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ABSTRACT

The Generalized FalkMethod (GFM) for coordinate transformation, together with twomodel-reduction strategies
based on this method, are presented for efficient coupled field-circuit simulations. Each model-reduction strategy
is based on a decision to retain specific linearly-independent vectors, called trial vectors, to construct a vector
basis for coordinate transformation. The reduced-order models are guaranteed to be stable and passive since the
GFM is a congruence transformation of originally symmetric positive definite systems. We also show that, unlike
the Padé-via-Lanczos (PVL) method, the GFM does not generate unstable positive poles while reducing the order
of circuit problems. Further, the proposed GFM is also faster when compared to methods of the type Lanczos
(or Krylov) that are already widely used in circuit simulations for electrothermal and electromagnetic problems.
The concept of response participation factors is introduced for the selection of the trial vectors in the proposed
model-reduction methods. Further, we present methods to develop simple equivalent circuit networks for the field
component of the overall field-circuit system. The implementation of these equivalent circuit networks in circuit
simulators is discussed. With the proposed model-reduction strategies, significant improvement on the efficiency
of the generalized Falk method is illustrated for coupled field-circuit problems.
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1 Introduction

Except for very simple systems, computer simulations involving coupled field-circuit problems
are hindered by the very large number of degrees of freedom involved in the discretized field
problem. The evaluation of the exact natural frequencies and mode shapes for large complex
systems often requires a large number of numerical operations. The direct engineering significance
of this information, however, may be of limited value. For most analyses, one potentially useful
approach to overcome this computational difficulty is model-order reduction, where parts of the
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original large-order model are replaced by models of substantially lower order, yet capable of
capturing the behavior of the original subsystem with sufficient engineering accuracy.

Reduced-order models have been developed in many areas of engineering, such as cir-
cuits (e.g., [1–4]), power systems (e.g., [5–7]), electromagnetics (e.g., [8–10]), fluid mechanics
(e.g., [11–13]), nonlinear structural mechanics and earthquake engineering (e.g., [14]), nonlinear
hydraulic fracturing problems (e.g., [15]), etc., to cite a few. Deep-learning artificial neural net-
works have been introduced to build on more traditional model-order reduction methods, such as
the Proper Orthogonal Decomposition (POD)1, to increase computational efficiency [16–21].

The modal superposition method and the component-mode synthesis method for model
reduction in coupled field-circuit simulations require solving a large and expensive eigenvalue
problem [22]. Several alternative methods for model reduction without solving an eigenvalue
problem are the well-known method in [23] and the WYD (Wilson–Yuan–Dickens) method in [24],
both belonging to the general Krylov subspace methods [25,26]. The basic idea is to find a
convenient and inexpensive transformation of coordinates to simplify the equations of motion that
are easier to solve. The WYD reduction method—sometimes called the Ritz reduction method [27]
or Ritz vector method [28]—is based on the direct superposition of Ritz vectors constructed
from the spatial distribution of the specified dynamic excitation; the generated Ritz vectors are
thus excitation dependent. Another reduction technique called the AWE (Asymptotic Waveform
Evaluation) method, a moment-matching technique based on the Padé approximation in [29],
was also applied to coupled field-circuit simulation for integrated circuits (ICs) [30]. In the AWE
method, the system behavior is approximated with a lower-order model, obtained from a Taylor
series expansion around the Laplace transform variable s = 0. The AWE method is efficient to
extract the low-frequency behavior of the circuit.

The WYD method is an efficient alternative to the classical mode superposition as discussed
in [22]. In the WYD method, the solution is a direct superposition of a special class of Ritz vec-
tors (approximated eigenvectors) generated from the spatial distribution of the excitation source;
it eliminates the requirement for exact evaluation of the natural frequencies and mode shapes. It
is important to note here that while the WYD method uses the excitation-dependent trial vectors
to form a basis to obtain a reduced eigenvalue problem, whose solution leads to the Ritz vectors
(or approximated eigenvectors), our methodology based on the Generalized Falk Method (GFM),
introduced in [31], bypasses the solution of the reduced eigenvalue problem and the use of the
Ritz vectors, but instead uses directly the trial vectors. To minimize the computational effort while
obtaining good accuracy, the WYD method uses only Ritz vectors having large participation
factors, i.e., Ritz vectors that carry a significant amount of information about the excitation.

The recursive iterative scheme used in the WYD method was shown in [31] to bear a great
mathematical similarity to the Lanczos method. If the same starting vector were used in both
the WYD and the Lanczos method, then the generated trial vectors from both method are very
similar to each others.

Model reduction techniques based on Krylov-subspace iterations, especially the Lanczos
method and the Arnoldi method2, are popular tools to tackle the large-scale time-invariant
linear dynamical systems that arise in the simulation of electronic circuits, e.g., [32–40], and

1 Proper Generalized Decomposition was used for model-order reduction in nonlinear hydraulic-fracture problems in [15].
2 The Lanczos method is applicable to Hermitian matrices, and is a special case of the Arnoldi method, which is applicable
to non-Hermitian matrices.
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electromagnetics, e.g., [9,41]. In [42] and [43], the AWE and Padé-via-Lanczos (PVL) model reduc-
tion procedures are extended to the use of electromagnetic analysis. Model reduction based on the
Padé approximation may, however, produce positive poles; and is thus numerically unstable [36,40].
The resulting reduced-order models must be post-processed to eliminate the unstable modes; such
post-processing method, which must preserve the moment-matching properties, does not guarantee
the elimination of unstable modes [39].

The Generalized Falk Method (GFM) proposed in [31] is shown here (Section 2.2) to be able
to avoid unstable positive poles (Section 2.2.3), as the GFM can predict actually higher-order
poles. We also show that the GFM is more efficient compare to other Lanczos-type methods.
In [37], the block Arnoldi method is implemented via a simple congruence transformation, which
guarantees the passivity and thus stability of the generated reduced-order model. Unlike the
GFM introduced here, eigen decomposition is still needed, however, in the Passive Reduced-Order
Interconnect Macro modeling Algorithm (PRIMA). Similar to the block Arnoldi method, the
number of moments matched in PRIMA implementation is essentially the same as that for the
block Arnoldi method, which is 50% of those moments matched by the block Lanczos method.
The GFM applied to coupled field-circuit problems such as electrothermal simulations, on the
other hand, has exactly the same order of accuracy as the Lanczos method since the resulting
finite element matrices are symmetric and nonnegative. In particular, the capacitance matrix is
positive definite, and thus invertible. For general circuit problems where the capacitance and
conductance matrices are not symmetric, the GFM has the same order of accuracy as the Arnoldi
method.

In this paper, to study the truncation effect in the proposed GFM, we first introduce the
concept of participation factors for the selection of the trial vectors (Section 2.3).

To motivate, real-world applications of the electronic devices analyzed in this paper are
presented in a top-down fashion, going from the big-picture system level down to the detailed
component level (Section 2.4). There are many applications of semiconductors in power electronic
devices used in data centers, electric vehicles, renewable energy (solar, wind, wave and tidal power).
An important real-world application system is the Tesla Model S3, for which the wheels are turned
by an induction motor driven by a 3-phase AC generated by a motor inverter taking as input the
DC from its battery pack; see Fig. 1. At the detailed component level, the design of the Tesla
motor inverter relied on IGBTs4 [44–48].

3 See, e.g., the video “How does an Electric Car work? Tesla Model S” Youtube, from time 3:56, where the motor inverter
and the induction motor correspond to the motor drive and the electric motor/generator in Fig. 1, respectively. See also “In a
Tesla Model S, there is no IGBT packaging trick”, Website (Internet archive), where the brand name on the 3-pin IGBT chip
in TO-247 package is International Rectifier (IR), with the circle between the letters I and R being the diagram of a diode
drawn vertically; see Wikipedia version 09:24, 10 November 2020. International Rectifier was acquired by Infineon (Fig. 5)
in 2015. See also p. 17 of the IR 2013 annual presentation to investors Online pdf (Internet archive) and the video “Pioneers
in Clean Technology-Marc Tarpenning-Tesla Motors”Youtube at time 1:02:51 when Tarpenning, a Tesla founder, mentioned
the new, efficient IGBT by IR, which responded to the need to switch power at 400 V and 1000 Amp for the Tesla.
4 IGBT = Insulated-Gate Bipolar Transistor, “a three-terminal power semiconductor device primarily used as
an electronic switch which, as it was developed, came to combine high efficiency and fast switching”; see
Wikipedia version 11:35, 28 November 2020. See Figs. 5–10 in Section 2.4.

