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ABSTRACT

This paper proposes a new power grid investment prediction model based on the deep restricted Boltzmann
machine (DRBM) optimized by the Lion algorithm (LA). Firstly, two factors including transmission and distribu-
tion price reform (TDPR) and 5G station construction were comprehensively incorporated into the consideration
of influencing factors, and the fuzzy threshold method was used to screen out critical influencing factors. Then, the
LA was used to optimize the parameters of the DRBMmodel to improve the model’s prediction accuracy, and the
model was trained with the selected influencing factors and investment. Finally, the LA-DRBMmodel was used to
predict the investment of a power grid enterprise, and the final prediction result was obtained by modifying the
initial result with the modifying factors. The LA-DRBMmodel compensates for the deficiency of the single model,
and greatly improves the investment prediction accuracy of the power grid. In this study, a power grid enterprise
was taken as an example to carry out an empirical analysis to prove the validity of the model, and a comparison
with the RBM, support vector machine (SVM), back propagation neural network (BPNN), and regression model
was conducted to verify the superiority of the model. The conclusion indicates that the proposed model has a
strong generalization ability and good robustness, is able to abstract the combination of low-level features into
high-level features, and can improve the efficiency of the model’s calculations for investment prediction of power
grid enterprises.
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1 Introduction

With the concept of sustainable development and green economy becoming important
themes of current development in various fields, the focus on accelerating the transformation of
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economic development models has highlighted resource-saving and environment-friendly attributes
of society. With the exponential growth of electricity consumption and the expansion of the scale
of investment, the critical factors affecting investment in power grids have become increasingly
diversified. Investment in power grid enterprises is no longer only affected by traditional factors
but is also affected by emerging factors brought by the advancement of power grids. For example,
the income model of power grid investment is greatly affected by power system reform [1,2], and
the integration and sharing of 5G station construction and basic grid resources also provides new
directions for power grid investment. In order to reasonably control costs and optimize resource
allocation, power grid enterprises should comprehensively consider the above factors, optimize
grid investment plans, and conduct supervision [3]. Therefore, research on investment prediction
of power grid enterprises is conducive to the sustainable development of power grids.

For power grid investment forecasting, domestic and foreign scholars have put forward dif-
ferent ideas and solutions. At present, statistical prediction models and artificial intelligence
prediction models are widely used in the field of power grid investment prediction. Traditional
statistical prediction methods mainly include principal component analysis, regression algorithms,
Kalman filter, and clustering. These methods have simple principles, but have longer periods,
slower speeds, and larger errors. The intelligent algorithms proposed on the basis of traditional
prediction methods include co-integration theory, particle swarm optimization theory, fuzzy anal-
ysis, back propagation neural network (BPNN), and support vector machines (SVM). These
algorithms are intelligent and personalized, so they are widely used in power grid investment
forecasting.

In terms of traditional statistical forecasting models, regression analysis is widely used. For
example, Chen [4] comprehensively considered the multi-dimensional constraints, established the
investment scale prediction model by using the regression analysis method, and verified its good
auxiliary effect on investment planning through empirical analysis. In the artificial intelligence
prediction models, BPNN [5] and support vector machines [6] are proven to be highly effective
methods. Among them, neural networks have high computing power and fitting efficiency because
of their large number of neurons and multiple hidden layers, and they also have a significant
effect on the regression and classification of related variables and analysis of function fitting.
Some scholars have used BPNN to analyze and predict this. However, due to the principle of
gradient descent, the BPNN algorithm is prone to the problem of gradient vanishing and easily
falls into the local optimal solution. In order to solve this problem, many scholars use principal
component analysis or multiple regression models in combination with the BPNN to form new
combined algorithms or use genetic algorithms to improve it. In reference [7], principal component
analysis is used to analyze the relevant factors of power engineering investment, and particle
swarm optimization is used to optimize the BPNN to establish an innovative prediction model.
Liu et al. [8] combined grey prediction, a multiple regression model, and a BPNN in an optimized
combination model using an improved genetic algorithm; they proposed a combination prediction
model that can combine the model and the original data well. It is proven that the combined
model has a shorter convergence time and search efficiency. Although the BPNN’s prediction
performance has been greatly improved and can obtain more accurate prediction results, it is
not suitable for the prediction of few sample data. Therefore, SVM is favored by many scholars
because of its strong robustness and good prediction accuracy, which is suitable for few sample
data. Dai et al. [9] used the grey correlation analysis method to screen the influencing factors
and optimized the Grey Wolf algorithm through differential evolution and SVM. The results
demonstrate that the model has a strong generalization ability and a good prediction effect. In
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order to make up for the shortcomings of the single BPNN or SVM model, some scholars
have combined different models to predict the amount of power grid investment. Xu et al. [10]
combined SVM, BPNN, and multiple regression models based on the analysis of the indicator
system to form a power grid portfolio model. The particle swarm algorithm was used to optimize
the investment portfolio model to achieve more accurate investment forecasts.

