the total training sample set, the pre-selection of SVs
method for the supersphere model could reduce the space and time complexity.

4 Fault Prediction and Quantitative Anomaly Measurement Using SV Pre-Selection OCSVM

The OCSVM model based on SVs pre-selection has a faster modeling speed, which can
improve the efficiency of fault prediction. For the samples with the form of feature vectors, the
model can be applied directly. But for the time series, the phase space reconstruction is firstly
needed, and then the fault prediction model with OCSVM could be built. The phase space
reconstruction is a research method for system’s dynamic behavior based on the limited measured
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data and the attractor reconstruction. In order to restore the phase space’s geometrical structure
of dynamic systems from the one-dimensional time series, the one-dimensional time series should
be embedded into the m-dimensional space, which has the form as: suppose the observed time
series from system is x(t), with t = 1, 2, . . . ,N. The dimension of the phase space is m, the
fixed time delay is called the embedded delay τ , so the sample points in the space of phase are
X(t) = (x(t),x(t− τ ),x(t− 2τ ), . . . ,x(t− (m− 1)τ ))T, with t= 1, 2, . . . ,Np, Np =N − (m− 1)τ . The
time series can be used for novelty detection after the phase space reconstruction, which also
provides the theoretical basis for the time series prediction using OCSVM. The main procedure
on fault prediction using SVs pre-selection is:

1) Suppose the collected sample series in the system’s normal state is x(t), t = 1, 2, . . . ,N.
Execute the reconstruction of phase space for the time series, and the sample set can be
obtained as D= {xi ∈Rd |i= 1, . . . ,N− (m− 1)τ }.

2) Pre-select the support vectors from D, and build the OCSVM model as the fault prediction
model based on the selected sample set. For the supersphere model, calculate the variable’s
value range representing the relative location relationship between the samples in D and the
supersphere according formula (10). Then the lower bounds of the two ranges are regarded
as the respective threshold reference to judge whether the fault trend exist or not.

3) Decide whether the time series value x(t′) at time t′ indicate the fault trend. The method
is: firstly, construct the sample being adapt to the model as x(t′) = (x(t′),x(t′ − τ ),x(t′ −
2τ ), · · · ,x(t′ − (m− 1)τ ))T based on x(t′). Then x(t′) is substitute to the OCSVM model
after the support vector pre-selection, and the variable value representing the relative loca-
tion relationship between x(t′) and the supersphere can be calculated. Finally, the variable
value is used for judging whether the fault trend exist through the comparison to the fault
threshold.

To quantitatively measure the anomaly level of one sample, the anomaly indexes (AIs) [6] can
be defined as follows.

Set a system’s normal state ω1 can be described by a given sample set {vi, i= 1, . . . , l}, if the
sample set is known, it means the normal state ω1 of the system is also known, but the samples
in the system’s anomaly state or in system’s fault state are both unknown. Then set p(vi|ω1) as
the probability density of vi, and let ρ1 =min(p(vi|ω1)), ρ2 =max(p(vi|ω1)), ρ = p(v′|ω1), where
v′ is a new sample. As a result, the anomaly level of sample v′can be quantitatively measured by
the anomaly indexes AIs(v′) , which has a form as (17)

AIs(v′)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 ρ ≥ ρ2

0.5
ρ −ρ2

ρ1−ρ2
ρ2+ (ρ1−ρ2)/0.5< ρ < ρ2.

1 ρ ≤ ρ2+ (ρ1−ρ2)/0.5

(17)

For the samples in ω1, it can be found that 0≤AI(vi)≤ 0.5, i= 1, . . . , l. On this basis, suppose
a threshold θ(0 ≤ θ ≤ 1) is selected, if AI(v′) ≤ θ , it means the new sample v′ having not fault
trend; if AI(v′) > θ , it means the new sample v′ has a fault trend. In other words, if AIs satisfies
the condition AI(v′) ≤ θ , the sample v′ can be regarded as a normal sample; and if AI satisfies
the condition AI(v′) > θ , it implies that the new sample v′ has a fault trend.
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5 Experiments and Result Analysis

5.1 A Simulation Experiment and Analysis of Result
For the supersphere model, the training set is constructed from θ ∈U [0, 2π ], ρ ∈U [6, 10], and

1000 samples are random generated, so the coordinates of θ and ρ are dimensionless. The RBF
kernel is chosen and the pre-selected SVs are shown in Fig. 2.

