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ABSTRACT

This paper considers Lagrangian finite elements for structural dynamics constructed with cubic displacement
shape functions. The method of templates is used to investigate the construction of accurate mass-stiffness pairs.
This method introduces free parameters that can be adjusted to customize elements according to accuracy and
rank-sufficiency criteria. One- and two-dimensional Lagrangian cubic elements with only translational degrees of
freedom (DOF) carry two additional nodes on each side, herein called side nodes or SN. Although usually placed
at the third-points, the SN location may be adjusted within geometric limits. The adjustment effect is studied in
detail using symbolic computations for a bar element. The best SN location is taken to be that producing accurate
approximation to the lowest natural frequencies of the continuum model. Optimality is investigated through
Fourier analysis of the propagation of plane waves over a regular infinite lattice of bar elements. Focus is placed
on the acoustic branch of the frequency-vs.-wavenumber dispersion diagram. It is found that dispersion results
using the fully integrated consistent mass matrix (CMM) are independent of the SN location whereas its low-
frequency accuracy order is O(κ8), where κ is the dimensionless wave number. For the diagonally lumped mass
matrix (DLMM) constructed through the HRZ scheme, two optimal SN locations are identified, both away from
third-points and of accuracy order O(κ8). That with the smallest error coefficient corresponds to the Lobatto 4-
point integration rule. A special linear combination of CMMandDLMMwith nodes at the Lobatto points yields an
accuracy of O(κ10) without any increase in the computational effort over CMM. The effect of reduced integration
(RI) on both mass and stiffness matrices is also studied. It is shown that singular mass matrices can be constructed
with 2-and 3-point RI rules that display the same optimal accuracy of the exactly integrated case, at the cost of
introducing spurious modes. The optimal SN location in two-dimensional, bicubic, isoparametric plane stress
quadrilateral elements is briefly investigated by numerical experiments. The frequency accuracy of flexural modes
is found to be fairly insensitive to that position, whereas for bar-like modes it agrees with the one-dimensional
results.

KEYWORDS

Structural dynamics; Lagrangian elements; finite elements; cubic shape functions; bar; plane stress; mass;
stiffness; vibration; wave propagation; Fourier analysis; dispersion; templates

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2021.016803


1210 CMES, 2021, vol.129, no.3

1 Introduction

The accompanying contribution in this issue [1] narrates the author’s effort in understanding
and draining the “variational swamp” that emerged during 1965-1985. In those two decades the
Finite Element Method (FEM) was liberated from the Rayleigh-Ritz connection, but fragmented
developments had resulted in a dizzying array of variational tools. The effort resulted in the
unification published in [2], which made a wide range of classical principles in structural mechan-
ics (e.g., Total Potential Energy, Hellinger-Reissner, Veubeke-Hu-Washizu, etc.) particular cases
of a single parametrized functional. Setting parameters to specific values produced well known
instances, plus an infinity of new ones.

A practical side effect: element derivations could be carried out by splitting the formulation
and using two or more functionals. The split could be geometric: element boundary plus interior,
as in the by-now large class of hybrids and incompatible models [3–5]. Or additive: basic plus
higher order response, as in Bergan’s Free Formulation [6]. Or splitting done in the matrix
computation process, as in elements produced by selective integration [7].

Investigation of common features emerging in those combinations led to the method of
templates, which provides tools for the present paper. Templates are algebraic forms for the mass,
material and geometric stiffness matrices of an individual element. Distinguishing feature: tem-
plates contain free parameters. These may be either simply scaling coefficients, or carry immediate
physical meaning. In this paper two parameters are used:

• A geometric parameter γ that adjusts the side node location.
• A scaling parameter μ that defines the combination of consistent and diagonally-lumped

mass matrices.

A short history of templates, adapted from a recent survey paper [8] is given in Appendix A.
The present paper is a specialized continuation of a 2015 survey paper [9] that studies mass-
stiffness templates for structural dynamics in a more general context, following up on earlier
work [10,11].

2 Lagrangian Cubic Elements

Lagrangian structural elements constructed with cubic displacement shape functions possess
only translational degrees of freedom (DOF). They carry additional nodes in addition to corners,
Fig. 1. These will be denoted as “side nodes” (SN) in the sequel, although for one-dimensional
(1D) elements such as that shown in Fig. 1a, they are also internal nodes. SN are usually placed
at the thirdpoints, but their location may be symmetrically adjusted, within geometric limits,
using a template parameter. For multidimensional Lagrangian elements such as those pictured in
Figs. 1c–1e, the SN location determines placement of internal and face nodes.

The SN adjustment effect is studied here in detail for the simplest case: the four-node, elastic,
prismatic, cubic bar element of Fig. 1a. The Mathematica computer algebra system is used for
symbolic computations. Key results are then verified with numerical calculations. The stiffness and
mass matrices are constructed through isoparametric cubic shape functions parametrized as per
SN location.

The approximation properties are determined by Fourier analysis of plane waves prop-
agating over an infinite lattice of identical elements. This provides dispersion diagrams that
connect natural frequencies to dimensionless wavenumbers. Those diagrams include one acoustical
branch and two optical branches. Of these the acoustic branch is of paramount interest as
regards approximation of continuum natural frequencies. On the other hand, optical branches are
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physically spurious and a byproduct of the discretization process (They affect primarily the
so-called numerical pollution).

The result of changing the SN location on acoustic branch accuracy is further studied
for several mass-stiffness combinations differing on Gauss integration rules. The effect of mass
lumping, as well as taking a linear combination of the consistent and diagonaly-lumped matrices,
is considered.

The paper concludes with a numerical investigation of the performance of 2D plane stress
Lagrangian elements in a beam vibration problem. Their inherent complexity makes symbolic
analysis unfeasable on present computer algebra systems, a limitation explained in Appendix A.

(a) (b)

(d) (e)

(c)

Figure 1: Cubic elements with side nodes: (a) 4-node bar; (b) 12-node serendipity quadrilateral;
(c) 16-node Lagrangian quadrilateral; (d) 32-node serendipity brick; (e) 64-node Lagrangian brick.
Non-corner nodes drawn at the thirdpoints for convenience. For (d, e) only visible nodes are
shown

3 The Four-Node Bar (Bar4) Element

Consider a four-node prismatic bar element of length l, constant mass density ρ, elastic
modulus E, and cross section area A, which can only move along its longitudinal axis, Fig. 2. This
model is acronymed Bar4 for brevity’s sake in the sequel. Nodes are locally numbered as shown.
The axial coordinate is x with origin at element center. The axial displacement is u = u(x). The
isoparametric (isoP) natural coordinate ξ varies from ξ =−1 to ξ = 1 from end Node 1 to end
Node 2, respectively. The position of the side nodes (SN) is specified by the template parameter γ
shown in the figure, so that their isoP coordinates are ξ =±γ . The SN arrangement is constrained
to be symmetric respect to the center ξ = 0. If the sign of γ is reversed, the nodes just flip,
whence the allowable position range is taken to be γ ∈ (0, 1), which excludes γ = 0 and γ = 1.

3.1 Bar4 Shape Functions
The isoparametric formulation based on the γ -parametrized shape functions

Ne
1 =

1
2
(1− ξ)(ξ2 − γ 2)

1− γ 2 , Ne
2 =

1
2
(1+ ξ)(ξ2− γ 2)

1− γ 2 ,

Ne
3 =−1

2
(1− ξ2)(ξ − γ )
γ (1− γ 2)

, Ne
4 =−1

2
(1− ξ2)(ξ + γ )
γ (1− γ 2)

,
(1)
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is used. For γ = 1/3, (1) are the well known cubic shape functions for equidistant nodes [12]. If
γ = 1/

√
5≈ 0.4472135955 they become the 4-point Lobatto shape functions. The shape function

matrix is

Ne = [
Ne

1 Ne
2 Ne

3 Ne
4

]
. (2)

The overall element isoparametric definition can be concisely written [13]

[x u]= [
Ne

1 Ne
2 Ne

3 Ne
4

]⎡⎢⎢⎣
x1 u1
x2 u2
x3 u3
x4 u4

⎤⎥⎥⎦= [
Nex Neu

]
. (3)
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Figure 2: Configuration of the four-node bar (Bar4) element, showing local node numbering as
well as geometric, constitutive and fabrication properties. Side Nodes 3–4 are symmetrically placed
about the center, at distances ±γ l/2

Here both x and u are column 4-vectors, with x = 1
2� [−1 1 − γ γ ]T . Expanding: x =

Nex= � (−Ne
1 +Ne

2 − γ Ne
3 + γ Ne

4

)= ξ �, whence the Jacobian determinant is

J = dx
dξ

= 1
2
�. (4)

This is constant over the element and independent of γ , which greatly simplifies integration.

3.2 Bar4 Strain-Displacement Equations
The natural derivatives of (1) are

Ne
1,ξ =

dNe
1

dξ
= γ 2+ 2 ξ − 3 ξ2

2(1− γ 2)
, Ne

2,ξ =
dNe

2

dξ
= −γ 2+ 2 ξ + 3 ξ2

2(1− γ 2)
,

Ne
3,ξ =

dNe
3

dξ
= −1− 2γ ξ + 3 ξ2

2γ (1− γ 2)
, Ne

4,ξ =
dNe

4

dξ
= 1− 2γ ξ − 3 ξ2

2γ (1− γ 2)
.