In addition to the above algorithm, some scholars have used other methods to analyze power
grid investment. Liu et al. [11] put forward a calculation model of power grid demand and invest-
ment capacity by analyzing the influence of the change in transmission and distribution price on
power grid investment decisions. Li et al. [12] mainly used the correlation coefficient method and
grey prediction model to realize power grid investment predictions and confirmed the practicability
and innovation of the method through data analysis. From the perspective of renewable energy
power generation, Wagner [13] analyzed the site selection of wind power investors under different
support plans and its impact on grid investment and found that the additional costs brought by
site selection had a great impact on grid investment. As a shallow learning algorithm, the above
models have limited processing capabilities for complex function problems, and these algorithms
are based on prior knowledge and cannot fully reflect the characteristics of the information.
A restricted Boltzmann machine (RBM) can abstract the combination of low-level features into
high-level features so as to better reflect data features.

In the field of forecasting, RBM plays an important role. For example, Shi et al. [14] com-
bined a depth confidence network and RBM to extract data features. Wan et al. [15] used RBM to
build a deep belief network (DBN) model and proposed a deep regression feature learning (DFL)
wind speed prediction method. Phan et al. [16] proposed an SRBM model to predict healthy
social networks. Internal and external social influences and environmental events form a three-layer
training model. This model proves that it is more effective than traditional methods.

However, the generalization ability of RBM is low, and its fixed training rate is not conducive
to the network jumping out of the minimum point. Some experts have begun to use various algo-
rithms to optimize it. Cho et al. [17] used Gaussian–Bernoulli to limit the RBM and scientifically
optimize the parameters of the RBM. However, Gaussian–Bernoulli had problems such as local
convergence and slow convergence. Liu et al. [18] used a genetic algorithm to optimize the RBM,
which effectively improved the RBM feature extraction performance. However, genetic algorithms
may converge to the local optimum when the fitness function was not properly selected and cannot
reach the global optimum. Du et al. [19] weighted the fusion of a clustering algorithm with
Time-RBM. Although this effectively improved the prediction accuracy, the clustering algorithm
had high computational complexity, and the result depended on the selection of certain empirical
parameters. In contrast, as a biomimetic algorithm based on the social behavior of lions, the
Lion algorithm has strong robustness and the ability to search for better solutions. It is easy to
implement in parallel and has a fast convergence speed. At the same time, the deep restricted
Boltzmann machine (DRBM) algorithm can overcome the shortcomings of the RBM and improve
the processing capacity of complex data.

Combined with the advantages and improvements of previous methods, this paper proposes
a new power grid investment forecasting model based on the DRBM optimized by the Lion
algorithm (LA). Considering the characteristics of power grid investment prediction, transmission
and distribution price reform (TDPR) and 5G station construction are integrated into the influ-
encing factors for comprehensive consideration. We analyzed the influence factors of power grid
investment using a fuzzy threshold method and constructed a power grid investment prediction
model using a deep restricted Boltzmann machine optimized by the Lion algorithm (LA-DRBM).
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The model improved the global search ability and enhanced the abstraction ability of high-
dimensional complex data through layer-by-layer feature transformation. Then, a regression model,
BPNN, SVM, RBM model, and LA-RBM model were selected for comparative analysis. The
empirical study illustrates that the prediction accuracy and generalization performance of the
model have been effectively improved.