Figure 2: Support vector pre-selection result of the supersphere model

Considering Fig. 2, it can be concluded that the obtained samples’ set through SV pre-
selection of the supersphere model covers most of the SVs. As the supersphere model’s training
process is entirely unrelated to NSVs, it’s obvious that the SV pre-selection approach may enhance
the training efficiency in the condition of guaranteeing the model’s novelty detection capacity.

The supersphere algorithm’s training results of the simulation samples are shown in Table 1.
From data in the table, we also can find the speed of modeling is tremendously enhanced; as a
result, the fault prediction and the anomaly measurement efficiency can also be enhanced.

Table 1: Comparison of training result for the supersphere model

Algorithms Number of Number of support Number of Modeling
training samples vectors (Pre-selection) support vectors time (s)

Supersphere 1000 Non-selection 212 15.28
Supersphere (Pre-selection) 1000 450 201 4.35
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5.2 Experiments for the Single-Dimensional Drift Data of Gyroscope
When the gyroscope devices are working in the normal state, their drift coefficients satisfy

a certain transformation rule. When the fault trend exists, the original transformation rule will
inevitably occur the drift, even exceed the normal working range. If we find the drift of transfor-
mation rule by the fault prediction model, or the working parameters will soon deviate from the
normal working range, the fault trend must be predicted. If we find the transformation rule keeps
the original state, and locates in the normal range, the conclusion having no fault trend should
be given.

In this experiment, the samples come from the reliability experiments of the new gyroscopes.
The experiment parameters include the gravitational acceleration g and the geographical latitude
R, where g= 979.4121 cm/s−2, R= 34.6006◦.

A data gathering system with special sensor is used for data acquisition and drift data storage.
Based on the 91 groups of testing data in the dataset, the supersphere model is trained to detect
whether the fault trend exists. Set the dimension of the unlabeled samples is 3, and construct 89
samples, the former 75 samples are used for modeling, and the latter 15 samples are used for fault
prediction.

To evaluate the reliability of the experimental results, the experiment with the supersphere
model of OCSVM is executed, and the modeling result is described in Fig. 3, which is the support
vector pre-selection result. In Fig. 3a, the horizontal ordinates are the sample series numbers,
and the vertical ordinate are the corresponding values of Lagrange multipliers, the values decide
whether the samples are support vectors. Fig. 3b shows the location relationship between the
samples and the supersphere, which is a unitless value of distance. As the pre-selected sample set
includes all the SVs of the supersphere model, the results have the same form for the supersphere
and the supersphere(SV pre-selection).

(a) (b)

Figure 3: Modelling result of supersphere. (a) Support vector pre-selection (b) Location relation-
ship between the samples and the supersphere
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Utilizing the modeling result, the density distribution of the variable representing the relative
location of the samples and the supersphere can be estimated as Fig. 4a. On this basis, the
sample’s anomaly indexes (AIs) are calculated. As shown in Fig. 4b, we still can see that the AIs
are all below 0.5, namely there is not any fault trend exists in the gyroscope.

(a) (b)

Figure 4: Result of anomaly indexes. (a) Density estimation (b) Calculation of AIs

5.3 Experiments for a Precision Inertia System Platform
The inertia system includes three gyroscopes, and we can get 8 drift ampere values of the

precision platform by testers, which are the IY−up, IY−down, IX−up, I
X−up
Z , IX−down, IX−down

Z , IZ−up,
IZ - down. Based on the 8 values, 6 drift coefficients of the three gyroscopes can be deduced, the
methods are: KOY = 1

2 (IY−up + IY−down) · KY
c , KOX = 1

2 (IX−up + IX−down) · KX
c , KOZ = 1

2(IZ−up +
IZ−down) ·KZ

c , KSY =−1
2 (|IY−up| + |IY−down|) ·KY

c +Ω sinϕ, KSX =−1
2(|IX−up| + |IX−down|) ·KX

c +
Ω sinϕ, KIZ = 1

2 (I
X−up
Z + IX−down

Z ) ·KZ
c , where ϕ is the geographical latitude of testing point, KX

c ,

KY
c , KZ

c , Ω are constants if the testing target is known.