(5)
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The axial strain is given by

e= du
dx

= du
dξ

dξ
dx

= J−1 du
dξ

= 2
�

du
dξ

def= [
Be1 Be2 Be3 Be4

]⎡⎢⎢⎣
u1
u2
u3
u4

⎤⎥⎥⎦ =Beu. (6)

Here Be is the 1 × 4 strain-displacement matrix with entries Bei = J−1dNe
i /dξ for i= 1,. . .4.

4 Bar4 Mass and Stiffness Matrices

The element consistent mass matrix (CMM), parametrized in terms of γ , is defined as

Me
C (γ )=

∫ �/2

−�/2
ρA

(
Ne)T Ne dx=

∫ 1

−1
ρA

(
Ne)T Ne J dξ , (7)

Here Ne is the 1 × 4 shape function matrix (3), which depends on γ . For a prismatic
homogeneous element, ρ and A may be taken out of the integral, as well as J = l/2. The
expression (7) can be evaluated using Gauss integration rules with pM points, in which case pM
is appended as second argument of Me

C . For constant ρ, A and J:

Me
C (γ ,pM)= ρAJ

pM∑
k=1

wk
(
Ne
k

)T Ne
k, with Ne

k = Ne
∣∣
ξ→ξk

, (8)

in which wk and ξk are weights and abcissas, respectively, of the pM -point Gauss rule. Since the
entries of Ne are cubic polynomials in ξ , exactness is attained if pM ≥ 4.

The element stiffness matrix, parametrized in terms of γ , is given by

Ke
C (δ)=

∫ �/2

−�/2
EA

(
Be

)T Be dx=
∫ 1

−1
EA

(
Be

)T Be J dξ , (9)

in which Be is the γ -dependent strain-displacement matrix (6). For a prismatic homogeneous
element, E and A may be taken out of the integral, as well as J = l/2. The expression (9) can be
evaluated by a Gauss rule with pK points, in which case pK is appended as second argument of
Ke:

Ke
C (γ ,pK)=EAJ

pK∑
k=1

wk
(
Bek

)T Bek, with Bek = Be
∣∣
ξ→ξk

. (10)

The entries of Be are quadratic polynomials in ξ , whence exactness is attained if pK ≥ 3.
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4.1 Fully Integrated Mass Matrices
The fully integrated (FI) consistent mass matrix (CMM) is obtained by evaluating the integral

(7) either analytically, or through the Gauss rule (8) with pM = 4. The resulting matrix is rank
sufficient. This exact CMM is denoted by

Me
C (γ , 4)=

⎡⎢⎢⎣
MC11 MC12 MC13 MC14

MC22 MC23 MC24
MC33 MC34

symmetric MC44

⎤⎥⎥⎦= ρA �

⎡⎢⎢⎢⎢⎣
χC11 χC12 χC13 χC14

χC22 χC23 χC24
χC33 χC34

symmetric χC44

⎤⎥⎥⎥⎥⎦ (11)

Here MCij and χCij denote physical and dimensionless entries, respectively. The entry depen-
dence on γ is omitted from (11) to reduce clutter. Their expressions may be found in Table 1.

The associated diagonally-lumped mass matrix (DLMM) is denoted by

Me
L (δ, 4)= diag [ML1 ML2 ML3 ML4]= ρA � diag [χL1 χL2 χL3 χL4] . (12)

The diagonal entries are obtained via the HRZ scheme [14] as the row sums χL1 = χC11 +
χC12+χC13 +χC14, χL2 = χC21 +χC22+χC23 +χC24, χL3 = χC31 +χC32+χC33 +χC34, and χL4 =
χC41 + χC42 + χC43 + χC44. The entry dependence on γ is omitted from (12) to reduce clutter.
Their expressions are listed in Table 1.

Table 1: Bar4 consistent and diagonally-lumped mass matrices

Matrix Integration Entries

Me
C(γ , 4) FI (also GR4) χC11 = χC22 = 2γ 2 (9 − 28γ 2+ 35γ 4)/fC ,

χC12 = γ 2 (3 − 14γ 2+ 35γ 4)/fC ,
χC13 = χC24 = γ (3 + 7γ− 7γ 2− 35γ 3)/fC ,
χC14 = χC23 = γ (−3 + 7γ+ 7γ 2− 35γ 3)/fC ,
χC33 = χC44 = (4 + 28γ 2)/fC ,
χC34 = (−4 + 28γ 2)/fC ,
in which fC = 210γ 2 (γ 2− 1)2.

Me
C(γ , 3) RI by GR3 χC11 = χC22 = 2γ 2 (6 − 20γ 2+ 25γ 4)/fC ,

χC12 = γ 2 (3 − 10γ 2+ 25γ 4)/fC ,
χC13 = χC24 = γ (3 + 5γ− 5γ 2− 25γ 3)/fC ,
χC14 = χC23 = γ (−3 + 5γ+ 5γ 2− 25γ 3)/fC ,
χC33 = χC44 = (2 + 20γ 2)/fC ,
χC34 = (−2 + 20γ 2)/fC ,
in which fC = 150 γ 2 (γ 2− 1)2.

Me
C(γ , 2) RI by GR2 χC11 = χC22 = 2γ 2 (1 − 3γ 2)2/fC ,

χC12 = χC11/2,
χC13 = χC24 = γ (1 + 3γ− 3γ 2− 9γ 3)/fC ,
χC14 = χC23 = γ (−1 + 3γ+ 3γ 2− 9γ 3)/fC ,
χC33 = χC44 = (2 + 6γ 2)/fC ,
χC34 = (−2 + 6γ 2)/fC ,
in which fC = 54γ 2 (γ 2− 1)2.
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Table 1 (continued).

Matrix Integration Entries

Me
L(γ , 4) FI (also GR4) χL1 = χL2 = (1 − 3γ 2)/fL,

χL3 = χL4 = 2/fL,
in which fL = 6 (1 −γ 2).

Me
L(γ , 3) RI by GR3 same as Me

L(γ , 4)
Me

L(γ , 2) RI by GR2 same as Me
L(γ , 4)

Notes: FI: Fully integrated, RI: Reduced integration, GRp: p-point Gauss rule. Physical mass entries:MCij =MCji = (ρA�)χCij and
MLii = (ρA�)χLi.

4.2 Fully Integrated Stiffness Matrix
The fully integrated (FI) stiffness matrix is obtained by evaluating the integral (9) either

analytically, or through the Gauss rule (10) with pK = 3. It will be denoted as

Ke (γ , 3)=

⎡⎢⎢⎣
K11 K12 K13 K14

K22 K23 K24
K33 K34

symmetric K44

⎤⎥⎥⎦ = EA
�

⎡⎢⎢⎢⎢⎣
ψ11 ψ12 ψ13 ψ14

ψ22 ψ23 ψ24
ψ33 ψ34

symmetric ψ44

⎤⎥⎥⎥⎥⎦ (13)

Here Kij and ψij denote physical and dimensionless entries, respectively. To reduce clutter their
dependence on γ is omitted. Their expressions may be found in Table 2. This matrix has the full
rank of 3. Its only zero-energy mode is the rigid body translation along x.

Table 2: Bar4 stiffness matrices

Matrix Integration Entries

Ke(γ , 3) FI (also GR3) ψ11 = ψ22 = (47 − 30γ 2+ 15γ 4)/fK ,
ψ12 = 40/fK− ψ11,
ψ13 = ψ24 =−(20 + 12/γ )/fK ,
ψ14 = ψ23 = (−20 + 12/γ )/fK ,
ψ33 = ψ44 = (20 + 12/γ 2)/fK ,
ψ34 = (20 − 12/γ 2)/fK ,
in which fK = 15 (γ 2− 1)2.

Ke
C(γ ,2) RI by GR2 ψ11 = ψ22 = (7 − 6γ 2+ 3γ 4)/fK ,

ψ12 = 8/fK −ψ11,
ψ13 = ψ14 = ψ23 = ψ24 =−4/fK
ψ33 = ψ34 = ψ44 = 4/fK ,
in which fK = 3 (γ 2− 1)2.

Notes: FI: Fully integrated, RI: Reduced integration, GRp: p-point Gauss rule. Physical stiffness entries:
KCij =KCji = (EA/�)ψij .
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4.3 Reduced Integration Mass and Stiffness Matrices
There has been recent work on nonstandard methods for constructing mass matrices, e.g.,

[15–17]. In particular, singular element mass matrices have attracted attention for direct time
integration (DTI) computations, as a scheme to reduce numerical pollution caused by spurious
optical branches [18,19] This is important in problems exhibiting rapid transients, as well as in
multibody dynamics. Three procedures for generating singular mass matrices are described in the
survey paper [9]:

• Spectrally truncated templates
• Projection onto a null subspace
• Reduced integration (RI)

Of these, only RI will be considered here because it links up smoothly with the fully integrated
(FI) case. RI mass matrices of interest are obtained using Gauss rules with pM = 2 or pM = 3
points. The resulting CMM are denoted by Me

C(γ , pM) and likewise for the associated DLMM
constructed through the HRZ scheme.

Terminology: an eigenvector corresponding to a zero eigenvalue is called a null eigenvector. If
the zero eigenvalue is multiple, the set of all null eigenvectors forms a null eigenspace. Spurious
modes are null eigenvectors devoid of physical meaning.