The rest of the paper is arranged as follows: Section 2 introduces the basic theories of the
deep restricted Boltzmann machine and the Lion algorithm; Section 3 carries out the analysis
of the influencing factors of the power grid enterprise’s investment based on a fuzzy threshold
method; Section 4 uses the established model for empirical analysis; and Section 5 presents the
conclusions.

2 Basic Theories

2.1 Deep Restricted Boltzmann Machine
2.1.1 Restricted Boltzmann Machine

RBM is a non-feedback random neural network model with two layers. One layer is the
visual layer for inputting observation data, and the other layer is the hidden layer for feature
extraction [20,21]. In this network, different layers are fully connected, and there is no communi-
cation between the same floor. Assuming that the RBM has visible layer neurons and hidden layer
neurons, the value of the neuron of the visible layer and the value of the neuron of the hidden
layer neuron are denoted, respectively. The structure and principle of the RBM is demonstrated
in Fig. 1.

H 1 H 2 H 3 H j H m

V1 V2 Vi Vn……

…… Hidden layer, H

Visible layer, V

Figure 1: The structure and principle of the RBM model

The RBM is a typical model based on energy function. For a given state (V ,H), the energy
function of the joint configuration of visible layer variables and hidden layer variables can be
expressed as:

E(V ,H|℘)=−
nm∑
ij

ViHjαij −
n∑
i

βiVi−
m∑
j

γjHj. (1)

where αij denotes the weight between the ith node in the visible layer and the jth node in the
hidden layer, βi denotes the bias value of the ith node in the visible layer, and γj denotes the bias
value of the jth node in the hidden layer. Additionally, ℘ = {αij,βi,γj} is a set of parameters that
need to be adjusted for the model.
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On the basis of the energy function of formula (1), the joint probability distribution function
under a given state (V ,H) can be obtained as:

P(V ,H|℘)= e−E(V ,H|℘)

z(℘)

z(℘)= ∑
V ,H

e−E(V ,H|℘) (2)

where z(℘) represents the normalization factor to ensure that the function is standardized.

Under the assumption that the hidden layer unit and the visible layer unit are binary variables,
which means ∀i, j,ki ∈ {0, 1},uj ∈ {0, 1}, 1 means that the neuron node is in the activated state, and
0 means that the neuron node is in the inhibited state. Considering that there is no communication
in the same layer and full connection between the layers in the RBM, the activation probability of
the jth node of the hidden layer under the known condition of the visible layer can be calculated
as:

P(Hj = 1|V)= ϕ(αTj V +βj)= 1

1+ e
−

m∑
i=1

(αijVi+βj)

(3)

where ϕ is the sigmoid function (activation function), which is expressed as:

ϕ(x)= sigmoid(x)= 1
1+ ex

(4)

As the RBM structure is symmetrical, the activation probability of the ith node in the visible
layer is:

P(Vi = 1|H)= ϕ(αTi H + γi)= 1

1+ e
−

n∑
i=1

(αijHj+γi)

(5)

During training of the RBM model, it is necessary to adjust the parameter ℘ = {αij,βi,γj}
of the model by fitting a given training sample. The given training sample set is T =
{V1,V2,V3, . . . ,Vn1} (n1represents the number of training samples), where Vi = {Vi

1,V
i
2, . . . ,V

i
n2}

(i= 1, 2, . . . ,n2,n2 represents the number of visible layer nodes, meaning the dimension of the input
data).

The objective of optimizing parameters in the RBM is to maximize the likelihood function
L℘,T , as follows:

L℘,T =
n1∏
i=1

P(Vi|℘) (6)

Through the logarithmic processing of function L℘,T , that is, the logarithmic processing of
the training target, the following results are obtained:

lnL℘,T = ln
n1∏
i=1

P(Vi|℘)ln=
n1∑
i=1

lnP(Vi|℘) (7)
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Considering the complexity of likelihood function calculation, this paper uses the recon-
struction error instead of the likelihood function for the evaluation function of the RBM. The
reconstruction error takes the training sample as the initial state and calculates the difference with
the original data after several block Gibbs samples. In the training process of the RBM, the
reconstruction error of the jth iteration is calculated as follows:

Errorj =
n2∑
m=1

n1∑
k=1

Vk
m (8)

where m represents the number of visible layer nodes, and k represents the number of training
samples.