https://www.youtube.com/watch?v=3SAxXUIre28
http://web.archive.org/web/20210411150312/https://www.pntpower.com/on-tesla-electric-vehicles-semiconductor-packaging/
https://en.wikipedia.org/w/index.php?title=International_Rectifier&oldid=987971587
http://www.irf.com/investor/2013annualpresentation.pdf
https://web.archive.org/web/20181222202240/http://www.irf.com/investor/2013annualpresentation.pdf
https://www.youtube.com/watch?reload=9&v=EDCYoAQmmAA
https://en.wikipedia.org/w/index.php?title=Insulated-gate_bipolar_transistor&oldid=991125465
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Figure 1: Battery electric vehicle schematic (Section 1). The motor drive and electric
motor/generator correspond to the motor inverter and the induction motor in Footnote 3.
The on-board charger is an AC-to-DC converter. The power converter transform DC to DC
at different level to charge the battery and to provide DC to the motor drive (inverter).
OpenCourseWare, TU Delft (CC BY-NC-SA 4.0)

Remark 1.1 In writing this paper, we are mindful of the general readers, not just
experts in power electronics. As a result, sufficient motivational applications and explana-
tion for the electronic devices used here are provided. Whenever possible, permanent links
to references and supporting documents on the web are provided. Wikipedia articles are
provided with specific versions that are permanently fixed with no further edits, such as
Wikipedia version 09:24, 10 November 2020. While a link such as this Online pdf may no longer
exist in the future, its Internet archive version will never disappear. See also, e.g., Footnote 3.

Then we introduce two model-reduction strategies to further improve the efficiency of coupled
field-circuit problems (Section 2.5), such as those encountered in electrothermal simulation or in
the analysis of IC interconnects.

To illustrate the proposed model-reduction methodology, we consider a case study of coupled
field-circuit problems involving electrothermal simulations; the same methodology can be applied
to other coupled field-circuit problems such as IC interconnect analysis (Section 3). We next
describe methods to develop simple equivalent circuit networks for the field component of the
overall coupled field-circuit system (Section 3.2). We also discuss how to implement these field
circuit networks into general circuit simulators (Sections 3.3, 3.4).

https://ocw.tudelft.nl/course-readings/2-1-2-lecture-notes-parts-of-an-ev-recap/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://en.wikipedia.org/w/index.php?title=International_Rectifier&oldid=987971587
http://www.irf.com/investor/2013annualpresentation.pdf
https://web.archive.org/web/20181222202240/http://www.irf.com/investor/2013annualpresentation.pdf
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Numerical examples involving a full bridge converter5 using IGBTs (Section 4.2) and a Volt-
age Regulator Module (VRM)6 using MOSFETs7 (Section 4.3) establish the computational ease
of use, accuracy, and efficiency of the present methodology; see also [51,52]. A comparision
of CPU times obtained from MATLAB and from the circuit simulator SABER is provided
(Section 4.4).

2 Generalized Falk Method (GFM) and Model Reduction

In this paper, we present two methods to produce reduced-order models based on a com-
bination of the proposed Generalized Falk Method (GFM) and the traditional WYD methods.
These new model-reduction techniques are more stable than the traditional Lanczos method, and
maintain a satisfactory accuracy. The selection of the trial vectors that form the basis for the
transformation of coordinates of the original system to a reduced-order system can be based
on the participation factors of these trial vectors to the dynamic response of the system. Once
a reduced-order model is obtained, the dynamic response can be computed by direct numerical
integration or by modal superposition method [22].

2.1 Case Study for Coupled Field-Circuit Problems
As mentioned above, to illustrate the proposed methodology, we consider electrothermal

simulation as a case study of coupled field-circuit problems. The same methodology can be applied
to other coupled field-circuit systems such as IC interconnects.

A typical nonlinear electrothermal coupled system can be generally expressed as

u̇= f (u, e,T) , P=P (u) , (1)

where u is the matrix containing the nodal voltages or currents, e the electrical input, T the
temperature, and P the electrical power loss. The nonlinear electrical system is governed by
the semiconductor equations (PDE’s) and circuit equations (ODE’s). The electrical power loss is
originated from the heat generated inside the semiconductor devices. In practice, the electrical
device needs to be treated as a distributed heat source. Here we neglect the distributed heat source,
and assume the heat source is a concentrated input load to the thermal domain.

The heat diffusion problem on a domain � with boundary ∂� = �1 ∪�2 is governed by the
partial differential equation

div (κ gradT)= ρcp
∂T
∂t

in � , (2)

5 A full-bridge converter transform a direct current (DC) at a certain voltage to a DC at a different voltage for use in many
electronic devices. See, e.g., the video “Full Bridge Converter-Basics of Switching Power Supplies”, [49], for an explanation
of hard switching, soft switching, and phase-shift full-bridge converter.
6 “A voltage regulator module (VRM), sometimes called processor power module (PPM), is a buck converter that provides
a microprocessor the appropriate supply voltage, converting +5 V or +12 V to a much lower voltage required by the CPU,
allowing processors with different supply voltage to be mounted on the same motherboard. On personal computer (PC)
systems, the VRM is typically made up of power MOSFET devices, see Wikipedia version 22:07, 31 December 2020. For
application of VRM in data centers, see [50].
7MOSFET = Metal-Oxide-Semiconductor Field-Effect Transistor, is a kind of transistor in which electric
field controls current flow, and the device is fabricated by controlled oxidation of silicon semiconductor; see
Wikipedia 23:12, 27 November 2020.

https://en.wikipedia.org/w/index.php?title=Buck_converter&oldid=997206356
https://en.wikipedia.org/w/index.php?title=Voltage_regulator_module&oldid=997514563
https://en.wikipedia.org/w/index.php?title=MOSFET&oldid=991040810
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and the boundary conditions on ∂�=�1 ∪�2:

κ gradT · n= κ
∂T
∂n

= P
A

on �1, (3)

κ gradT · n= κ
∂T
∂n

= h (Ta−T) on �2, (4)

and initial condition at time t= 0:

T (x, 0)=Ta= 27◦C , (5)

where T : �×R+ → R is the temperature (a function of space and time), κ : �→ R the thermal
conductance, ρ : �→R the mass density, cp : �→ R the specific heat, P : �1×R+ →R the input
power from boundary �1, A the input-power cross-section area, h the convection coefficient, n the
outward normal vector to the boundary, and Ta the ambient temperature. In the above, the set of
real numbers is denoted by R, with R+ := {t ∈R | t≥ 0}, denoting the set of non-negative numbers.
The domain of the heat sink is denoted by �⊂R

s, with s= 1, 2, 3 being the space dimension. The
boundary ∂� of the heat sink is decomposed into two parts: �1 for the input-power boundary
condition Eq. (3), and �2 for the convective boundary condition Eq. (4). We assume in the above
electrothermal coupled system that it does not include any heat source in the thermal domain �.

Employing a Galerkin finite element projection [53,54] on the PDE Eq. (2), we obtain the
following semi-discrete equation for the thermal system:

Cḋ+Kd = f = Ip+ Ic, (6)

d (0)= d0, (7)

where C ∈ R
n×n, with n being the number of element nodes (or temperature unknowns/degrees

of freedom or dofs), is the capacitance matrix, K ∈ R
n×n the conductance matrix, f ∈ R

n×1 the
heat supply matrix, Ip the input power supply from the electrical component, Ic the heat supply

coming from the convective boundary condition, and d (t)= {di (t)} ∈ R
n×1 the column matrix of

the time-dependent nodal temperatures di (t) at the finite-element (FE) node i, for i = 1, . . . ,n.
Let Ni be the shape function associated with node i, then the temperature field over the domain

of the heat problem is approximated by T (x, t) ∼=
n∑
i=1

Ni (x) di (t). The capacitance matrix C can

be realized by capacitor elements, the conductance matrix K by resistor elements, and the heat
supply vector f by current sources, so that thermal effects for semiconductor devices (transistors)
like an IGBT or MOSFET can be dynamically incorporated into circuit simulators with thermal
connection. The global matrices C, K, f are assembled from the elemental matrices ce, ke and f e.

A complex mechanical system can be transformed into a simple one-dimensional mass-spring
system by transforming its coordinates (degrees of freedom) using a set of linearly-independent
vectors, termed trial vectors, generated by the Falk method [55]. The transformed matrices
are diagonal (mass) and tridiagonal (stiffness), which upon scaling represent a one-dimensional
lumped system, and have the same eigenvalues as the original system.

2.2 Generalized Falk Method (GFM)
The original Falk method suffers from the loss of orthogonality similar to that found in the

original Lanczos method [56,57], since each trial vector in the Falk method is orthogonalized with
respect to only the two previously generated trial vectors. By contrast, in the GFM, each trial
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vector is orthogonalized with respect to all previously generated trial vectors, with the transformed
tridiagonal conductance matrix constructed by formal matrix multiplication [31].