The CMM with pM = 3 has rank deficiency 1, which pertains to a spurious cubic mode that
vanishes at all three Gauss points. The CMM with pM = 2 has rank deficiency 2, which pertains
to quadratic and cubic modes that vanish at both Gauss points. Their entries may be found in
Table 1. (The pM = 1 version is of no interest.) Associated diagonally lumped matrices do not
change.

A RI stiffness matrix is produced by a Gauss rule with 1 ≤ pK ≤ 2 points, denoted by
K(γ , pK). Of the two possibilities, only Ke(γ , 2) computed through the 2-point rule, is of some
interest. This matrix has a rank deficiency of 2. The null subspace includes the physical rigid body
mode, (uniform longitudinal motion) as well as a cubic mode whose strains vanish at the 2 Gauss
points. The matrix is expressed in the form (9). Its entries may be found in Table 1.

4.4 Tradeoffs of Reduced Integration
The alleged benefits of RI in reducing DTI pollution may be negated by the presence of

spurious modes. These can be benign or harmful. Three cases are considered below.

The 3-point integrated CMM of an individual element, denoted by Me
C(γ , 3), has an anti-

symmetric cubic spurious mode (the null eigenvector of Me
C). This mode, denoted by uA(ξ ),

vanishes at the three Gauss points ξ = 0 and ξ ±√
3/5. (Subscript A stands for antisymmetric).

Normalizing so that uA=±1 at ξ =±1 we have

uA (ξ)= 1
2
ξ

(
3− 5ξ2

)
., (14)

This is independent of γ . The mode is pictured in Fig. 3a. If this mass matrix is used to
model a free-free bar, the mode propagates over elements in the repeating pattern illustrated in
Fig. 3b. If the motion of any corner node (or of a side node if γ �= √

3/5) is set to zero, the
mode disappears. Consequently it can be characterized as benign, since it stays unique no matter
how many elements are assembled, and can be effectively suppressed by just one homogeneous
boundary condition.
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Figure 3: Spurious modes in RI mass and stiffness matrices and their interelement propagation
features: (a) Normalized null eigenvector of Me

C (γ , 3) over individual element; (b) Computed
null eigenvector over a 4-element mass discretization of free-free bar modeled with Me

C (γ , 3); (c)
Normalized null eigenvectors (symmetric and antisymmetric) of Me

C (γ , 2) over individual element;
(d) Computed null eigenvectors over a 4-element mass discretization of fixed-fixed bar modeled
with Me

C (γ , 2); (e) Normalized spurious null eigenvector of Ke(γ , 2) over individual element;
(f) Computed null eigenvector over a 4-element mass discretization of fixed-fixed bar modeled
with Ke(γ , 2). Eigenvectors displayed in (b), (d), (f) computed using Mathematica Eigensystem
function; those in (d), (f) are not orthonormalized

The 2-point RI mass matrix Me
C(γ , 2) of an individual element is rank deficient by two. The

spurious modes are a linear combination of quadratic and cubic functions that vanish at the two
Gauss points ξ =±1/

√
3. It is convenient to select the following normalized null eigenvectors as

basis of the null eigenspace:

uS (ξ)=−1
2

(
1− 3ξ2

)
, uA (ξ)=−1

2
ξ

(
1− 3ξ2

)
, (15)
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in which subscripts S and A stand for symmetric and antisymmetric, respectively. These are
pictured in Fig. 3c. Their shapes are independent of γ . To remove the null eigenspace, both ends
must be fixed. For multiple elements the modes propagate as illustrated in Fig. 3d. This plot shows
three null eigenvectors for a fixed-fixed bar discretized with 4 elements; note that they vanish at
the 8 Gauss points. If this problem is discretized with Ne elements, the assembled M has Ne− 1
zero eigenvalues. Thus this particular CMM may be characterized as dangerous for any γ , since
spurious modes are hard to control with usual boundary conditions.

The 2-point RI stiffness matrix Ke(γ , 2) has rank deficiency of 2. The null eigenspace is
spanned by

uR (ξ)= 1, uA (ξ)=
3

(
9+ 4

√
3
)

2
(
4+ 3

√
3
)ξ (

1− ξ2
)
= 2.59808ξ

(
1− ξ2

)
. (16)

Here uR(ξ ) is the rigid body translational mode, which is physical. On the other hand the
antisymmetric mode uA(ξ ) is spurious: its derivative is zero at the Gauss points ±1/

√
3 so

associated strains vanish there. The spurious mode of (16) has been normalized so that its value is
±1 at those points, as shown in Fig. 3e. Its shape is independent of γ . Since uS(ξ ) vanishes at the
end nodes, it cannot be controlled by homogeneous boundary conditions there: it will “sprout”
over each element of a mesh assembly. This is illustrated in Fig. 3f for a fixed-fixed bar discretized
with 4 elements: the assembled stiffness has three zero eigenvalues with the eigenvectors shown.
If this problem is discretized with Ne elements, the assembled K has Ne− 1 zero eigenvalues. It
follows that this particular stiffness may be characterized as dangerous for any γ .

The preceding analysis applies to the mass and stiffness matrix in isolation. When combined
for dynamic analysis, more complex spurious mode effects may occur.

4.5 A New Result: Gamma Invariance
The fully integrated CMM and its RI cousins display a remarkable property: the computed

natural frequencies do not depend on SN location. More precisely, they are independent of γ if 0
< γ < 1. This property will be generically called γ -invariance. It can be illustrated through the
frequency characteristic function (FCF) of an individual element:

Fe (γ ,pM,pK ,ω)= det
[
Ke (γ ,pK)−ω2Me

C (γ ,pM)
]
, (17)

in which ω denotes circular frequency. Expanded FCF expressions are given in Table 3 for pM =
4, 3, 2 and pK = 3, 2. To reduce clutter E, A, ρ and l are set to 1. It can be observed that
the numerators are polynomials in ω2 that do not depend on γ , while their denominators do
not vanish if γ ∈ (0, 1). The natural frequencies ωi, which are roots of F = 0, are tabulated in
the last column of that Table. (Note that if the reduced stiffness with pK = 2 is used, one extra
root becomes zero, whereas if a reduced mass matrix is used, some roots move to ∞ because
the ω-polynomial order drops). As regards vibration modes, which are the eigenvectors φi of the
frequency eigensystem Keφi = ω2

i M
e
Cφi, their expressions as functions of ξ over the element are

also independent of γ if their values at the SN are adjusted accordingly.
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The property is somewhat surprising since the eigenvalues of Me
C and Ke in isolation do

depend on γ . Symbolic computations indicate that γ -invariance remains valid for arbitrary assem-
blies of Bar4 elements that use CMM. But it does not hold for other mass matrices such as
DLMM.

Conclusion: If a CMM is used, whether FI or RI, the choice of γ makes no difference in
frequency accuracy. Is there an optimal value in another sense? From a conditioning standpoint
one would like to maximize the FCF denominators. As shown in Table 3, these have the form C
γ 2 (1 −γ 2)4, in which C is a numerical coefficient independent of γ . The maximizing value in the
range (0, 1) is γ = 1/

√
5, which is an interior Lobatto point of the 4-point Lobatto integration

rule [20]. This value recurs in several optimization scenarios studied later.

Table 3: Frequency characteristic function (FCF) of a CMM-endowed Bar4 element

Mass Stiffness Frequency characteristic function (17)∗ Roots ω2
i of F = 0†

Me
C(γ , 4) Ke(γ , 3)

ω2 (
10− 800− 12480ω2+ 240ω4−ω6)

23625γ 2
(
1− γ 2

)4 0, 9.875, 60, 170.125

Me
C(γ , 3) Ke(γ , 3)

8ω2 (
600− 70ω2+ω4)

1125γ 2
(
1− γ 2

)4 0, 10, 60

Me
C(γ , 2) Ke(γ , 3)

32ω2 (
54− 7ω2)

405γ 2
(
1− γ 2

)4 0, 7.715

Me
C(γ , 4) Ke(γ , 2)

8ω2
(
2400− 100ω2+ω4

)
23625γ 2

(
1− γ 2

)4 0, 0, 40, 60

Me
C(γ , 3) Ke(γ , 2)

8ω2 (
60−ω2)

1125γ 2
(
1− γ 2

)4 0, 0, 60

Me
C(γ , 2) Ke(γ , 2)

16ω2

81γ 2
(
1− γ 2

)4 0, 0

Notes: ∗E = 1, A= 1, ρ = 1, and Le = 1 assumed for simplicity.
† Missing roots (if less than 4) move to ∞ on account of polynomial order drop.

4.6 Noteworthy Instances
Some mass-stiffness instances worth noting are collected here. If the interior nodes are placed

at the thirdpoints, γ = 1/3 and the FI mass matrices are

Me
C

(
1
3
, 4

)
= ρA �

1680

⎡⎢⎢⎣
128 19 99 −36
19 128 −36 99
99 −36 648 −81
−36 99 −81 648

⎤⎥⎥⎦ , Me
L

(
1
3
, 4

)
= ρA �

8

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 3 0
0 0 0 3

⎤⎥⎥⎦ , (18)
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whereas the FI stiffness matrix becomes

Ke
(
1
3
, 3

)
= EA

120 �

⎡⎢⎢⎣
148 −13 −189 54
−13 148 54 −189
−189 54 432 −297
54 −189 −297 432

⎤⎥⎥⎦ . (19)

For this particular configuration, the DLMM displays the well known three-eighths integra-
tion formula, which is also the 4-point Newton-Cotes quadrature rule [20].