When the error condition is met, the output result of the hidden layer is the output result of
the system.

2.1.2 Deep Restricted Boltzmann Machine
Considering that the RBM, as a single-layer structure, has insufficient ability to extract and

process information, this paper takes the RBM as the basic network structure, constructs a multi-
layer network structure, and forms a DRBM model [22]. The DRBM model effectively trains the
entire network layer by extracting the output of the previous layer of the network as the training
data input of the next layer, and its structure is shown in Fig. 2.

H1 H2 H3 Hj Hm

V1 V2 Vi Vn……

……

H1 H2 Hm…

H1 H2 Hm…Hj………

Output

Input

Visible layer

Hidden layer

Figure 2: The structure of the DRBM model

Compared with the RBM, the DRBM can extract more abstract space vectors from high-
dimensional complex input data through layer-by-layer feature transformation. In addition, the
DRBM can train a large number of unlabeled sample data to reduce the impact of error or
redundant information on the output results so as to increase the accuracy of the prediction
results.

The training set is substituted into the DRBM model for training, and the network output
result is the prediction result.
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2.2 Lion Algorithm
At the beginning of the 21st century, Rajakumar proposed the Lion algorithm [23]. As a

heuristic algorithm based on the group behavior of lions, the algorithm constantly updates the
location information of lions by imitating the natural behaviors of lions such as mating, mutation,
and territorial defense to reach the goal of seeking the optimal solution. The Lion algorithm
performs well in dealing with complex optimization problems [23,24].

The algorithm can be divided into four parts according to the behavior characteristics of the
lion group: initial population, mating and mutation, territorial defense, and territorial takeover.
Firstly, a random individual is selected as the starting point, and each lion is taken as a solution
vector to search according to the target. Then, in these feasible solutions, an iterative operation
is carried out. When the termination condition is reached, the optimal solution is obtained.
Therefore, the fitness function of the model needs to be determined. Taking this as the basis of
the search iteration, suppose the fitness function is:

min f (x1,x2, . . . ,xn), (n≥ 1) (9)

Considering that the optimization problem of RBM parameters is a complex multi-variable
optimization problem, integer coding is selected as the encoding method, which can effectively
improve the execution efficiency of the algorithm and simplify the calculation difficulty of the
algorithm.

(1) Initialize the pride

We first set the population size and set the number of lions as 2n (the number of the
female lions and the male lions is equal). The male lion sample set is denoted as Xm and

Xm = [xm1 ,x
m
2 ,x

m
3 , . . . ,x

m
d ], the female lion sample set is denoted as Xf and Xf = [xf1,x

f
2,x

f
3, . . . ,x

f
d ],

and d represents the length of the solution vector.

(2) The pride

Mating is an effective way to generate new individuals. Therefore, mating in the algorithm can
make existing solution vectors generate new feasible solution vectors. The process includes steps
such as crossover, mutation, clustering, and elimination of weak individuals.

In the algorithm, the crossover based on double probability is introduced; that is, two different
probabilities are used for crossover to produce offspring. After Xf and Xm cross, the progeny Xcub

was generated, and Xcub= [xcub1 ,xcub2 ,xcub3 , . . . ,xcubd ]. When xmi and xfj cross with double probability,

four cubs xcub1∼4 may be generated.

In the algorithm, mutation is used to generate a new cub by a random mutation with
probability p; that is, xcub1∼4 becomes xcub5∼8. During the mating process, after the crossover and
mutation are completed, eight types of offspring will be formed.

In order to group and cluster, the k-means method can be used for gender grouping of the
existing eight species of offspring, which are divided into male cubs (xm_cub) and female cubs
(xf _cub).

Finally, in order to update the cub group and maintain its stability, the health status of the
two groups of the cubs was compared, and the weak individuals of the excessive group were
eliminated so that the number of the two groups of cubs was maintained in balance. Additionally,
after the population is updated, the age of the cub is initialized to 0.
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(3) Territorial defense

Territorial defense is a unique behavior of lions. In order to protect the group and demon-
strate loyalty, male lions defend against attacks of nomad lions. The defense process is shown in
Fig. 3.