2.2.1 Conceptual Algorithm

To ensure that the generated trial vectors8 contain important information from the static
response, the starting trial vector, denoted by w∗

1 ∈R
n×1 in Line 1 of Algorithm 2.1, with n being

the total number of dofs, is selected to be the static response when the spatial distribution of the
dynamic excitation is applied on the system.

Algorithm 2.1: GFM: Conceptual Algorithm

1 • Starting vector Kw∗
1 = f ⇒w∗

1 =K−1f ∈R
n×1.

2 • C-normalize w∗
1 to obtain w1 =

w∗
1√

w∗T
1 Cw∗

1

∈R
n×1such that wT1 Cw1 = 1.

3 • Generate wi ∈R
n×1 with i= 2, . . . ,n such that w∗

i =C−1Kwi−1.

4 • C-orthogonalize w∗
i to obtain w∗∗

i =w∗
i −

i−1∑
j=1

cjwj ∈R
n×1 with cj =wTj Cw

∗
i .

5 • C-normalize w∗∗
i to obtain wi =

w∗∗
i√

w∗∗T
i Cw∗∗

i

∈R
n×1.

6 • Gather all column matrices wi, i= 1, . . . ,n, in Wn = [w1, . . . ,wn] ∈R
n×n.

7 • Transformed capacitance matrix C∗ =WT
n CWn = In ∈ R

n×n (no computation) .

8 • Compute transformed conductance matrix K∗ =WT
n KWn ∈R

n×n.

The traditional WYD method leads to an identity capacitance matrix C∗ =WT
n CWn = In ∈

R
n×n, with In being the identity matrix and Wn = [w1, . . . ,wn] ∈ R

n×n a matrix whose columns
are the trial vectors wi, but a full conductance matrix K∗ =WT

n KWn ∈ R
n×n, thus making the

construction of an equivalent circuit complicated [31]. The WYD process can be truncated based
on certain measure (to be discussed shortly) to obtain reduced-order models.

On the other hand, the GFM leads to an identity capacitance matrix C∗ = In ∈ R
n×n, and a

tridiagonal conductance matrix K∗ ∈ R
n×n. The GFM can also be truncated, and the generated

trial vectors can be used to construct reduced-order models. There is a trade-off in the solution
of the method to use to reduce the order of a large system in a cost-effective manner, while
maintaining high accuracy.

2.2.2 Implementable Algorithm
The implementation of the present GFM is presented as a pseudocode in Algorithm 2.2, with

particular attention paid to the computational efficiency.

8 Even though the terms “vector” and “column matrix” are used here interchangeably here, the latter is preferred when it
adds to clarity.
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Algorithm 2.2: GFM: Implementable Algorithm
1 Data : Capacitance C, conductance K, and heat-supply vector f
2 Computetrial vector 1 : Kw1 = f ⇒w1 =L−TL−1f

3 C-normalizetrial vector 1 : w1 = w1√
wT1 Cw1

4 Decompose capacitance matrix : C =LLT

5 � Generate remaining trial vectors wi, with i= 2, . . . ,n
6 Do i= 2, . . . ,n
7 Compute v=Kwi−1
8 Compute wi =L−TL−1v
9 C-normalize wi to obtain wi = wi√

wTi Cwi
10 � C-orthogonalize trial vector wi against previous trial vectors
11 Do j= 1, . . . , i− 1
12 Compute ki, j =wTi C wj
13 Compute wj =wj− ki, jwi
14 End

15 End

2.2.3 GFM vs. Other Methods: No Unstable Positive Poles
It is well known that direct Padé approximation that forms the basis for methods of type

Lanczos does not guarantee that the reduced-order model is passive or stable [36,37,58]: It is
possible to have unstable positive poles. By contrast, no positive pole is generated when using the
GFM in circuit simulation since the higher order poles tend to be accurately predicted.

Unlike the Padé-via-Lanczos (PVL) method, Table 1 clearly shows that the GFM does not
generate destabilizing positive poles in the system, which was originally stable. The PVL method
was shown in [36], using the simple linear RC-circuit in Fig. 2, to possibly produce a model that
was unstable even though the system was described by a symmetric, positive definite matrix. The
circuit parameters are R1= R2= R3= R4= R5= R= 1.3955 and C1= C2= C3= C4= C5= 1.
The original system capacitance matrix and conductance matrix are

K = 1
R

⎡
⎢⎢⎢⎢⎢⎣

2 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦
5×5

, C =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦
5×5

, (8)

and they are reduced from 5× 5 to 3× 3 in the PVL, Arnoldi, and GFM iterations. The GFM
does not suffer from positive poles.
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Table 1: Poles obtained from different model-reduction methods using Krylov vectors (Section 2.2):
Padé-via-Lanczos (PVL), Arnoldi, GFM. Linear RC circuit in Fig. 2, with all resistances equal to
1.3955, and all capacitances equal to 1

Krylov methods Negative poles Positive poles

1 2 3 4 5 1

Exact −2.4715 −1.8999 −1.1513 −0.4633 −0.0544 –
PVL – – – −0.4954 −0.0581 4.6671
Arnoldi – – −1.2865 −0.4972 −0.0581 –
GFM – – −1.6881 −0.6572 −0.0581 –

Figure 2: Simple linear RC circuit (Section 2.2). A simple linear circuit with passive elements shows
that the Padé-via-Lanczos (PVL) method generates positive poles that are unstable

To detect the positive poles generated from the PVL method and the circuit resistance values
R that lead to the positive poles for the circuit in Fig. 2, we swept through a set of values for the
resistance R, and plot the poles generated from these three methods. Fig. 3 (left) shows clearly
that the PVL method generated unstable poles, whereas the Arnoldi method (Fig. 3, right) and
the GFM method (Fig. 4) did not.

Figure 3: Simple linear circuit (Section 2.2). Values of the 3rd pole as a function of the resistance
R, as generated by the Padé-via-Lanczos (PVL) method (left), and by the Arnoldi method (right)
for the circuit example in Fig. 2
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Figure 4: Simple linear RC circuit (Section 2.2). Values of the 3rd pole as a function of the
resistance R, as generated by the GFM for the circuit example in Fig. 2

2.3 Participation Factors
To study the truncation effect in our proposed coordinate-transformation methods, we intro-

duce three quantities that will serve as measures to guide the truncation of the basis of trial
vectors that are used to construct reduced-order models: The projected load p, the load participation
factor β, and the response participation factor α.

The superscripts L,W ,F ,G over these three quantities will be used to designate their
association with the Lanczos, WYD, Falk, and GFM methods, respectively. Let yr (t) =
{y1 (t) , . . . ,yr (t)}T ∈R

r×1, with r≤ n being a mnemonic for “retained” after truncation of the full
basis and n the dimension of the original system (i.e., the size of the full basis, see Line 3 in
Algorithm 2.1), denote the state variables in the new coordinates corresponding to the basis of
the trial vectors generically written as {w1, . . . ,wr} ∈R

n×r, which can be either Lanczos vectors (L),
WYD vectors (W), Falk vectors (F) or Generalized Falk vectors (G). The projected force on the
basis of trial vectors is represented by pr (t) = {p1, . . . ,pr}T ∈ R

r×1. The load participation factor
βi and the response participation factor αi are defined as

βi (t) :=‖ wipi (t) ‖, αi (t) :=‖wiyi (t) ‖, (9)

respectively.

2.3.1 Lanczos Method
A projection of the matrix ODE in Eq. (6) onto the Lanczos basis vectors yields the following

transformed matrix ODE [27] (see Eq. (43) in Appendix A):

Trẏr+ I ryr =ZT
r CK

−1f =: pLr , (10)
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where Tr ∈ R
r×r, with r≤ n and n being the size of the full basis as mentioned above, is a tridi-

agonal matrix consists of orthogonalization coefficients given in Eq. (39) and Eq. (41), which are
similar to the coefficients cj in Algorithm 2.1, Ir ∈ R

r×r an identity matrix, Zr :=
[
wL1 , . . . ,w

L
r
] =

[z1, . . . , zr] ∈ R
n×r the matrix containing the r Lanczos trial vectors (see Appendix A), C ∈ R

n×n
the capacitance matrix, K−1 ∈ R

n×n the inverse of the conductance matrix, and the (truncated)

projected load pLr = {
pL1 , . . . ,p

L
r
}T ∈ R

r×1 with r retained components of pLn ∈ R
n×1 is as defined

on the right-hand side. The circuit network equivalent to Eq. (10) is discussed in Section 3.2.1.