If the interior nodes are placed at the Lobatto points, γ = 1/
√
5 and the FI mass matrices

become

Me
C

(
1√
5
, 4

)
= ρA �

84

⎡⎢⎢⎣
6 1

√
5 −√

5
1 6 −√

5
√
5√

5 −√
5 30 5√

5 −√
5 5 30

⎤⎥⎥⎦ , Me
L

(
1√
5
, 4

)
= ρA �

12

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 5 0
0 0 0 5

⎤⎥⎥⎦ , (20)

whereas the FI stiffness matrix becomes

Ke
(

1√
5
, 3

)
= EA

12 �

⎡⎢⎢⎢⎢⎢⎢⎣
52 −2 −5

(
5+ 3

√
5
)

5
(
−5+ 3

√
5
)

−2 52 5
(
−5+ 3

√
5
)

−5
(
5+ 3

√
5
)

−5
(
5+ 3

√
5
)

5
(
−5+ 3

√
5
)

100 −50

5
(
−5+ 3

√
5
)

−5
(
5+ 3

√
5
)

−50 100

⎤⎥⎥⎥⎥⎥⎥⎦ . (21)

The diagonal entries and node locations of the DLMM in (20) correspond to the abcissas
and weights of the 4-point Lobatto integration rule [20]. By analogy, the foregoing matrices will
be denoted as the Lobatto DLMM and Lobatto stiffness matrix, respectively.

For γ = 1/
√
10, which (as shown later) gives a near-optimal DLMM, the FI mass matrices

are

Me
C

(
1√
10

, 4
)
= ρA �

3402

⎡⎢⎢⎣
262 39 χ13 χ14
39 262 χ14 χ13
χ13 χ14 1360 −240
χ14 χ13 −240 1360

⎤⎥⎥⎦ , Me
L

(
1√
5
, 4

)
= ρA �

20

⎡⎢⎢⎣
3 0 0 0
0 3 0 0
0 0 7 0
0 0 0 7

⎤⎥⎥⎦ , (22)

in which χ13 = 70+ 46
√
10 and χ14 = 70− 46

√
10.

5 Plane Wave Propagation over Bar4 Lattice

We consider the propagation of plane waves over an infinite lattice of identical Bar4 ele-
ments obtained by space discretization of a continuum bar model. Fig. 4 is a schematics of the
continuum-to-lattice semi-discretization process. The formulation concludes with the extraction of
a two-element patch about a typical end node n. The necessary terminology is collected in Table 4.
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Figure 4: Schematics of plane wave fourier analysis: (a) Continuum bar model; (b) FEM dis-
cretization as Bar4 lattice; (c) Propagation of plane wave over lattice; (d) Extraction of two-
element, seven-node patch

Table 4: Nomenclature for harmonic plane wave propagation over Bar4 lattice

u(x, t) Plane wave function (24) [length]

u Node displacement vector, constructed by evaluating u(x, t) at nodes [length]
Mü+
Ku= 0

Semidiscrete lattice wave Eq. (23). K and M are infinite Toeplitz matrices

B Wave amplitude [length]
l Bar element length [length]
λ Wavelength λ= 2π /k= 2π l/κ [length]
k Wavenumber k= 2π /λ= κ/l [1/length]
κ Dimensionless wavenumber κ = k l = 2π l/λ
Neλ Number of elements per wavelength: �λ/��: same as signal sampling rate
ω Circular (a.k.a. angular) frequency ω =�c0/l [radians/time]
f Cyclic frequency f =ω/(2π ) [cycles/time: Hz if time in seconds]
T Period T = 1/f = 2π /ω= λ/c [time]
� Dimensionless circular frequency �= ωl/c0
c Group wave velocity over lattice: c= ∂ω/∂k= c0(∂�/∂k) [length/time]
γc Wavespeed ratio c/c0 = ∂�/∂κ from discrete to continuum

Notes: ∗Quantities unchanged from continuum to lattice, such as E, are not repeated in this Table. Note that the definition of � uses the
continuum wavespeed c0 =

√
E/ρ; not the discrete wavespeed c.
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5.1 Plane Wave Equations
Plane wave propagation over a regular spring-mass lattice is governed by the semidiscrete,

linear equation of motion (EOM):

Mü+Ku= 0. (23)

Here u is the vector of axial nodal displacements while M and K are infinite, tridiagonal,
Toeplitz mass and stiffness matrices. This EOM can be solved by Fourier methods. Fig. 4b dis-
plays two characteristic lengths: λ and l. The element length-to-wavelength ratio is called ϒ = l/λ.
The floor function of its inverse: Neλ = �λ/�� is the number of elements per wavelengths. Those
ratios characterize the fineness of the discretization, as pictured in Fig. 4b.

Within constraints noted later the lattice can propagate real, travelling, harmonic plane waves
of wavelength λ and group velocity c, as depicted in Figs. 4b, 4c. The wavenumber is k = 2π /λ
and the circular frequency ω= 2π /T = 2π c/λ= k c. The range of physical wavelengths that the
lattice may transport is illustrated in Fig. 5.

x

x

x

��

�

�

e�

e�

(b)  Wavelength �� =2���dimensionless wavenumber ��= ��
���
       Sampling rate = elements per wavelength N = 2

(a)  Wavelength ���=�����dimensionless wavenumber ��=�����
       Sampling rate = elements per wavelength N =

e�
(c)  Wavelength ���=2  /3�dimensionless wavenumber ��= ���
       Sampling rate = elements per wavelength N = 2/3

e�
(d)  Wavelength �� = ���
�dimensionless wavenumber � =�	���
       Sampling rate = elements per wavelength N = 1/3

(folding wavenumber)

c>0

c=0

c<0

c>0

Figure 5: Plane waves of various wavelengths that a Bar4 lattice may transport. Yellow and red
circles mark corner and side nodes, respectively

To study plane wave solutions of (23) it is sufficient to extract a repeating two-element patch,
a process schematized in Fig. 4d. The seven patch nodes are renumbered as shown in Fig. 6, and
the x axis origin relocated to the interface node n. The natural patch coordinate ξ̂ = x/� is defined
as shown in the figure. A harmonic plane wave of amplitude B is described by the function

uB (x, t)=B exp [j (kx−ω t)]= uB
(
ξ̂ , τ

)
=B exp

[
j
(
κξ̂ −�τ

)]
, j=√−1. (24)
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Figure 6: Two-element Bar4 patch that shows: renumbered nodes, x-axis origin relocated to inter-
face node 4, natural patch coordinate ξ̂ = x/�, and the amplitude coefficients Bi of the plane wave
expansion (29) that are nonzero at the indicated nodes

In the second form the dimensionless wavenumber κ, circular frequency ω, and time τ are
defined as κ = k l = 2π l/λ, ω = ω l/c0, and τ = tc0/l, respectively. Here c0 =

√
E/ρ is the elastic

continuum bar group wave velocity, which for that model is the same as the phase velocity. (In
physical acoustics c0 is the sound speed of the material.) In both forms B has dimension of
displacement.

Using the stiffness and mass matrix notation of (11)–(13) the patch equations can be written

MP üP+KP u= 0, (25)

in which

uP = [u1 u2 u3 u4 u5 u6 u7]
T ,

MP = ρA �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ11 χ13 χ14 χ12 0 0 0
χ13 χ33 χ34 χ23 0 0 0
χ14 χ34 χ44 χ24 0 0 0
χ12 χ13 χ24 χ11+χ22 χ13 χ14 χ12
0 0 0 χ13 χ33 χ34 χ23
0 0 0 χ14 χ34 χ44 χ24
0 0 0 χ12 χ23 χ24 χ22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (26)

KP = EA
�

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 ψ13 ψ14 ψ12 0 0 0
ψ13 ψ33 ψ34 ψ23 0 0 0
ψ14 ψ34 ψ44 ψ24 0 0 0
ψ12 ψ13 ψ24 ψ11+ψ22 ψ13 ψ24 ψ12
0 0 0 ψ13 ψ33 ψ34 ψ23
0 0 0 ψ14 ψ34 ψ44 ψ24
0 0 0 ψ12 ψ23 ψ24 ψ22

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Here the χij and ψij are the dimensionless coefficients introduced in (11) and (13). (The extra
subscript C is suppressed since this form applies to all admissible mass and stiffness matrices.)
From the patch EOM (25) take the middle 3 equations (Rows 3, 4 and 5 of MP and KP), which
repeat in the infinite lattice:

M̂P üP+ K̂P uP = 0. (27)

Here M̂P and K̂P are 3 × 7 matrices.
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5.2 Fourier Analysis
The axial wave motion is represented using three basis functions: uB1(ξ , τ ), uB2(ξ , τ ) and

uB3(ξ , τ ) with the same structure as the last term in (24)

uB
(
ξ̂ , τ

)
=

3∑
i=1

uBi
(
ξ̂ , τ

)
, in which uBi

(
ξ̂ , τ

)
=Bi exp

[
j
(
κ ξ̂ −�τ

)]
, i= 1, 2, 3. (28)

Coefficients Bi are linked to B by

Bi(ξ̂ )
def= Bgi(ξ̂ ), i= 1, 2, 3, (29)

in which gi
(
ξ̂
)
are functions of patch position, chosen so they are linearly independent and none

is identically zero. For future use the Bi are grouped into the column 3-vector B =B1B2BT3 , and
the gi into the 3 × 3 diagonal matrix G = diag[g1, g2, g3], whence B = GB.