Resident lion

New mature 

resident lion

Nomad lion

Female lion

Nomad lion

Resident lion

Female lion

New mature 

resident lion

Figure 3: Lion group defense diagram

Firstly, initialize the nomad lions Xnomad and Xnomad = [xnomad1 ,xnomad2 ,xnomad3 , . . . ,xnomadd ] (the
method is similar to the initialization of territorial lions). Then, new feasible solutions are gen-
erated. The process of territorial attack is also the process of comparing the target value. If
f (Xnomad) < f (Xm), a further comparison will be performed. If f (Xnomad) < f (Xpride), this means
that xnomad as a new feasible solution is superior to the original feasible solution, then xnomad

will replace the original solution. Meanwhile, the male lions and cubs will be eliminated, and the
lions of the new territories continue to mate to produce offspring. Otherwise, the original lions
continue to reproduce, and the cubs’ age increases by one year until the cubs reach adulthood.

If f (x) is the objective function, and f (Xpride) is the objective function value of the entire
population, the calculation formula is as follows:

f (Xpride)=

{
f (Xm)+ f (Xf )+ agemat

agecub+1

||Xm_cub||∑
k=1

f (Xm_cub
k )+f (Xf _cub

k )

||Xm_cub||

}

2(1+ ||Xm_cub|| (10)

where f (Xm) and f (Xf ) represent the value of the male lion group and the value of the female

lion group; f (Xm_cub
k ) and f (Xf _cub

k ) represent the value of the male cub and the value of the

female cub, respectively; ||Xm_cub|| denotes the number of male cubs in the population; and agemat
represents the age suitable for mating.

(4) Territorial takeover

The cubs begin to take over the territory when they ware mature, and they are compared

as lions with the original lions. The optimal solution (Xm
best and Xf

best) of male and female lions
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is chosen for mating. Xm
pride is composed of Xm and Xm_cub, and Xf

prideis composed of Xf and

Xf _cub. When choosing Xm
best and Xf

best, the following criteria can be followed:

f (Xm
best) < f (Xm

pride),X
m
best �=Xm

pride (11)

f (Xf
best) < f (Xf

pride),X
f
best �=Xf

pride (12)

Let t denote the breeding number of Xf
best, and tstrenth denote the maximum breeding number

of female lions (usually set to 5). When the lions begin to mate, t is also initialized to 0 as the
lions are initialized, and t increases once every time the lions mate. In the process of territorial
takeover, if the original lioness is eliminated, t is initialized to 0. If the original lioness is replaced,
t is accumulated on the original basis until the breeding maximum is reached.

Let GEN denote the number of iterations, and GENmax denote the maximum number of
iterations. After the above steps are completed, GEN is increased by one, and Step 2 is returned
until the termination condition, which is GEN ≥GENmax. After the iteration is completed, select
the best lion from the population as the final optimal solution.

2.3 Deep Restricted Boltzmann Machine Optimized by Lion Algorithm
The DRBM is a multi-layer structure composed of the traditional RBM. The DRBM has

similar problems as the RBM, in that it will become extremely slow due to pathological problems.
Therefore, we applied the Lion algorithm to optimize the parameters of the DRBM.

The steps of optimizing the DRBM model by the Lion algorithm are as follows:

(1) Initialize the DRBM model parameters. For the DRBM, the model parameter is ℘ =
{αij,βi,γj}, αij denotes the weight between the ith node in the visible layer and the jth node
in the hidden layer, βi denotes the bias value of the ith node in the visible layer, and γj
denotes the bias value of the jth node in the hidden layer.

(2) Use the training vectors to train the DRBM model and calculate the evaluation function
of the model.

(3) Randomly set the initial population of the Lion algorithm, take the objective function
of the DRBM model as the fitness function of the Lion algorithm, and use the Lion
algorithm to continuously optimize the model parameters.

The optimization of the DRBM model through the Lion algorithm can speed up the training
efficiency of the model and improve the learning ability of the model. The analysis process of the
LA-DRBM model is shown in Fig. 4.