The coefficients of the full projected load matrix pLn = {
pL1 , . . . ,p

L
n
}T ∈R

n×1 can be interpreted
as the n components of the original excitation matrix f with respect to the basis vectors that
are columns of the matrix KZn ∈ R

n×n as follows. Before truncation, using the full basis, we can
express f as

f (t)=KZnpLn (t)=
n∑
j=1

KzjpLj (t)=K
n∑
j=1

zjpLj (t) . (11)

It can be verified that pLr is indeed the excitation matrix (right-hand side) in Eq. (10) by pre-
multiplying Eq. (11) by ZT

r CK
−1, with Zr =

[
wL1 , . . . ,w

L
r
] = [z1, . . . , zr] ∈ R

n×r, and by using the
C-orthonormality conditions for the column matrices in Zn ∈R

n×n or in Zr ∈R
n×r

ZT
n CZn = In ∈ R

n×n, ZT
r CZr= Ir ∈R

r×r, ZT
r CZn =

[
Ir | 0r×(n−r)

]∈R
r×n. (12)

We have:

ZT
r CK

−1f =ZT
r CK

−1
(
KZnpLn

)
=

(
ZT
r CZn

)
pLn = pLr . (13)

Using Eq. (13) with r= n, we can also verify that

f =KZnpLn =KZn

(
ZT
n CK

−1f
)
=K

(
ZnZT

n C
)
K−1f . (14)

Since ZT
n CZn = In ⇒ZT

n CZnZ−1
n =Z−1

n ⇒ZnZT
n C = In, thus

f =KK−1f = f . (15)

If we truncate the full basis of the n Lanczos trial vectors, and retain only r of those trial
vectors, then:

f ≈ f Lr :=K
r∑
j=1

zjpLj . (16)

The error committed in representing f by a truncated series f Lr is thus:

eLr :=‖ f − f Lr ‖2 . (17)
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2.3.2 Wilson–Yuan–Dickens (WYD) Method
The reduced-order ODE in Eq. (6) for the WYD method, (Appendix B) [24], takes the form:

Irẏr+K∗
ryr =WT

r f =: pWr ∈R
r×1, with K∗

r :=WT
r KWr ∈R

r×r (18)

where Wr :=
[
wW1 , . . . ,wWr

] = [w1, . . . ,wr] ∈R
n×r contains the WYD trial vectors, with the projected

load denoted by pWr :=WT
r f ∈ R

r×1 on the right-hand side of Eq. (18). With the full basis (no
truncation), the excitation f can be represented in terms of the projected load pWn as follows:

f (t)=CWnpWn (t)=C
n∑
j=1

wjpWj (t) . (19)

Premultiplying Eq. (19) by WT
r ∈R

r×n and using the C-orthonormality conditions

WT
n CWn = In ∈ R

n×n, WT
r CWr= Ir ∈R

r×r, WT
r CWn=

[
Ir | 0r×(n−r)

] ∈R
r×n , (20)

We obtain:

WT
r f =WT

r CWnpWn = [
Ir | 0r×(n−r)

]
pWn = pWr . (21)

We can also verify that

f =CWnpWn =CWn

(
WT

n f
)
=

(
CWnWT

n

)
f = f . (22)

Since WT
n CWn = In ⇒WT

n CWnW−1
n =W−1

n ⇒WnWT
n C = In, thus

f =CWnWT
n f = f . (23)

A truncated representation of the excitation matrix f using r ≤ n WYD (trial) vectors, and
the resulting error on such representation can be expressed as

f ≈ fWr :=C
r∑
j=1

wjpWj ; eWr :=‖ f − fWr ‖2 . (24)

For all four methods (Lanczos, WYD, Falk, Generalized Falk), the response dr (t) in the
original (physical) coordinates can be computed from the response yr (t) in the reduced trial-vector
basis denoted generically here as Wr (for all four methods) as follows:

dr (t)=Wryr (t)=
r∑
i=1

wiyi (t) , with r≤ n . (25)

In general, it is not necessarily true that the projected load along the first trial vector would
have the highest magnitude, and then decreases along subsequent trial vectors (see Fig. 14 for
example). The load participation factors βLi :=‖ zipLi ‖ for the Lanczos method, and βi

W :=
‖wipWi ‖ for the WYD method (see Eq. (9)1 for the definition, which comes from Eq. (16) for the
Lanczos method, and Eq. (24)1 for the WYD method) are not reliable indicators for the selection
of the trial vectors to be retained for model reduction. In other words, a trial vector with a low
value of load participation factor may actually play a key role in the response dr (t). This reason
is why we introduce the response participation factors αLi :=‖ ziyi ‖ and αWi :=‖ wiyi ‖ (see Eq. (9)2
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for the definition, which comes from Eq. (25) for the reconstructed solution), which can be used
as indicators to evaluate the importance of the contribution of each trial vector to the response,
and to guide the truncation of the trial-vector basis for model reduction.

2.3.3 Falk Method and Stability of Generalized Falk Method (GFM)
The GFM guarantees passivity and stability for efficient simulation of coupled field-circuit

problems. We show that the GFM performs better in terms of loss of orthogonality compared to
the original Falk method. Even though the Falk trial vectors and the GFM trial vectors are not
identical, the final transformed systems have the same mathematical structure, i.e.,

Irẏr+K∗
r yr =WT

r f , (26)

where Wr ∈ R
n×r, with r≤ n, denotes the reduced basis formed by either the Falk trial vectors or

the GFM trial vectors (Line 6 in Algorithm 2.1). As a result, the transformed stiffness matrices
K∗
n (Line 8 in Algorithm 2.1), even though having the same tridiagonal topology, are also different

for different method. Since we normalize the Falk trial vectors and the GFM trial vectors with
respect to the capacitance matrix C, i.e., WT

n CWn = In (Line 7 in Algorithm 2.1), the projected
loads are similar to the case of the WYD method, i.e.,

pFn :=
(
WF

n

)T
f , pGn :=

(
WG

n

)T
f , (27)

with the excitation matrix f ≡ f n decomposed as follows:

f =CWF
n p

F
n =CWG

n p
G
n . (28)

Similarly, the truncated representation of f , and the error committed due to the truncation
are given respectively as

f Fr =C
r∑
j=1

wFj p
F
j , f Gr =C

r∑
j=1

wGj p
G
j . (29)

eFr :=‖ f − f Fr ‖, eGr :=‖ f − f Gr ‖ . (30)

2.4 Applications of Discrete IGBTs and Model Participation Factors
We begin this section by providing a big picture of how discrete IGBTs are used in real-world

engineering systems (Section 2.4.1), followed by an idealized model for electrothermal analysis of
a discrete IGBT to deduce the desired participation factors to select modes with high participation
factors for model-order reduction (Section 2.4.2).

2.4.1 Real-World Applications of IGBTs
Fig. 5 shows a single-chip power package used in power electronic circuits operating at high

frequencies to achieve vastly improved performance in converters, either AC-to-DC or DC-to-
DC9. The chip is a discrete IGBT embedded inside a TO-247 package, which provides mechanical

9 See Fig. 1 in the document ‘TRENCHSTOP™ 5 IGBT (Footnote 4) in a Kelvin Emitter Configuration. Perfor-
mance Comparison and Design Guidelines’. Application Note Revision 1.0, 2014-10-16, Online pdf, Internet archive.
See also ‘Explanation of discrete IGBTs’ datasheets’. Application Note V1.0, 2015-09-18. Online pdf, Internet archive.
‘IGBT TRENCHSTOP 5 technology IGZ75N65H5 650 V high speed series 5th generation-Data sheet’, Online pdf ,
Internet archive.

https://www.infineon.com/dgdl/Infineon-TRENCHSTOP5_in_TO-247-4pin-ApplicationNotes-v01_00-EN.pdf?fileId=5546d4624933b875014974f4d97e09ea
https://web.archive.org/web/20210114213428/https://www.infineon.com/dgdl/Infineon-TRENCHSTOP5_in_TO-247-4pin-ApplicationNotes-v01_00-EN.pdf?fileId=5546d4624933b875014974f4d97e09ea
https://www.infineon.com/dgdl/Infineon-Discrete_IGBT_Datasheet_Explanation-AN-v01_00-EN.pdf?fileId=5546d462501ee6fd015023070b8b306d
https://web.archive.org/web/20210128204254/https://www.infineon.com/dgdl/Infineon-Discrete_IGBT_Datasheet_Explanation-AN-v01_00-EN.pdf?fileId=5546d462501ee6fd015023070b8b306d
https://www.infineon.com/dgdl/Infineon-IGZ75N65H5-DS-v02_01-EN.pdf?fileId=5546d4624933b875014979ffa7531f5b
https://web.archive.org/web/20190422000840/https://www.infineon.com/dgdl/Infineon-IGZ75N65H5-DS-v02_01-EN.pdf?fileId=5546d4624933b875014979ffa7531f5b
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support and protection, heat sink for cooling, electrical connection (through the 4 pins in Fig. 5a)
and isolation. The IGBT power package with 4 pins in Fig. 5 provides much better energy
efficiency during switching compared to earlier models with 3 pins, allowing for higher swithching
speed, lower operating temperature, and thus better overall system performance.