For convenient implementation we pick the gi as sketched in Fig. 6, namely B1 vanishes at
all nodes but 1, 4 and 7, B2 vanishes at all nodes but 2 and 5, and B3 vanishes at all nodes but
3 and 6. There is an infinite number of such gi functions. However, their actual form is irrelevant
because the eigenvalues of the characteristic system (36) derived below do not depend upon the

gi
(
ξ̂
)
. Accordingly, the nodal patch displacement vector is set as follows

uP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1 exp[j(−κ −�τ)]
B2 exp[j(−κ(1− γ )−�τ)]
B3 exp[j(−κγ −�τ)]
B1 exp[−�τ)]
B2 exp[j(κγ −�τ)]
B3 exp[j(κ(1− γ )−�τ)]
B1 exp[j(κ −�τ)]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (30)

Substituting (30) into (27) yields the wave propagation condition⎡⎣C11 C12 C13
C11 C12 C13
C11 C12 C13

⎤⎦⎡⎣g1 0 0
0 g2 0
0 0 g3

⎤⎦⎡⎣C11 C12 C13
C11 C12 C13
C11 C12 C13

⎤⎦B=
⎡⎣B1
B2
B3

⎤⎦=CB=
⎡⎣0
0
0

⎤⎦ = 0. (31)

If C B = for B �= 0, C must be singular. This furnishes the characteristic equation det(C) = 0,
from which factors depending on τ only may be dropped. The dimensionless frequency � appears
only in even powers; more precisely �2, �4 and �6. It is convenient to define �̃ = �2 as new
variable. Then det(C) = 0 is a (complicated) cubic equation in �̃ that provides three solutions
denoted as �̃1 =�2

1, �̃2 =�2
2, and �̃3 =�2

3. One of those vanishes at κ = 0 and is renamed �a
for acoustic branch. The remaining two roots correspond to optical branches and are relabeled
�2
o1 and �2

o2, which are ordered so �2
o1 ≤�2

o2 at κ = 0 (these are the so called cutoff frequencies).
When expressed as functions of κ:

�2
a=�2

a (κ) , �2
o1 =�2

o1 (κ) , �2
o2 =�2

o2 (κ) , (32)
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these represent the equations of the acoustic and optical branches. The combined plot of these
branches as �(κ) curves is called the dimensionless dispersion diagram or DDD. This is done for
the Brillouin zone κ ∈ [0, 2π ].

6 Low Frequency Performance

The dimensionless series expansions of the acoustic branch about κ = 0 is written

�2
a = κ2+

A4

4!
κ4+ A6

6!
κ6+ A8

6!
κ8 + . . . , (33)

whereas those of the optical branches are

�2
o1 =�2

o10+
B2

2!
κ2+ B4

4!
κ4 . . . , �2

o2 =�2
o20+

C2

2!
κ2+ C4

4!
κ4 . . .+ . . . (34)

The performance of a mass-stiffness (MS) pair in structural dynamics is controlled by the
accuracy of the acoustic branch for low frequencies, i.e., small wavenumbers. Since the acoustic
branch for the continuum is �a = κ, or �2

a = κ2, the accuracy is controlled by the first nonzero
term after κ2 in the �2

a series (33). The will be called the principal error term, or PET, in the
sequel. For example if A4 = 0 and A6 =−24, the PET is A6κ

6/6! =−κ6/30.
6.1 Performance of CMM and DLMM

Table 5 shows the coefficients of (33) for fully integrated (pM = 4) CMM mass matrices, as
well as two RI instances obtained with pM = 2 and 3 Gauss points. The stiffness matrix is either
the exactly integrated one with pK = 3 or the RI instance with pK = 2. As can be observed the
expansion does not depend on γ , confirming the γ -invariance analysis of Section 4.5. Thus the
accuracy order displayed in the last column cannot be improved by moving nodes.

Table 5: Acoustic branch series for CMM

Mass instance Stiffness instance Coefficients of acoustic branch series (33) Error order

Me
C(γ , 4) Ke(γ , 3) A4 =A6 = 0,A8 = 2

5
, A10 =−44

35
O(κ8)

Me
C(γ , 3) Ke(γ , 3) A4 =A6 = 0,A8 = 4

5
, A10 =−14

5
O(κ8)

Me
C(γ , 2) Ke(γ , 3) A4 = 0,A6 =−7

9
, A8 =−220

243
,A10 =−3542

729
O(κ6)

Me
C(γ , 4) Ke(γ , 2) A4 = 7

5
,A6 =− 1

20
, A8 =−3869

729
O(κ4)

Me
C(γ , 3) Ke(γ , 2) A4 = 2,A6 = 1,A8 =−394

15
O(κ4)

Me
C(γ , 2) Ke(γ , 2) A4 = 2,A6 = 2,A8 =−34

3
O(κ4)

Note: Branch is independent of γ for all pM : error cannot be reduced by moving nodes.

Table 6 shows the coefficients of (33) for DLMM mass matrices. These matrices are identical
for pM = 2, 3, 4, as shown in Table 1. Consequently only two rows are needed in Table 6 for
ML(γ , pM) paired with the FI and RI stiffness matrices. The series coefficients now depend on
γ—more precisely its even powers. The first row show that the pairing of Me(γ , pM) with Ke(γ , 3)
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has generally accuracy order O(κ6). This may be elevated to O(κ8) by solving −2A6 = 1 − 15γ 2+
50γ 4 = 0. This yields two solutions: γ 2

B1 = 1/5 and γ 2
B2 = 1/10, in which subscript B stands for

“best.” Taking the positive square roots delivers the DLMM-optimal node locations

γB1 = 1√
5
= 0.4472135954999579, γB2 = 1√

10
= 0.31622776601683794. (35)

Table 6: Acoustic branch series For DLMM

(pM , pK) in (36) Coefficients of acoustic branch series (33)

(4, 3) A0 = 0, A2 = 2, A4 = 0, A6 = (G1μ (1 − 2G1μ))/2,
A8 = (12 +μ (−34 + 350γ 4 (−1 +G1μ)2+G1μ (−43 + 40G1μ)

+γ 2 (20 + 5 G1μ (103 − 70 G1μ))))/30,
A10 = (−352 +μ (876 − 61250γ 8μ (−1 +G1μ)2+ 17500γ 6μ

(1 +G1μ (−11 + 7G1μ)) +μ (−3456 +G1μ (−1903 + 3120G1μ))
+ 10γ 2 (12 +μ (3156 +G1μ (1153 − 2520 G1μ))) + 25γ 4 (−420
+ μ (−3026 + 7G1μ (171 + 130G1μ)))))/280.

(3, 3) A0 = 0, A2 = 2, A4 = 0, A6 = (G1μ (1 − 2G1μ))/2,
A8 = (24 + 7 μ (−10 + 1250γ 8μ2+μ (−1 + 4 μ) − 250γ 6μ (−2 + 7 μ)

− 10γ 2 (−1 +μ) (2 + 9 μ) + 25γ 4 (2 +μ (−17 + 26 μ))))/30,
A10 = (7 (−16 +μ (36 − 1250γ 8μ (−1 +G1μ)2+ 10γ 2μ (48

+ G1μ (49 − 60 G1μ)) + 500γ 6μ (−1 +G1μ (−7 + 5G1μ))
+ μ (−72 +G1μ (−55 + 72G1μ)) + 25γ 4 (−12
+ μ (−26 +G1μ (−3 + 22G1μ))))))/40.

(2, 3) A0 = 0, A2 = 2, A4 = 0, A6 =−((− 2 + 5 G2μ) (−7 + 10G2μ))/18,
A8 =

(
5

(−88+ 7μ
(
102+ 450γ 4 + 12γ 2 (−38+ 25G2

2μ
)

+G2
2μ (−201+ 50G2G3μ))))/486,

A10 =
(
7

(
−4048+ 5μ

(
704− 2250γ 4

(
−2+ 5G2

2μ(−1+G2μ)
2
)

+5G2
2μ(2046+G2μ(−4829+ 2600G2μ))+ 12γ 2 (−301

+125G2
2μ (12+G2μ(−21+ 10G2μ)))))) /5832.

(4, 2) A0 = 0, A2 = 2, A4 = (−28 (G1μ − 1)2)/(5 (−4 + (4 − 35γ 2+ 35γ 4)μ)),
A6 = (−8 +μ (−6125γ 8μ (−2 + 3 G1μ) + 1750γ 6μ (2 + 7G1μ)

− 175γ 4 (−12 + 5 μ (−30 + 37 G1μ)) + 20γ 2 (67 +μ (−596
+609G1μ))+ 8

(−56+μ (
164+G1μ

(−156+ 49G3
1μ

))))
(10 (−4 + (4 − 35γ 2+ 35γ 4) μ)2).

(3, 2) A0 = 0, A2 = 2, A4 = (−4 (−1 +G1μ)2)/(−2 + (2 − 25γ 2+ 25γ 4) μ),
A6 = (8 +μ (−625γ 8μ (−2 + 3 G1μ) + 250γ 6μ (4 + 5G1μ)

+20γ 2 (8 +μ (−61 + 60 G1μ)) − 25γ 4 (−12 +μ (−90 + 127G1μ))
+4

(−17+μ (
38+G1μ

(−33+ 10G3
1μ

)))))
/

(2 (−2 + (2 − 25γ 2+ 25γ 4) μ)2).
(2, 2) A0 = 0, A2 = 2, A4 = (−4 (−1 +G2μ

2))/(−2 + (2 − 9γ 2+ 9γ 4μ)),
A6 =

(
16+μ (

12γ 2
(
22+G2

2μ
)− 9γ 4

(−4+G2
2μ(−4+ 5G2μ)

)
+4

(−23+G2
2μ(44+ 5G2μ(−7+ 2G2μ))

)))
/

(2(−2 + (2 − 9γ 2+ 9γ 4) μ)2).