3 Analysis of Influencing Factors of the Power Grid Enterprise’s Investment Based on Fuzzy Threshold
Method

3.1 Fuzzy Threshold Method
As an effective evaluation method of influencing factors, the fuzzy threshold method can

judge the critical influencing factors by comparing the calculated fuzzy recognition value with the
actual set threshold [25]. This method is suitable for complex and fuzzy evaluation criteria and
can combine experience with objective facts to make the evaluation results more accurate. Suppose
the factor set of the evaluated object is S and S= {s1, s2, · · · , sn}, where n represents the number
of influencing factors. The steps of analysis are as follows:
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Figure 4: LA-DRBM model

(1) Determine the evaluation level. Each influencing factor must be evaluated according to
certain standards. The evaluation levels are as follows:

V = {v1, v2, · · · , vm} (13)

where m represents the number of evaluation levels.

(2) Establish a fuzzy relationship matrix. Assuming that there are N experts in total, all the
experts evaluate each influencing factor according to the grad, and the kth expert evaluates
the ith factor si(i= 1, 2, · · · ,n). The evaluation results are shown in Table 1.

Table 1: Expert evaluation form

Factors Comment

v1 v2 v3 . . . vm

si xi1(k) xi2(k) xi3(k) . . . xim(k)

xij(k) represents the membership degree of the jth comment vj obtained by the ith factor si in
the opinion of the kth expert. Based on all the experts’ opinions, if the score is given according
to the tenth system, the overall membership degree tij of the jth comment vj obtained by the ith
factor si is calculated as follows:

tij =

N∑
k=1

xij(k)

10N
(14)
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Therefore, the fuzzy relationship matrix T is calculated as:

T =

⎡
⎢⎢⎢⎣
t11 t12 · · · t1m
t21 t22 · · · t1m
...

...
. . .

...
tn1 tn2 · · · tnm

⎤
⎥⎥⎥⎦ , 0≤ tij ≤ 1 (15)

where tij represents the overall membership degree of the jth comment vjobtained by the ith factor
si.

(3) Determine the evaluation grade weight vector, and the vector is as follows:

W = (w1,w2, · · ·wm)T (16)

where wi ≥ 0,
∑
wi = 1.

It is determined that the weight settings have a great impact on the comprehensive evaluation
results.

(4) Calculate the evaluation result. Multiply the evaluation grade weight vector W and the
fuzzy relationship matrix T to obtain the fuzzy comprehensive evaluation result vector B=
(b1,b2, · · · ,bn)T .

B=T •W =

⎡
⎢⎢⎢⎣
t11 t12 · · · t1m
t21 t22 · · · t1m
...

...
. . .

...
tn1 tn2 · · · tnm

⎤
⎥⎥⎥⎦ • (

w1w2· · ·wm
)T (17)

(5) Based on experience, set thresholds and screen critical influencing factors.

3.2 Analysis of Critical Influencing Factors
There are many factors influencing power grid investment, which are closely related to the

income of power grid companies, investment benefits, and customer needs [26–28]. At the same
time, with the advancement of 5G base station construction and TDPR, power grid investment
is also affected by these two factors. Therefore, TDPR and 5G station construction should be
considered as two influencing factors in the investment forecast of power grid enterprise. Accord-
ing to the analysis, it can be concluded that the influencing factors of the power grid enterprise’s
investment mainly include total assets s1, total electricity consumption s2, power supply population
s3, load s4, line loss rate s5, ratio of grid assets to income s6, ratio of profits to cost s7, increased
load per unit of grid investment s8, return on equity s9, power supply reliability s10, growth rate of
electricity sales s11, power generation of renewable energy s12, standard coal saving s13, maximum
load of the whole society s14, carbon dioxide emission reduction s15, influence factors of TDPR
s16, 5G station construction s17, and so on [29–34].