Figure 5: IGBT chip in TO-247 package (Section 2.4.1). (a) Single IGBT (Footnote 4) chip power
package with through hole for mounting. Infineon (Brand name) IGZ75N65H5 (product code)
device, with the TRENCHSTOP 5 IGBT chip on the Transistor-Outline (TO) 247 package with
4 pins. The dimension of the package, without the pins, is roughly W × L × H = 16 mm ×
21 mm× 5 mm. (b) Material layers within the package. For the Tesla Model S electric vehicle,
see Footnote 3 on the use of IGBTs with 3 pins, and Fig. 9 for the conceptual schematic of a
half-bridge inverter. See Footnote 9

Fig. 6 shows 5 different types of discrete IGBT power packages mounted on a heat sink10.
Fig. 7 is a General Purpose IGBT Stack (GPIS) for use in a power converter or inverter11 “rated
up to 20 kVA12, and can be used in a variety of power electronic applications such as motor
drives, energy storage systems, grid-tied and off-grid renewable energy systems” [59].

10 See ‘Extruded heat sink for PCB mounting’ by Astrel Website. Internet archive.
11 A converter transforms AC to DC, whereas an inverter transforms DC to AC.
12 The unit “kVA” or 1,000 Volt-Amperes (VA) is the “apparent power”, proportional to real power measured in “watt” (W)
by a “power factor”. “The apparent power equals the product of root mean square voltage and root mean square current.
In DC circuits, this product is equal to the real power in watts. Volt-amperes are usually used for analyzing AC circuits. The
volt-ampere is dimensionally equivalent to the watt. VA rating is most useful in rating wires and switches (and other power
handling equipment) for inductive loads”, Wikipedia version 13:20, 06 January 2021.

http://www.astrel.ch/web_fischer/en_GB/heatsinks/A04/Extruded%20heatsinks%20for%20PCB%20mounting/\$catalogue/fischerData/PR/SK452_20_1_x_M3_/index.xhtml;jsessionid=11077675A2EE142D5E9B9740E65DF1A4
https://web.archive.org/web/20210114234749/http://www.astrel.ch/web_fischer/en_GB/heatsinks/A04/Extruded%20heatsinks%20for%20PCB%20mounting/\$catalogue/fischerData/PR/SK452_20_1_x_M3_/index.xhtml;jsessionid=11077675A2EE142D5E9B9740E65DF1A4
https://en.wikipedia.org/w/index.php?title=Volt-ampere&oldid=998666460
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Figure 6: IGBT power packages attached to heat sink (Section 2.4.1). The middle device is a single
IGBT chip with 3 pins embedded in a TO-247 package. Each IGBT power package is screwed to
the heat sink via its through hole; see Figs. 5 and 7

Figure 7: General purpose IGBT stack for power converter/inverter (Section 2.4.1). (a) The aluminum
heat sink with 8 discrete (3-pin) IGBT power packages (Fig. 6), which are screwed on via through
holes, is cooled by air pushed through by the DC fan (black) on the right end of the heat sink.
(b) The assembly in (a) is then mounted on a Power Circuit Board (PCB) for a converter/inverter
device; see Footnote 11 [59]. (Figures reproduced with permission of the authors)

Fig. 8 shows a much more advanced motor inverter in the Tesla Model S electric vehicle that
uses arrays of IGBTs (Fig. 8a) to convert DC from the battery pack to 3-phase AC, and thus a
triangular cross section (Fig. 8b), to drive the induction motor that turns the wheels, Footnote 3.

Fig. 9 is a schematic of a half-bridge inverter in the Tesla patent [45], explaining how the
IGBT array in Fig. 8a work to transform DC to the sine wave current for one of the three AC
phases.

Fig. 10a shows a different geometry and material layering of the Tesla packaging from the
patent application [44], compared to the packaging geometry and material layering in Fig. 5b, but
the basic principles were the same.
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Figure 8: Tesla motor inverter (Section 2.4.1) (a) IGBT array for 2 switches, each with 14 discrete
IGBTs in parallel (2 rows of 7 pairs of IGBTs). (b) Motor inverter containing an IGBT array
shown in (a) for each of the 3 AC phases. See also Footnote 3 for the big picture of how these
components are used in the Tesla S electric vehicle, and Fig. 9 for the generic schematic of a
half-bridge inverter, having (a) as a specific implementation. Twinkletoesengineering.info

Figure 9: Tesla half-bridge inverter (Section 2.4.1). (a) Schematic of a 3-pin IGBT (Footnote 3 and
Footnote 4, Gate G, Collector C, Emitter E), compared to that of a 4-pin IGBT in Fig. 5a.
(b) Half-bridge inverter 205, signal from driver 305 goes into the gate G of the upper switch
(representing the top two rows, each with 7 IGBTs, in Fig. 8a) to turn it on or off, likewise for
driver 310 for the lower switch (bottom two rows of IGBTs in Fig. 8a), output sine wave current
I1 for phase 1 of a 3-phase current, current sensor 350 to feed output current I1 back to controller
system (not shown). This subfigure is part of Fig. 2 in the Tesla patent [45] (rotated by −90◦ to
match the 2 switches in Fig. 8a)

http://www.twinkletoesengineering.info/hybrid_car.htm
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Figure 10: Tesla IGBT packaging and idealized IGBT in TO-427 package (Sections 2.4.1, 3.3, 4.1).
(a) Tesla IGBT packaging. (From top to bottom layer.) An encapsulant 390 encases a portion of
the device; A silicon die 310 is sintered to a semiconductor device comprising layers 330–350,
below sintering layer 320. The semiconductor 340 (IGBT or MOSFET) is interspersed between
two copper cladding layers 330 and 350, which lays on top of a direct bonded-copper substrate
355. The whole structure is connected to the heat sink 370 via a sintering thermally-conducting
silver layer 360. Tesla inverter US patent application [44]. Fig. 5b for TO-247 packaging. (b)
Coupled transistor-thermal model. IGBT chip on heat sink, compared to Figs. 5b and (a), used for
electrothermal analysis and proof-of-concept for GFM. See also Fig. 29 in Section 3.3 on SABER
implementation

2.4.2 Participation Factors of IGBT Electrothermal Model
We use here an idealized 2-D thermal model problem shown in Fig. 10b to illustrate the

properties of the projected load pi, the load participation factor βi, and the response participation
factor αi for each of the four methods discussed in the previous section: Lanczos (Figs. 11–13),
WYD (Figs. 14–16), Falk (Figs. 17–19), and GFM (Figs. 20–22). The finite-element (FE) discrete
model has 368 triangular elements and 215 nodes.

Figure 11: Projected load pLi vs. Lanczos vector number (Section 2.4.2)
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Figure 12: Load participation factor βLi vs. Lanczos vector number (Section 2.4.2)

Figure 13: Response participation factor αLi vs. Lanczos vector number (Section 2.4.2): Only first 120
trial vectors among 215 trial vectors are shown

The apparent randomness in the projected loads pi and in the load participation factors βi in
the Lanczos method (Figs. 11–13) and in the original Falk method (Figs. 17–19), as compared to
the smoother projected loads in the WYD method (Figs. 14–16), and in the GFM (Figs. 20–22),
is clearly a result of the random starting vectors used in the Lanczos process.

For the WYD method, the projected loads pi and the load participation factors βi start at
low values for the static solution, then increase for subsequently generated trial vectors up to
some maximum values, then decrease almost monotonically for all subsequent trial vectors. From
approximately the 40th trial vector on, the values of pi and of βi in the WYD method are
practically zero.