Notes: In the above, G1 = 1 − 5γ 2, G2 = 1 − 3γ 2, and G3 = 2 − 3γ 2.
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The corresponding PETs are −(2/15) κ8/8! and −109/240 κ8/8!, respectively. The first coeffi-
cient is about 3 times smaller (actually 109/32 ≈ 3.406 smaller). Thus the internal node location
γB1 = 1/

√
5, which corresponds to the 4-point Lobatto rule, is optimal for DLMM together with

Ke(γ , 3). Note that if γ = 1/3, the PET is +(4/81) κ6/6!, which for κ = 1 is about 151 times bigger
than optimal. As regards the RI stiffness matrix Ke(γ , 2), the error order O(κ4) may not be raised
by solving A4 = 4γ 2/(1 −γ 2) = 0 because γ cannot vanish.

Dimensionless dispersion diagrams for various instances of CMM and DLMM are shown in
Figs. 7 and 8, respectively.
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Figure 7: Dimensionless dispersion diagrams (DDD) of several Bar4 combinations of full and
reduced-integration consistent-mass and stiffness matrices: (a) Me

C(γ , 4) and Ke(γ , 3); (b) Me
C(γ ,

3) and Ke(γ , 3); (c) Me
C(γ , 4) and Ke(γ , 2); (d) Me

C(γ , 3) and Ke(γ , 2). The value of γ ∈ (0, 1)
is irrelevant
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Figure 8: Dimensionless dispersion diagrams (DDD) of optimal Bar4 DLMM and LCMM
instances paired with the fully integrated stiffness matrix. (a) Me

L(1/
√
5, 4) and Ke(γ , 3); (b)

Me
L(1/

√
10, 4) and Ke(γ , 3); (c) Me

LC(1/
√
10, 4, 3/4) and Ke(γ , 3); (d) Detail of (c) Near k =�=

p (Nyquist frequency and wavelength)

6.2 Performance of CMM-DLMM Combinations

The truncation error −(2/15) κ8/8! for the optimal DLMM with γ = 1/
√
5 and pM = 2,

3, 4 is smaller than that of the exactly integrated CMM, which is (2/5) κ8/8!, and of opposite
sign. Consequently a linear combination of those matrices, henceforth denoted by LCMM, looks
promising as far as elevating the error order to O(κ10). The combination weights are μ and 1 − μ,
where μ is another template parameter. This follows the notation of [9].

Table 7 lists coefficients (computed by Mathematica) of the acoustic branch series (33) for the
two-parameter mass matrix combinations

Me
LC (γ ,pM,μ)= (1−μ)Me

C (γ ,pM)+μMe
L (γ ,pM) , pM = 2, 3, 4, μ ∈ [0, 1] , (36)

paired with Ke(γ ,pK) for pK = 3,2. The catalogued coefficients extend up to A10 for pK = 3, and
to A6 for pK = 2, in accordance to the expected principal error terms (PET).
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Table 7: Acoustic branch series for DLMM

Mass instance Stiffness instance Coefficients of acoustic branch series (33) Error order

Me
L(γ , pM) Ke(γ , 3) A4 = 0, A6 = (−1 + 15γ 2− 50γ 4)/2, O(κ6)

pM = 2, 3, 4 A8 = (−5 + 385γ 4− 1750γ 6+ 1750γ 8)/6,
A10 = (−49 − 105γ 2+ 6825γ 4− 30275γ 6 +

8750γ 8+ 87500γ 10− 43750γ 12)/8

Me
L(γ , pM) Ke(γ , 2) A4 = 4γ 2

1− γ 2 , A6 = −1− 3γ 2+ 29γ 4+ 15γ 6

2
(
1− γ 2

)2 , O(κ4)

pM = 2, 3, 4 A8 =−5+ 41γ 2+ 218γ 4− 334γ 6− 735γ 8− 315γ 10

6
(
1− γ 2

)3
Me

L

(
1√
10

,pM

)
Ke(γ , 3) A4 =A6 = 0, A8 =−109

240
, A10 =−3171

1280
O(κ8)

Me
L

(
1√
5
,pM

)
Ke(γ , 3) A4 =A6 = 0, A8 =− 2

15
, A10 = 0 O(κ8)

Notes:Me
L(γ , pM ) is identical for fixed γ and pM = 2, 3, 4. Setting A6 = 0 gives the O(κ8) node locations γ = 1/

√
10 and γ = 1/

√
5, listed

in the last two rows. Order elevation is not possible with Ke(γ , 2), since A4 �= 0 for 0 < γ < 1.

If the stiffness matrix is fully integrated (pK = 3), a PET of O(κ10) can be obtained by setting
A6 =A8 = 0 and solving for γ 2 and μ. This produces a system of two equations, cubic in γ 2 and
linear in μ. Of the three solutions, one gives negative γ 2, and another one yields an indefinite
LCMM. The remaining one is

pM = 4: γ 2 = 1/5, μ= 3/4,

pM = 3: γ 2 = 1/5, μ= 6/7, (37)

pM = 2: γ 2 = 4/35, μ= 14/23.

On taking the positive square root, we get the optimal locations γ = 1/
√
5 for pM = 3, 4

and γ = 2/
√
35 for pM = 2. The latter: γ ≈0.338062 is very close to 1/3. All three MS pairs have

exactly the same PET: −(2/15) κ10/10!, as may be verified. The optimal LCMM associated with
the 3- and 4-point Gauss rules actually coalesce:

Me
LC

(
1√
5
, 4,

3
4

)
=Me

LC

(
1√
5
, 3,

6
7

)
= ρA �

336

⎡⎢⎢⎣
27 1

√
5 −√

5
1 27 −√

5
√
5√

5 −√
5 135 5

−√
5

√
5 5 135

⎤⎥⎥⎦
= ρA �

⎡⎢⎢⎣
0.08035714 0.00297619 0.00665496 −0.00665496
0.00297619 0.08035714 −0.00665496 0.00665496
0.00665496 −0.00665496 0.40178571 0.01488095
−0.00665496 0.00665496 0.01488095 0.40178571

⎤⎥⎥⎦
(38)



1230 CMES, 2021, vol.129, no.3

The optimal LCMM associated with the 2-point rule is different

Me
LC

(
2√
35

, 2,
14
23

)
= ρA �

265236

⎡⎢⎢⎣
22080 1058 φ1 φ2
1058 22080 φ2 φ1
φ1 φ2 118335 −28175
φ2 φ1 −28175 118335

⎤⎥⎥⎦
= ρA �

⎡⎢⎢⎣
0.08324662 0.00398890 0.03616569 0.00025470
0.00398890 0.08324661 0.00025470 0.03616569
0.03616569 0.00025470 0.44614984 −0.10622615
0.00025470 0.03616569 −0.10622615 0.44614984

⎤⎥⎥⎦
(39)

in which φ1 = 805
(
6+√

35
)

and φ2 = −805
(
−6+√

35
)
. Both (38) and (39) have positive

eigenvalues; whence they are admissible.

As regards the RI stiffness with pK = 2, order elevation to O(κ8) requires A4 =A6, a system
that lacks solutions. Thus only O(κ6) may be attempted by setting A4 = 0, which leads to a

quadratic equation in γ 2. The solution γ =±√
μ− 1/

(√
5
√
μ

)
gives imaginary γ for μ ∈ (0, 1).

7 Reducing Numerical Pollution

In structural dynamics, optical branches have no physical meaning. They are a byproduct
of the superlinear spatial discretization. Their presence is harmless in vibration analysis or in
transient response computations carried out via mode superposition, as they are automatically
filtered by the eigensolver. In direct time integration (DTI), however, thay can be responsible for
“numerical pollution” that can render the computed solution worthless. In fact, this is the main
reason for preferring low-order elements in that case, since those do not carry along that harmful
extra baggage.

If one is determined to use elements such as Bar4 in DTI, pollution may be reduced by
moving or flattening optical branches so that acoustoptical gaps are widened, because noise that
falls into those gaps does not propagate. Several techniques for doing that are discussed in detail
in [9] for the 3-node bar. Here we simply consider the effect of reduced integration on the position
of optical branches. For a quick assessment we look at the so-called cutoff frequencies, which
are the values taken by the optical branches at zero wavelength: κ = 0. Those are denoted by
�c1 = �o1|κ→0 and �c2 = �o2|κ→0, ordered so that �c1 ≤�c2.

Table 8 gives cutoff frequency expressions for parametrized LCMM-stiffness pairs, including
fully integrated (FI) as well as several reduced integration (RI) versions. Table 9 lists numerical
values for selected mass-stiffness pair instances, again showing the effect of the integration rule.