The fuzzy threshold method is used to analyze the critical influencing factors of power
grid investment, and the evaluation level V = {Extremely important, very important, generally
important, not very important, not important} is set, and the corresponding weight vector is
determined as W = {0.3, 0.25, 0.2, 0.15, 0.1}. Then, the fuzzy relationship matrix is obtained
by the expert scoring and calculating the overall membership degree and multiplying it with the
weight vector W to obtain the fuzzy comprehensive evaluation result, as shown in Table 2.
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Table 2: Results of fuzzy comprehensive evaluation

s1 7.55 s6 6.23 s11 1.20 s16 6.21
s2 5.86 s7 4.54 s12 4.21 s17 5.78
s3 2.4 s8 5.61 s13 5.62
s4 3.63 s9 3.25 s14 4.36
s5 4.95 s10 6.85 s15 3.11

According to the results of the comprehensive calculation and the actual situation, the thresh-
old value is set to 5, and the influencing factors with a fuzzy comprehensive evaluation result
greater than 5 are the critical influencing factors of power grid investment. It is concluded that
the critical influencing factors include total assets s1, total electricity consumption s2, ratio of
grid assets to income s6, increased load per unit of grid investment s8, power supply reliability
s10, standard coal saving s13, influence factors of TDPR s16, and 5G station construction s17, as
shown in Fig. 5.

key influencing factors

total assets s1

total electricity consumption s2

ratio of grid assets to income s6

increased load per unit of grid investment s8

power supply reliability s10

standard coal saving s13

transmission and distribution price reform s16

5G station construction s17

Figure 5: The critical influencing factors of power grid investment

In the analysis of the influence factors of TDPR and 5G station construction, the two influ-
encing factors are taken into account by introducing correction factors. The correction coefficient
of TDPR is λ1, and the correction coefficient of 5G station construction is λ2.

4 Empirical Analysis

According to the analysis of the fuzzy threshold method, the critical influencing factors of
power grid investment are total assets s1, total electricity consumption s2, ratio of grid assets to
income s6, increased load per unit of grid investment s8, power supply reliability s10, standard coal
saving s13, influence factors of TDPR s16, and 5G station construction s17. We took a provincial
power grid company (Z power grid company) in the southeast region of China as the research
object, and selected data from 2010 to 2020 as samples for analysis. The input vector of the
prediction model was s1, s2, s6, s8, s10, s13, and the output vector was the investment amount
yi. Then, we used the correction factor to correct the forecast result to obtain the final forecast
result. The calculation formula is:

ŷi = λ1∗λ2∗yi (18)
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where ŷi is the forecasting value, λ1 is the correction coefficient of TDPR, λ2 is the correction
coefficient of 5G station construction, and yi is the initial forecasting value.

In order to reduce the influence of dimensions and units on the prediction results, the extreme
value method is used to normalize the original data. The calculation formula is as follows:

x′i =
{

xi−xmin

xmax−xmin

}
, i= 1, 2, 3, . . . ,n (19)

where x′i denotes the normalized data, xi represents the original data, and xmax and xmin represent
the maximum value and the minimum value of the original data, respectively.

We can use the data of Z grid company from 2010 to 2019 as training set to train the model
and use the trained model to predict the company’s investment in 2020.

First, set the Lion algorithm parameters, as shown in Table 3.

Table 3: The parameters of the lion algorithm

Parameter Value Parameter Value

N 6 GENmax 150
agemat 3 Crossover probability [0.45, 0.55]
tstrenth 5 Mutation probability p 0.35

Then, the lion algorithm is used to iteratively optimize the parameters of the DRBM. At the
same time, based on experience, set the correction coefficient λ1 = 1.1, λ2 = 1.2. After training,
the comparison result between the actual value and the training prediction value obtained from
2010 to 2019 is shown in Fig. 6. The training time and forecast time of the models are shown in
Table 4.

Figure 6: The training results of the LA-DRBM model



282 CMES, 2022, vol.130, no.1

Table 4: The training time and forecast time of the models

Model Train time (s) Forecast time (s)

RBM 375.92 0.120
LA-RBM 322.64 0.116

According to the graphic analysis, the forecasting value of the sample largely coincides with
the actual value, and the fitting effect is excellent.

Calculate the relative error rate (RER) and non-linear function goodness of fit (R2) between
the actual value and the forecasting value of the training sample. The calculation formula of the
RER and R2 is:

c= ŷi− yi
yi

(20)

R2 = 1−

√√√√√√√√
n∑
i=1

(ŷi− yi)
2

n∑
i=1

yi2
(21)

where ŷi is the forecasting value, and yi is the actual value. The smaller the RER is, the more
accurate the prediction result is. The larger the R2 is, the more accurate the prediction result is.

The RER of the training result is shown in Fig. 7.