For the GFM, the projected loads pi and the load participation factors βi have significant
values concentrated mostly in the first few trial vectors (less than 10).
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Figure 14: Projected load pWi vs. WYD vector number (Sections 2.3.2, 2.4.2): Only the first 120 trial
vectors among the 215 trial vectors are shown

Figure 15: Load participation factor βWi vs. WYD vector number (Section 2.4.2). Only first 120 trial
vectors among 215 trial vectors are shown

The response participation factors αi should be used as indicators to select the participating
trial vectors for model reduction. For the Lanczos and WYD methods, the response participation
factors αi (Fig. 13 for Lanczos, and Fig. 16 for WYD) have significant values concentrated in
the first few trial vectors, as opposed to the more spread-out projected loads pi (Fig. 11 for
Lanczos, and Fig. 14 for WYD) and load participation factors βi (Fig. 12 for Lanczos, and
Fig. 15 for WYD). On the other hand, the response participation factors αi for both the Falk
method (Fig. 19) and the GFM (Fig. 22) are spread out over some 50 trial vectors, while the
projected loads pi (Fig. 17 for Falk, and Fig. 20 for GFM) and the load participation factors βi
(Fig. 18 for Falk, and Fig. 21 for GFM) are more concentrated in the first few trial vectors. It
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should also be noted that the response participation factor αi in the GFM decrease monotonically
and faster as the trial-vector number increases, compared to those in the Falk method in its
original form.

Figure 16: Response participation factor αWi vs. WYD vector number (Section 2.4.2). Only first 50
trial vectors among 215 trial vectors are shown

Figure 17: Projected load pFi vs. Falk vector number (Section 2.4.2)

Finally, because the transformed matrices have the tridiagonal structure, the reduced-order
models in the Lanczos method and in the GFM require less time to solve than that in the
WYD method (Fig. 23). The accuracy of these methods are compared in Fig. 24, where the error
norm was plotted in terns of the number of trial vectors retained. The WYD method converges
fastest, followed by the GFM, then the Lanczos method, and the Falk method. The GFM method
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converges faster than the Lanczos method, e.g., the error for the GFM with 10 retained trial
vectors is equivalent to that of the Lanczos method with 30 to 40 retained trial vectors, as
indicated by the red line in Fig. 24. A comparison of Figs. 23 and 24, together with all previous
Fig. 11 to Fig. 22, thus reveals a clear niche for the GFM.

Figure 18: Load participation factor βFi vs. Falk vector number. (Section 2.4.2)

Figure 19: Response participation factor αFi vs. Falk vector number (Section 2.4.2). Only the first 160
trial vectors among the 215 trial vectors are shown

Also note that for the heat conduction problem the response participation factors αi vary with
time, but their magnitude relative to each other remain the same, see Fig. 13 (Lanczos), Fig. 16
(WYD), Fig. 19 (Falk) and Fig. 22 (GFM).
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Figure 20: Projected load pGi vs. GFM number (Section 2.4.2). Only the first 50 trial vectors among
the 215 trial vectors are shown

Figure 21: Load participation factor βGi vs. GFM vector number (Section 2.4.2): Only first 50 trial
vectors among 215 trial vectors are shown

2.5 Two Model-Reduction Strategies
Based on the algorithms presented above, several model-reduction strategies using a combina-

tion of the above four methods can be introduced. Two strategies are suggested below.
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Figure 22: Response participation factor αGi vs. GFMvector number (Section 2.4.2): Only first 60 trial
vectors among 215 trial vectors are shown

Figure 23: Simulation time for various reduced models vs. trial-vector number (Section 2.4.2)

The first strategy consists of (i) using the WYD method to obtain a reduced-order model
by truncating the generation of the WYD trial vectors, followed by (ii) the use of the GFM
to transform the resulting reduced-order model to a very simple form (identity capacitance,
tridiagonal conductance, Fig. 25), as discussed in the previous sections. Actually, we can even
obtain a further reduced-order model by truncating the generation of the GFM trial vectors.
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Figure 24: Comparison of error norm vs. trial-vector number (Section 2.4.2)

Recall that such truncation can be based on the use of the response participation factor αi
discussed above. At the end of this two-stage model-reduction strategy, we obtain a reduced-
order model with an identity capacitance matrix and a tridiagonal conductance matrix, which is
represented by a simple 1-D equivalent circuit, as discussed in the next sections.

Figure 25: Two-step model reduction strategy (Section 2.5). Strategy 1: The first Step consists of
using the WYD method, whereas the second Step relies on the GFM method. Strategy 2: The
first Step is based on the Lanczos method, and the second Step on the original Falk method

The second model-reduction strategy is based on the Lanczos and the original Falk methods.
The first strategy based on the WYD and GFM methods is more stable than the second strategy
based on the Lanczos and Falk methods, especially if the eigenspectrum has close eigenvalues.
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3 Coupled Circuit-Thermal Simulation with Transformed Systems

3.1 Transistor-Thermal Model
In our case-study of electrothermal simulation of circuits with semiconductor devices (e.g.,

discrete IGBTs or MOSFETs), the circuit network model, the semiconductor device models, and
the equivalent thermal circuit network modeling the heat sinks are all coupled together, and solved
in a circuit simulator. The electrothermal semiconductor models use the instantaneous device
temperature (temperature at the silicon chip surface dnode) to evaluate the temperature-dependent
properties of silicon and the temperature-dependent model parameters. These temperature-
dependent values are then used by the physics-based semiconductor device models to describe
the instantaneous electrical characteristics and the instantaneous dissipated power. In [22,54], we
proposed a methodology to develop equivalent thermal circuit networks based on a finite-element
discretization of the heat-diffusion equation over the domain of the heat sink. Once a thermal
network component is developed, and connected to the electrical networks of power electronic
systems to provide complete electrothermal models that can be conveniently used in any circuit
simulator, it can be used over and over again in many other electrothermal circuit simulation
problems.

3.2 Equivalent Circuits for Thermal Part
The methodology developed in [15,22] could lead to complex thermal networks that present

some challenge to implement in circuit simulators such as SABER. If we could transform the
original discrete field model into a simple equivalent model, having simple circuit representation
that can be easily implemented in any circuit simulator, then we would have considerably simpli-
fied the building of the models in coupled field-circuit simulation problems. Indeed, as already
mentioned above, the coordinate transformation methods developed in the previous sections can
transform any complex thermal model into an extremely simple (1-D) model represented by the
“1-D” circuit shown in Fig. 26 (Lanczos) and Fig. 27 (GFM).

Figure 26: Equivalent circuit by Lanczos method (Section 3.2.1)
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Figure 27: Equivalent circuit by GFM (Section 3.2.2)

Remark 3.1 As presented in [31], the prescribed initial condition Eq. (7) in the new coordinates
is computed as follows:

d (0)=Wy (0)⇒ y (0)=WTCd (0) , (31)

which can be used as input into the circuit simulator SABER, or other any other circuit simula-
tors, as initial nodal voltages. From the physical standpoint, the initial condition can be obtained
as the static solution

Kd (0)= f (0)= Ic (32)

where the ambient temperature Ta in the forcing term f (0) = Ic dictates the initial condition.
In a circuit simulator, the initial condition as represented by Eq. (32) above is obtained through
an initial steady-state solution, prior to the transient solution stage. The modeling of the initial
condition in Eq. (5) in our thermal simulation is based on the input initial voltage at each node.
From a physical standpoint, before any simulation, SABER solves the steady-state solution first as
initial condition. The user then only needs to input the ambient temperature, but does not need
to impose the initial voltage at each node. For a general mathematical heat-conduction problem,
this is a particular case to bypass the process of reading in an initial condition.

3.2.1 Equivalent Circuit by Lanczos Method
Based on the method for constructing equivalent circuit networks from symmetric matrices

in [54], a symmetric global matrix can be decomposed into several elemental matrices, and each
elemental matrix represented by a circuit component. A symmetric capacitance matrix C can be
realized by a capacitor network, whereas a symmetric conductance matrix K can be realized by
a resistor network. After a Lanczos coordinate transformation, the new capacitance matrix Tr
becomes tridiagonal, and the conductance matrix K∗ becomes an identity matrix, Eq. (10) and
Appendix A. As a result, in the 1-D equivalent circuit, there is one capacitor in parallel with one
resistor between each node and the ground. The capacitance Cii = ci,i−1+ cii+ ci,i+1, where ci,i−1,
ci,i−1, and ci,i−1 are the coefficients of Tr. The resistor Rii = 1. Between two adjacent nodes i
and j, there is a “mutual capacitance” Cij, whose values are the off-diagonal coefficients of Tr, as
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shown in Fig. 26 (Lanczos), where Ip corresponds to the input power, and Ic the heat-convective
boundary conditions, see Eq. (6).

3.2.2 Equivalent Circuit by GFM
Unlike the Lanczos method, the GFM yields an identity capacitance matrix C∗ and a tridi-

agonal conductance matrix K∗, Eq. (26) and Algorithm 2.1. Instead of having the capacitors
between two adjacent nodes, we now have the resistors, as shown in Fig. 27. As a result, we have

C∗
11 =C∗

22 = . . .=C∗
nn= 1.