The sample form of the precision platform is X = {KOY ,KOX ,KOZ,KSY ,KSX ,KIZ}. There
are 130 groups of data with the 6-dimensional drift coefficient gathering from 2001 to 2007, as
shown in Fig. 5. The values in this figure are all practical values of the precision platform’s drift
coefficients. The horizontal ordinates are the sample series numbers, and the vertical ordinate are
the practically measured data.

The goal of the experiment is to analysis the platform’s working state in 2007 based on the
data from 2001 to 2006. There are 74 samples matching the system performance requirement in
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the six years, and these data are considered as the training samples to build the supersphere model
with OCSVM. Fig. 6a is the support vector pre-selection result. In this subfigure, the horizontal
ordinates are the sample series numbers of the drift time series, and the vertical ordinates are
the values of Lagrange multipliers, the selected support vectors are used to build the supersphere
model. The variable values representing the relative location of the samples and the supersphere
are then calculated, as shown in Fig. 6b. In this subfigure, the horizontal ordinates are the whole
samples including the training and the testing samples, and the vertical ordinates are the relative
distances between the samples and the supersphere. If the relative distance is negative, it means
the sample is inside the supersphere; if the distance is 0, it means the sample is on the supersphere
surface; and if the distance is larger than 0, it means the sample is outside the supersphere.

Figure 5: Practical values of the precision platform’s drift coefficients

Utilizing the modeling result, we can calculate the sample’s anomaly indexes (AIs) by proba-
bility density estimation method, as shown in Fig. 7. It can be found that the AIs of the anomaly
samples are all below 0.5 among the 118 samples from 2001 to 2006, which means the AIs can
distinguish the normal samples and the anomaly samples. Considering the 4th sample in the 12
samples from 2007, namely the 122th sample in Fig. 7, the AI value is 0.5268, the AIs of the
remaining 8 samples are all below 0.5. By analyzing the drift data of the platform’s normal state
from 2001 to 2006, we can obtain the practical drift range is [−0.5423, 0.5508]. it means that
although the 122th sample’s AI value is bigger than 0.5, namely the platform is beyond the normal
working range in the past, but it still didn’t exceed the drift range of the engineering permission.
So, we can conclude that the precision platform had no obvious drift fault trend and had a stable
running state in 2007.
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(a) (b)

Figure 6: Modelling result of supersphere. (a) Support vector pre-selection (b) Location relation-
ship between the samples and the supersphere

Figure 7: Result of anomaly indexes (AI)

6 Conclusions

In this paper, a fast small-sample supersphere one-class SVM modeling method using SVs pre-
selection is systematically studied, aiming at the data-driven fault state prediction and quantitative
degree measurements. (1) The essence of the method lies in two aspects. firstly, construct the
supersphere space model based on the samples from the system’s normal state; secondly, compare
the relative location relationship between the new sample and the supersphere to judge whether
the sample deviates from the system’s normal state. As a result, the fault prediction goal is
reached. (2) The advantages of the method lie in the easily acquisition of data samples, the
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fast modeling and the strong sensibility to the system’s anomaly. (3) The disadvantage is that
it cannot track the fault trend continually, so there is a lack of further understanding for the
fault trend. (4) When the system’s fault trend occurs, how to build the efficient prediction model
is the key problem to be solved. The OCSVM fault prediction model is mainly studied based
on SV pre-selection. To improve the modeling efficiency, the SV pre-selection method for the
supersphere model is proposed. The methods can extract the outside points and boundary points
of the supersphere, and can give good fault prediction capability and effectiveness of quantitative
anomaly measurement for precision inertial devices. The experiments on precision inertial systems
testify that the proposed method has good fault prediction speed and precision, and can effectively
quantitative measure the anomaly level of systems.
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