Figure 7: The RER of the training result of the LA-DRBM model

The analysis result shows that the RERs of the training results are between −0.02 and 0.015,
which are small, indicating that the training effect of the model is excellent. Therefore, it can be
considered that the model is an effective method to predict the investment amount of power grids.
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Finally, we can use the optimized model to forecast the investment of Z grid companies in
2020.

The prediction effect of this model is compared with the prediction effect of the BPNN, SVM,
RBM, and regression model. The comparison results are shown in Table 5 and Fig. 8.

Table 5: Comparison of investment forecast results of power grid enterprises in 2020

Investment amount (million CNY) RER (%) R2

Actual value 658.46 –
Prediction value LA-DRBM 646.95 −1.75 0.9825

RBM 676.58 2.75 0.9725
SVM 633.11 −3.85 0.9615
BP 621.57 −5.60 0.9440
Regression model 679.77 3.24 0.9676

Figure 8: Comparison of RER of the prediction results of each model

According to the analysis results, the RERs for Z grid enterprise’s investment forecast in 2020
of the LA-DRBM model, the RBM model, the SVM model, the BP model, and the regression
model are −1.75%, 2.75%, −3.85%, −5.60%, and 3.24%, respectively. Among them, the RER of
the LA-DRBM model is the smallest. From the analysis of the results, the LA-DRBM model can
achieve a good prediction effect and high prediction accuracy in forecasting power grid investment.

5 Conclusions

In order to respond to the requirement of sustainable development of power grid investment
and improve the accuracy of power grid investment prediction, a new power grid investment
prediction model based on the LA-RBM (deep restricted Boltzmann machine optimized by the
Lion algorithm) model is proposed according to the characteristics of power grid planning and
the trend of power grid investment. In this paper, the main findings and conclusions are as
follows:
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(1) Firstly, the fuzzy threshold method was used to analyze the influencing factors of a power
grid enterprise’s investment. After analysis, 8 critical influencing factors were screened out
of 17 influencing factors, including total assets s1, total electricity consumption s2, ratio
of grid assets to include s6, increased load per unit of grid investment s8, power supply
reliability s10, standard cost saving s13, influence factors of TDPR s16, and 5G station
construction s17. These factors were used as input variables to train the model.

(2) Then, considering the problem of the insufficient solution speed of the DRBM model, the
Lion algorithm was used to optimize the parameters of the DRBM model. The optimized
parameter set of the DRBM model was ℘ = {αij,βi,γj}, where αij denotes the weight
between the ith node in the visible layer and the jth node in the hidden layer, βi denotes
the bias value of the ith node in the visible layer, and γj denotes the bias value of the jth
node in the hidden layer. Through iterative training, a new model (LA-DRBM) suitable for
power grid investment prediction was obtained.

(3) Finally, the LA-RBM power grid investment forecast model was compared with the RBM,
SVM, and BPNN. According to the analysis results, the RERs for Z grid enterprise’s
investment forecast in 2020 of the LA-DRBM model, the RBM model, the SVM model,
and the BP model were 3.22%, 7.92%, 9.01%, and 10.77%, respectively. Among them, the
RER of the LA-DRBM model was the smallest. From the analysis of the results, the
LA-DRBM model can achieve a good prediction effect and high prediction accuracy in
forecasting power grid investment.

Therefore, the experimental results fully prove that the LA-DRBM power grid investment
forecast model has strong generalization ability and robustness; the prediction accuracy is better
than other models; and it can achieve good prediction results. This model provides new ideas and
references for power grid investment forecasting.

The innovations of the paper are as follows:

(1) The LA-DRBM model can abstract the combination of low-level features into high-level
features so as to adequately reflect the data characteristics and improve the computational
efficiency of the model.

(2) The LA-DRBM model uses the Lion algorithm to optimize the deep restricted Boltzmann
machine, which improves the forecasting accuracy of the model.

(3) The article introduces the TDPR and 5G station construction as influencing factors, which
were used in an innovative index system of influencing factors.

(4) The model can combine the advantages of a single model and overcome the shortcomings
of a single model. The combined model is thus an effective prediction method for power
grid investment and has a strong generalization ability and good robustness.
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