R11 = 1
k11+ k12

; R22 = 1
k21 + k22+ k23

, . . .

In addition, there is no capacitor between adjacent nodes since C∗ is an identity matrix. The
resistor between two adjacent nodes is

Rij =− 1
kij

.

Again, in Fig. 27, Ip corresponds to the input power, and Ic the heat-convective boundary
condition, see Eq. (6).

3.3 Implementation in Circuit Simulators

We have written a MATLAB code to automatically generate element templates13 of the
1-D field networks14 in Fig. 26 (Lanczos transformation) and Fig. 27 (Generalized Falk trans-
formation) for the SABER circuit simulator using the MAST Hardware Description Language15.
Models of field packages can be built from these element templates.

A 2-D thermal problem employed in [22] was used to test the simplified circuit networks.
Fig. 28 shows the flowchart of our MATLAB code to implement a thermal component model.
A finite-element code written in MATLAB for 2-D thermal analysis will generate a 2-D mesh,
perform finite element analysis and coordinate transformation by the methods we presented above.
The transformed system (transformed capacitance matrix C∗, transformed conductance matrix
K∗ and transformed load vector f ∗) and the trial vectors (W) generated by the coordinate
transformation methods will be used to construct the equivalent circuit model (SABER netlist file)
and the above mentioned element templates.

Since SABER electrothermal model was constructed to have only one thermal terminal,
therefore, we will define only one thermal terminal in our thermal component model by defining
the nodal temperature (across variable) and the power input (through variable) at that node as
system variables. In general, after coordination transformation, the input power supply in the
original idealized physical model as shown in Fig. 10b will distribute out to every node in the
transformed model. In other words, the transformed excitation (f ∗) will have nonzero component

13 A template is the mathematical description of a subsystem and is contained in a text file. The characteristic equations
implemented in a template can be any combination of linear or non-linear algebraic or differential equations.
14 The field networks are the thermal networks in the case study of electrothermal simulations.
15 The MAST Hardware Description Language is the modeling language, originally developed by Analogy, Inc., that allows
users to create device simulation models that can be defined in mathematical terms, in any technology, using the native
equations and units, without having to resort to electrical equivalents [60].
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in all directions. Therefore, CCCS’s (Current Controlled Current Sources) in the equation section16

of our element templates are used for the power loss from the thermal terminal of the elec-
trothermal model (excitation in the physical coordinate) to control excitations in all other nodes
(transformed coordinate).

Figure 28: Implementation flowchart. (Section 3.3). MATLAB code flowchart to implement a ther-
mal component model. In the SABER circuit simulator, the Current Controlled Current Sources
(CCCS) are used in the element template to connect to the thermal terminal of electrothermal
models, and the Voltage Controlled Voltage Sources (VCVC) to obtain the nodal temperatures in
the transformed coordinate system, for later recovery back into the physical coordinate system

A typical SABER thermal component template is written as follows:

template heat2d_mesh1 tnode

thermal_c tnode

{

thermal_c y1, y2, y3, y4, y5,. . . # local connection point

number p1 = 3.89146e + 01, h1 = 2.30179e-01,

p2 = 4.03557e + 02, h2 = 1.12042e − 01,

. . .

w1 = 3.89146e + 00, # trial vector component

w2 = 4.43737e + 01,

. . .

var i ip # controlling current

equations

{

16 The equation section contains the terminal (connection point) equations of the model, which are often equivalent to the
characteristic equations. The relationships involving the through and across variables must be defined in this section [60].
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p(tnode) += ip

ip: tc(tnode) = w1*tc(y1)+ w2*tc(y2)+. . . # (VCVS)

p(y1) −= p1*ip + h1 # (CCCS)

p(y2) −= p2*ip + h2 # (CCCS)

. . .

}

c_th.c1 p:y1 m:0 = 1, 6.96555e + 00

g_th.g1 p:y1 m:0 = 3.75182e − 01

. . .

netlist which describes the transformed 1-D RC network

}

where p(tnode) is the across variable at the power input node that will be defined as template
thermal terminal, which is physically the temperature at that node. The variable ip is the through
variable at the defined terminal. The variable ip should also be defined as system variable since all
power input at the nodes of the transformed coordinates will be controlled by the CCCS’s via the
input power ip (variable P in Eq. (3), Table 2) at the thermal terminal of the physical coordinates
as shown in Fig. 29. From Eq. (18) and Eq. (6), the transformed force can be expressed as

WT f =WT Ip+WT Ic = p+ h. (33)

The above expression is given in matrix form as follows:

WTf =

⎡
⎢⎢⎢⎣

wT1
wT2
. . .

wTm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Ip1
Ip2
. . .

Ipm

⎤
⎥⎥⎥⎦P+

⎡
⎢⎢⎢⎣

wT1
wT2
. . .

wTm

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

Ic1
Ic2
. . .

Icm

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

p1
p2
. . .

pm

⎤
⎥⎥⎥⎦P+

⎡
⎢⎢⎢⎣

h1
h2
. . .

hm

.

⎤
⎥⎥⎥⎦ . (34)

The controlling input power ip (“P” in Eqs. (3) and (34), Table 2) is used in the CCCSs as
follows:

WT f =

⎡
⎢⎢⎢⎣

p1
p2
. . .

pm

⎤
⎥⎥⎥⎦P+

⎡
⎢⎢⎢⎣

h1
h2
. . .

hm

⎤
⎥⎥⎥⎦= p+ h. (35)

The nodal temperature of the defined thermal terminal will be recovered from the transformed
coordinates to the physical coordinates by a VCVS written in the above equation section of the
element template. Basically, it is the coordinate-transformation equation at that node:

dnode=
m∑
j=1

wjyj =w1y1+w2y2+ . . .+wmym (36)

where y= {y1,y2, . . . ,ym}T is the temperature at the defined thermal terminal in the transformed
coordinates.
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Table 2 gives the correspondence between the system variables used in our formulation and
those used in our MATLAB or SABER implementation.

Table 2: System variables (Section 3.3). Correspondence between symbols used in formulation
and variable names in MATLAB/SABER implementation, with related equation numbers. Nodal
temperature in physical coordinates. Modal temperature in transformed coordinates

System variables Formulation MATLAB/SABER Eq. No.

Input power P ip Eq. (3)
Nodal temperature d tc Eq. (6)
Trial vectors W w Algorithm 2.1, Eq. (26)
Modal temperature y y Eqs. (25), (26)

Figure 29: Implementation of the 1-D equivalent circuit in SABER (Section 3.3). See Fig. 10b for the
idealized physical domain, Fig. 30 for the overall schematic of equivalent electrothermal circuit
network, and Table 2

3.4 Connection to Other Circuit Components
The input power to the thermal system is supplied from the thermal terminal of the elec-

trothermal semiconductor model via the defined thermal terminal of the thermal component
model template. The thermal terminal of the semiconductor electrothermal model is thus con-
nected to only the thermal terminal of the thermal component model. By defining the power
flowing into the thermal terminal of the thermal component model as system variable, the
calculated nodal temperature is dynamically coupled to the semiconductor model.

In Fig. 30, the original complex equivalent thermal circuit network is first transformed by
the trial vector basis as d =Wy, Eq. (25), into a 1-D simple equivalent circuit network by our
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proposed methodology, and the transformation in SABER is implemented by the CCCS’s and
VCVS as explained above. The nodal temperature in the transformed coordinates is solved by the
SABER built-in efficient numerical solver. The solved nodal temperatures in y in the transformed
coordinates is then recovered back to the physical coordinates d using the same trial vectors.
Fig. 29 shows the schematic representation of the implementation of the 1-D equivalent circuit
into SABER.

Figure 30: Schematic of equivalent electrothermal circuit network (Section 3.3). The thermal part
becomes a simple 1-D circuit network after coordinate transformation. See Fig. 29 for implemen-
tation in SABER circuit simulator

4 Numerical Examples with Model Reduction and Transformation

In this section, we apply the model reduction strategies presented above to extract the reduced-
order circuit models for the field component in coupled field-circuit problems to illustrate the
efficiency of the proposed methodology. Simulation times for both full-order models and for the
reduced-order models are presented for comparison.

4.1 Coupled Transistor-Thermal Models, Verification
The transistor-thermal models obtained from our model-reduction strategies can be verified

by considering the 2-D problem in Fig. 10b, showing an Silicon (Si) chip (IGBT or MOSFET) on
an idealized TO-247 package. The finite element mesh of this device contains 368 linear triangular
elements and 215 nodes.