An effective way to cut pollution is to move an optical branch to infinity. As Table 8 shows,
this can be done by using a RI stiffness paired with any mass matrix. To get rid of the other
branch one may set γ and μ so that its cutoff frequency denominator vanishes. For example
μ = 1 and γ = 1/

√
3 (which places the SN at the 2-point Gauss locations) gets rid of both

optical branches. Inevitably this reduces low frequency accuracy, which is only O(κ4) as shown in
Section 6.2. In that case (μ= 1 and γ = 1/

√
3) the acoustic branch PET is down to κ4/12. This is

worse that the best-fit instance of the much simpler 2-node bar element, which does not possess
an optical branch.
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Table 8: Cutoff frequencies of LCMM-stiffness pairs for several integration rules

Mass Stiffness Squared cutoff frequencies �2
c1 and �2

c2, �
2
c1 ≤�2

c1

Me
LC(γ , 4, μ) Ke(γ , 3)

168

4− (
4− 35γ 2+ 35γ 4

)
μ
,

120

2+ (
3− 15γ 2

)
μ

Me
LC(γ , 3, μ) Ke(γ , 3)

120

2− (
2− 25γ 2+ 25γ 4

)
μ
,

120

2+ (
3− 15γ 2

)
μ

Me
LC(γ , 2, μ) Ke(γ , 3)

216

10− (
10− 45γ 2+ 45γ 4

)
μ
,

24

μ
(
1− 3γ 2

)
Me

LC(γ , 4, μ) Ke(γ , 2)
120

2+ (
3− 15γ 2

)
μ
, ∞

Me
LC(γ , 3, μ) Ke(γ , 2)

120

2+ (
3− 15γ 2

)
μ
, ∞

Me
LC(γ , 2, μ) Ke(γ , 2)

24

μ
(
1− 3γ 2

) , ∞

Notes: Cutoff frequencies are values of optical branch frequencies�o1 and �o2 at κ = 0. If μ= 0 (CMM) cutoff frequencies do not
depend on γ . If μ �= 0 there are γ values (e.g., γ = 1/

√
3 for μ= 1) at which a finite cutoff frequency “takes off” to ∞.

Table 9: Cutoff frequencies of mass-stiffness instances for several integration rules

Mass instance Stiffness instance Squared cutoff frequencies �2
c1 and �2

c2 for (pM , pK)

(4, 3) (3, 3) (2, 3) (4, 2) (3, 2) (2, 2)

Me
C(γ , pM) Ke(γ , pK) 42, 60 60, 60 31.6, ∞ 60, ∞ 60, ∞ 60, ∞

Me
L

(
1√
5
,pM

)
Ke

(
1√
5
,pK

)
30, 60 10, 60 10, 60 60, ∞ 60, ∞ 60, ∞

Me
LC

(
1√
5
,pM,

3
4

)
Ke

(
1√
5
,pK

)
32.3, 60 34.3, 60 27.3, 60 60, ∞ 60, ∞ 80, ∞

Me
LC

(
1√
5
,pM,

6
7

)
Ke

(
1√
5
,pK

)
31.3, 60 32.3, 60 28.4, 60 60, ∞ 60, ∞ 70, ∞

Me
LC

(
2√
35

,pM ,
14
23

)
Ke

(
2√
35

,pK

)
43.1, 45.1 43.1 32.3, 60 43.1, ∞ 43.1, ∞ 60, ∞

To maintain low-frequency accuracy while alleviating pollution it would be necessary to con-
sider more general mass templates, as done in [9] for the 3-node bar element. RI is insufficiently
powerful to accomplish that goal. Such study has not been carried out.

8 Bar4 Test: Vibrations of a Fixed-Free Bar Member

Natural frequency predictions using several Bar4 mass instances are compared for predicting
the first 3 natural frequencies of longitudinal vibrations of the fixed-free elastic bar member
pictured in Fig. 9. The member is prismatic, with constant E = 1, A = 1, and ρ = 1. The
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total member length is taken as L = π /2 for convenience. With those numerical properties the
continuum eigenfrequencies are

ωi = (2i− 1)π
2L

√
E
ρ
= 2i− 1, i= 1, 2, 3, . . . (40)

The member is divided into Ne identical elements, with Ne = 1, 2, . . . 8. Fig. 9a illustrates the
case Ne = 4. Five template instances, identified in Table 10, are tested. Both mass and stiffness
are fully integrated. Numerical results obtained for the first three frequencies are collected there.
The higher convergence of BLCD is obvious. For example, 2 elements give ω2 correct to 4 digits
while both CMM and DLMM give only 2. CMM, SDMM and LDMM overestimate frequencies
whereas TDMM and BLCD underestimates them.

L=��	

�=E=A =1 throughout

1     2            3        4       5             6       7

(1)                            (2)

Figure 9: Fixed-free homogeneous prismatic elastic bar member used in vibration test for several
Bar4 mass matrix instances. The figure shows a 2-element discretization with 7 nodes. Side nodes
2, 3, 5, and 6 are drawn at the lobatto points

Table 10: Bar4 results for vibrations of a fixed-free bar member

Mass matrix Tag∗ Ne ω1 ω2 ω3

Me
C (γ , 4) CMM 1 1.000068300760 3.078980086732 6.650803273754

2 1.000001139367 3.002090206140 5.054530769388
4 1.000000018093 3.000037890544 5.001239889670
8 1.000000000283 3.000000614138 5.000021467998

ML(1/3, 4) SDMM 1 1.000017138153 3.050168716673 5.003725150093
2 1.000005328707 2.997272018667 5.086766310270
4 1.000000389580 3.000056168699 4.999369609518
8 1.000000025204 3.000005564590 5.000056346591

ML

(
1√
10

, 4
)

TDMM 1 0.999898272715 3.041051518222 5.131351154947

2 0.999998625126 2.994856221597 5.090241389901
4 0.999999979149 2.999950363475 4.997755998177
8 0.999999999677 2.999999278757 4.999973142830

ML

(
1√
5
, 4

)
LDMM 1 1.000068300760 3.078980086732 6.650803273754

2 1.000001139367 3.002090206140 5.054530769388
4 1.000000018094 3.000037890544 5.001239889670
8 1.000000000284 3.000000614138 5.000021467998

MLC

(
1√
5
, 4,

2
3

)
BLCD 1 0.9999987885669 2.982173611235 5.493741669348

2 0.9999999954095 2.999895121596 4.994864829917
4 0.9999999999821 2.999999643320 4.999962492442
8 0.9999999999998 2.999999998626 4.999999862589

Notes: ∗ “Tag” is the identification name used in plots.
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The results of Table 10 are graphically reformatted in Fig. 10, as log-log plots that display
accuracy vs. element count. The horizontal axis shows number of elements Ne in log2 scale. The
vertical axis displays correct digits of computed frequency, computed as

d =− log10 |Δωi| , in which Δωi =ωFEMi −ωi. (41)

Here �ωi is the frequency error of computed values ωFEMi with respect to the continuum
frequencies (40). Note that accuracy-log plots such as those in Fig. 10 are unable to show whether
the convergence is from above or below, because of the taking of absolute values in (41). That
visualization deficiency should be kept in mind should frequency bounding be important. The
plots clearly show at a glance that, for the same Ne, BLCD roughly doubles the number of correct
digits provided by the other instances. It also illustrates that CMM and LDMM gave the same
results, while SDMM is the worst performer.
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Figure 10: Performance of selected Bar4 template instances in predicting the first three natural
frequencies ωi, i = 1, 2, 3 of the fixed-free prismatic homogeneous bar shown in Fig. 9a. This
is a graphical, log-log representation of the results of Table 10. Horizontal axis shows number
of elements while vertical axis displays correct digits of computed frequency. See (41) for the
definition of d

9 Two-Dimensional Elements

This section extends some of the previous ideas to two-dimensional plane stress elements. A
comprehensive symbolic Fourier analysis of higher order 2D elements of arbitrary geometry is
presently beyond the capability of computer algebra systems. In the interest of brevity, the study
is limited to a simple vibration benchmark, from which some preliminary conclusions are drawn.

9.1 The (n − 1)/n Conjecture
For bar elements with n ≤ 4 nodes, the optimal combination of the consistent and HRZ-

lumped mass matrices (in the sense of best fit to the acoustic branch) has been found to be

MLC,best =
1
n
MC + n− 1

n
ML, n= 2, 3, 4. (42)

For the linear element (n = 2) this result was first presented in [21] and corroborated
in [22]. For the quadratic element (n = 3) see [9,11]. For the present cubic element (n = 4) see
Section 6.1. Whether (42) holds for n > 4 has not been investigated. Confirmation would have
limited practical value, however, since shape functions beyond cubic are rarely used in dynamics.
It does suggest, however, that lumped mass matrices perform relatively better as the order rises.
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More interesting is the question: Can (42) be extended to two dimensional elements? The
numerical study that follows suggest that the extension is only partly correct.

9.2 Cantilever Vibration Benchmark
The benchmark 2D problem concerns the lowest fundamental frequencies of the slender

8:1 cantilever beam shown in Fig. 11a. The beam has a narrow rectangular cross section. It is
fabricated of isotropic material with E = 2880, ν = 0, and ρ = 1. The dimensions shown in the
Figure are: beam height H = 1, beam span L= 8, and cross section width h= 1.

Regular meshes of square elements are considered. The number Nx of elements along the
span varies from 8 through 64 while the number Ny through the height varies from 1 through 8.
A 16 × 2 mesh is shown in Fig. 11b. The root clamping condition is imposed by setting ux and
uy to zero at all root nodes.

(a)

(b)

y

x

L = 8

H=1

b=1/10

Figure 11: Cantilever vibration benchmark: (a) Structure; (b) A 16 × 2 FEM mesh idealization
(nodes not pictured)

The first six lowest natural frequencies are listed in Table 11. They comprise four flexural
(bending) modes with circular frequencies ω1, ω2, ω4 and ω5, as well as two bar-like (axial,
longitudinal) modes: ω3 and ω6. It should be noted that flexural frequencies given by the
Bernoulli-Euler and Timoshenko beam models differ markedly from those listed there because of
1D behavioral approximations as well as neglect of root clamping details. The associated mode
shapes are pictured in Fig. 12.

Table 11: Benchmark cantilever frequencies

Circular frequency Mode type Benchmark value (to 7 places)
†

Source of comparison value

ω1 Flexural 0.8425166 Extrapolated from Quad16 results∗
ω2 Flexural 4.991222 Extrapolated from Quad16 results∗
ω3 Bar-like 10.53722 Analytical: ω3 =

√
πE/ρ/L

ω4 Flexural 12.95364 Extrapolated from Quad16 results∗
ω5 Flexural 23.18714 Extrapolated from Quad16 results∗
ω6 Bar-like 31.61167 Analytical: ω6 = 3

√
πE/ρ/L

Notes: ∗Extrapolated from 8 × 1, 16 × 2 and 32 × 4 meshes using Wynn’s ε algorithm [23].
†For flexural modes, 6 figures are believed correct; 7th digit is doubtful.
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Vibration Mode #6, �6 = 31.6116

Vibration Mode #5, �� = 23.6844

Vibration Mode #4, �4 = 13.1956

Vibration Mode #3, �3 = 10.5372

Vibration Mode #2, �	 = 5.0739

Vibration Mode #1, �1 = 0.85553

Figure 12: First six vibration modes for problem of Fig. 11 obtained with a 32 × 4 Quad4 FEM
discretization. Displacements grossly exaggerated for visibility

9.3 Plane Stress Finite Element Modeling
The benchmark cantilever problem was modeled with regular FEM plane stress meshes

ranging from 8 × 1 through 64 × 8. Three standard Lagrangian isoparametric models were
tested:

• Quad4: Taig bilinear quadrilateral, 4 nodes, 8 DOF.
• Quad9: biquadratic quadrilateral, 9 nodes, 18 DOF.
• Quad16: bicubic quadrilateral, 16 nodes, 32 DOF, pictured in Fig. 1c.

Frequencies for the first six lowest frequency modes (those depicted in Fig. 12) were compared
to the benchmark frequencies in Table 11. The relative accuracy is measured by

d = log10

∣∣∣∣∣ωFEMi −ωi
ωi

∣∣∣∣∣ . (43)

in which ωFEMi and ωi are the computed and benchmark frequencies, respectively, and i ranges
from 1 to 6. The value d indicates the number of significant digits obtained. As noted in Section 8
this measure cancels out the error sign. However, in the present benchmark the convergence is
often (but not always) monotonic.
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9.4 Plane Stress Finite Element Results
For the Quad4 models, the mass matrix is taken as the LCMM

Me
LC (γ ,pM,μ)= (1−μ)Me

C +μMe
L. (44)

in which MC is computed with full integration and ML is its HRZ-lumped form. Six values of μ
are tested: 0 (consistent mass), 1/4, 1/2, 2/3, 3/4, and 1 (lumped mass). The results are presented in
Fig. 13. For the two bar-like modes (#3 and #6) the superior convergence of μ= 1/2 is obvious,
in agreement with (42). For the four flexural modes, the convergence rate is roughly similar for all
μ tested, with μ = 1 (lumped mass) consistently providing the best result and μ= 0 (consistent
mass) the worst. The advantage is insignificant for the fundamental mode but becomes more
visible as the frequency increases.
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Figure 13: Accuracy of computed Quad4 frequencies for four meshes (8 × 1 through 64 × 8) as
affected by parameter μ of the consistent-lumped mass combination MLC = (1 −μ)MC +μML

For Quad9 the LC combination (44) is again selected with full integration. The same six
values of μ used for Quad4 are tested. The results are presented in Fig. 14. For the two bar-like
modes the superior convergence of μ= 2/3 is obvious, in agreement with (42). For the flexural
modes, the effect of μ is barely discernible.

On finally passing to Quad16, (44) is also assumed with full integration. The flexural mode
results were found to be barely sensitive to μ in the [0, 1] range. To save space only the results
for μ= 3/4 are shown in Fig. 15. An additional parameter now appears: γ , which localizes the
8 side and 4 interior nodes. Four values of γ were tested: 1/

√
10, 1/3, 1/

√
5, and 1/2. As before,

the performances for bar-like and flexural modes are quite different. The combination μ = 3/4
and γ = 1/

√
5 (nodes at Lobatto points) was found to be optimal in Section 6.2. The results for

the bar-like modes 3 and 6 verify this in 2D. For flexural modes the optimal value is unclear,
although γ = 1/

√
10 appears to perform slightly better, followed by γ = 1/3.

Three comments are in order for the Quad16 results. First, the flexural-mode convergence lines
in Fig. 15 appear more “spread out” than those in Figs. 13 and 14. The reason is that the d scale
is compressed on account of the high accuracy provided by the coarsest 8 × 1 mesh, which yields
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5 to 3 exact digits for the first 4 flexural modes (Note that Quad4 gives less than one). Second,
the jagged appearance of some plots is due to nonmonotonicity (only μ = 0 would guarantee
monotonic convergence). Third, the ωi accuracy of the eigensolver levels out at approximately 12
digits, which explains the incipient “flattening” of the bar-like modes.
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Figure 14: Accuracy of computed Quad9 frequencies for four meshes (8 × 1 through 64 × 8), as
affected by parameter μ of the consistent-lumped mass combination MLC = (1 −μ)MC +μML
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Figure 15: Accuracy of computed Quad16 frequencies for three meshes (8 × 1 through 32 × 4)
with μ= 3/4, as affected by parameter γ

10 Conclusions

The main results of this paper are summarized next.



1238 CMES, 2021, vol.129, no.3

• Presents the first detailed study, using plane wave packets as test functions, of the effect
of adjusting side node locations of Lagrangian cubic finite elements on low-frequency
accuracy.

• The combined effect of reduced integration of the mass and/or stiffness matrix is
considered.

• For cubic bar elements, acoustic branch superconvergence is obtained by placing the side
nodes at Lobatto points, and selecting a special combination of the mass and stiffness
matrix. One remarkable result: 6 digits in ω1 with one element, Table 10.

• For Lagrangian cubic plane stress elements, superconvergence is retained for bar-like
vibration modes. This behavior continues in regular 2D meshes for bar-like modes, and
pressumably in 3D. But it disappears for modes that involve rotation, flexure and shear. This
is not surprising since axial plane wave packets (P-waves) are plainly insufficient; S-waves
should be also included as test functions in 2D and 3D Fourier analysis.

Whether superconvergent stiffness-mass combinations can be constructed for general 2D and
3D motions using the general theory of mass-stiffness templates [9] is an open question. Chal-
lenges associated with symbolic analysis in multiple dimensions are discussed in Appendix E of
that paper.
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Appendix A

The template approach to finite element construction gradually emerged from a series of
serendipitous discoveries. The starting point was work of the author with Pål Bergan in 1982 while
he was on a sabbatical at Stanford. The work focused on the development of high performance
3-node triangle elements for plane stress [24] and Kirchhoff plate bending [25] using the Free
Formulation (FF) of Bergan and Nygård [6,26,27]. The elements were eventually combined to
form a shell element and implemented into the corotational nonlinear program FENRIS used by
Der Norske Veritas for analyzing marine structures under extreme conditions. The plane stress
element was the first 3-node membrane triangle with drilling DOF that was rank sufficient and
free of aspect ratio locking.

As the name implies, FF allows substantial freedom in element development. In particular
conformity can be ignored; all that matters is satisfying the Individual Patch Test that can be
tested on a single element. Ensuing developments showed that free parameters naturally appeared
in the stiffness matrix—as well as the mass and geometric stiffness matrices when the formula-
tion was extended to dynamic and stability analysis, respectively. Which values should be given?
Obviously the decision cannot be left to the discretion of program users, who might have no idea
of the background theory. They were assigned using various optimality criteria. Free parameters
kept appearing in FF successors, such as the Assumed Natural Deviatoric Strain (ANDES)
method [28–30].

From special cases a general approach eventually took shape. It was named the template
method in a 1994 journal paper [2]. A fuller historical account is provided in a tutorial chap-
ter [31]. The general concept of template as parametrized forms of FEM matrix equations is
discussed in [10,11,32–34]. The main advantage of templates is flexibility. This brings the attendent
ability to customize elements without worries about complying with restrictions such as interele-
ment conformity. The approach can generate all possible convergent elements; the main question
left is which one to pick up. This rosy picture, however, is clouded by practical difficulties:

• Element development computations must be done symbolically, carrying along material,
fabrication and geometric information as variables. Such manipulations lie beyond human
powers, and require a computer algebra system (CAS).
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• Symbolic computational work effort grows exponentially in the number of free param-
eters as well as matrix order. In addition, symbolic eigenvalue analysis in stability and
dynamic problems rapidly becomes difficult or impossible as the chacteristic polynomial
order increases.

With current CAS the treatment of 1D elements is possible, as well as that of 2D elements
of simple geometry. But 2D and 3D elements of arbitrary geometry (for instance, doubly curved
shells) lie outside the scope of current computers and CAS power.