Used in the analysis are both (1) the full-order model and (2) the reduced-order model
obtained by using a combination of WYD method followed by the GFM or the original Falk
method. To generate the reduced-order transformed model, a tolerance of TOL= 1E− 3 based on
the truncation of projected load p defined in Section 2.3, was prescribed in the WYD algorithm,
and automatically resulted in a model with 51 nodes, reduced down from 215 nodes. A power of
P= 10 W is inputted at the top of the transistor chip, and is distributed uniformly over an area
A = 0.1 cm2 (parameter a in Table 4). The circuit simulator SABER and MATLAB were used
to implement all developed models, with details of how the full-order model was implemented in
SABER described in [54].

Fig. 31 shows a comparison of the transient temperature obtained using the full-order model
with m= 215 unknowns, and using a reduced-order model with different numbers r= 11, 31, 41, 51
of retained GFM trial vectors. There is a complete agreement between the two models (full and
reduced order) for the temperature at the top of the Si transistor chip.
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Figure 31: Transient temperature in a pn junction (Section 4.1). GFM reduced-order model vs. full-
order model (left). GFM method: Temperature error vs. number of GFM vectors (right)

4.2 Full-Bridge Converter, Electrothermal Simulation
Considerable attention has been focused on switched-mode technology to regulate power

supply because it is possible to achieve lossless power conversion to meet the continuing and
increasing demand of power electronic devices with reduced size and weight, and with increased
efficiency. To turn on and off the flow of energy, and thus achieve regulation, duty-cycle control is
employed in switching elements. It has the added advantage when applied to off-line applications
of giving significant size reduction in the voltage transformer and energy storage elements, The
size of voltage transformer and energy-storage elements in off-line applications can be signifi-
cantly reduced using switched-mode technology. Such size reduction is another advantage of this
technology, in addition to regulating energy flow [48].

The full-bridge converter is typically used in switching power supplies at power levels of
approximately 750 W and greater. A full-bridge buck converter17 with four discrete IGBTs and
an isolated transformer, shown in Fig. 32, is simulated with the circuit simulator SABER [22].
The voltages that drive the four discrete IGBTs in the full-bridge buck converter in Fig. 32 are
shown in Fig. 33, where the on-time is Ton= 15 μs, the dead-time �= 10 μs when all switches are
turned off, and the switching-time (or the impulse period) Ts = 50 μs. In the first impulse, lasting
for on-time Ton, i.e., the interval 0 < t < Ton, the two discrete IGBT1 and IGBT4 allow current
to pass through, while the voltage Vin is inputted into the primary winding of the transformer.
The secondary winding of the transformer is center-tapped18, with each half having a voltage of
nVin, with n being the ratio of the primary turn over the secondary turn. The positive side of
the potential is indicated by a polarity mark (dot). The diode D5 in Fig. 32 is placed to allow
the clockwise current flow, from positive pole (indicated by the polarity mark) to negative pole,
but prevents the counterclockwise current flow, and is thus called forward-biased. Even though

17 The word “buck” came from the fact that the inductor in the circuit always “bucks” or acts against the input voltage. See
‘Buck DC/DC Converters,’ Power Supply Technology, Mouser Electronics Website.
18 See the definition of “center-tapped transformer”as a design to allow for two separate voltages with a common connection
in Multiple-winding transformers.

https://www.mouser.com/applications/power-supply-topology-buck/
https://www.electronics-tutorials.ws/transformer/multiple-winding-transformers.html
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the diode D6 appears to be in the same direction of diode D5, it only allows the counterclockwise
current to flow, and is called reverse-biased. Across the filter, the input voltage is therefore nVin,
with the filter inductor current i (t) flowing through the diode D5. During the dead-time in the
interval Ton < t < Ton + Δ, all four discrete IGBTs are switched off, and thus the transformer
voltage is Vo = 0 (output voltage). During the time interval Ton + Δ < t < Ts − Δ, the discrete
IGBT2 and IGBT3 and the diode D6 allow current to flow through.

Figure 32: Full-bridge converter (Section 4.2). As a switching device, a full-bridge converter uses
four discrecte IGBTs. See Fig. 33 for the time histories of the driving voltages Vg1 to Vg4 for
IGBT1 to IGBT4, respectively. See also Tables 3 and 4 for the parameters used

Figure 33: Full-bridge converter (Section 4.2). Waveforms of the driving voltages for the full-bridge
converter in Fig. 32 as a switching device. The voltage time history Vg1 (t) = Vg4 (t) are for the
two discrete IGBT1 and IGBT4, and Vg2 (t)=Vg3 (t) are for IGBT2 and IGBT3

For the full-bridge buck converter in Fig. 32, the parameters were selected as shown in
Table 3 so to ensure that a thermal run-away19, which cannot be predicted using a conventional
circuit simulator with fixed temperature, would happen.

19 When an electronic equipment continues to generate heat at a rate faster than the heat can be dissipated, a phenomenon
called “thermal run-away”, the equipment would often fail or a fire would break out.
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Table 3: Full-bridge converter (Section 4.2). Parameters. See Fig. 32

Parameter Symbol Value

Input voltage Vin 100 V DC
Primary to secondary turn ratio n= n1/n2 2
Gate resistance Rgi, i= 1, . . . , 4 100 �

Low-pass filter inductance Lo 300 μH
Low-pass filter capacitance Co 100 μF
Output resistance Ro 5 �

In the circuit simulator SABER, the parameters for the electrothermal IGBT model are
shown in Table 4, based on the values suggested in [61,62]20. The simulation results of the short-
circuit test of the IGBT model using the parameters in Table 4 are similar to those in [63]. The
GFM transformed model used here also established the efficiency in coupled transistor-thermal
simulations.

Remark 4.1 Since an IGBT is a cross between a bipolar junction transistor (BJT)21 and a
MOSFET, there are parameters for MOSFET in Table 4, even though this table is for IGBT
parameters, [62]. Before the 1970s, when MOSFET was invented, BJT was the only device used in
power electronics. BJT requires high base current to turn on, and slow to turn off, and is subjected
to thermal runaway. Unlike BJT, for which the switching is current controlled, MOSFET is voltage
controlled, and can limit or stop thermal runaway, and thus became the go-to device in power
switch design. IGBT, introduced in the 1980s, has the high-current handling of BJT, and the ease
of voltage-control of MOSFET. Generally, IGBT is chosen for low-frequency (<20 KHz) and
high-voltage (>1000 V) applications, whereas MOSFET is chosen for high-frequency (>200 KHz)
and low-voltage (<200 V) applications. In between, either device can be used, depending on
application requirements, such as cost, size, speed, thermal specifications22.

The reduced-order model obtained by using a combination of WYD method followed by the
GFM23, produced a speed-up factor of close to 9 for the transient-simulation time, compared to
the original 2-D-equivalent-circuit thermal full model, as shown in Table 5.

The temperatures Tj1 and Tj2 of the discrete IGBT1 and IGBT2, with heat sink provided by
the TO-247 packages, vs. simulation time, together with the time history of the converter output
power (Vo ∗ Io), are given in Fig. 34, with and without thermal effects. The result without thermal
effects is obtained from the simulation where the Si-chip temperature is fixed to be the ambient
temperature. The results clearly show the output power difference between the simulation with
thermal effects and that without thermal effects. Such output-power difference would be neglected
if we did not incorporate the electro-thermal coupling in the power switching devices into the
simulation.

20 See also the default values for the parameters of the n-type IGBTmodel in theMathworks Spice circuit simulator. Website.
Internet archive. SABER numerical inputs use the metric prefix as suffix, e.g., “10f” stands for “10 femto = 10× 10−15”;
see ‘Metric prefix’, Wikipedia version 08:11, 19 February 2021. Among the four references—[61–64]—only the conference
paper [61] mentioned the coefficients Kp and Kf with the corresponding code variables kp and kf in Table 4.
21 See ‘Bipolar junction transistor’, Wikipedia version 15:45, 26 February 2021.
22 See ‘IGBT or MOSFET: Choose wisely,’ by C. Blake and C. Bull, International Rectifier. Online pdf . Internet archive.
23 The same results were obtained from the original Falk method compared to those from the GFM.

https://www.mathworks.com/help//physmod/sps/ref/spicenigbt.html
https://web.archive.org/web/20210226162440/https://www.mathworks.com/help//physmod/sps/ref/spicenigbt.html
https://en.wikipedia.org/w/index.php?title=Metric_prefix&oldid=1007664248
https://en.wikipedia.org/w/index.php?title=Bipolar_junction_transistor&oldid=1009071497
https://www.infineon.com/dgdl/Infineon-IGBT_or_MOSFET_Choose_Wisely-Article-v01_00-EN.pdf?fileId=5546d462533600a40153574048b73edc
https://web.archive.org/web/20210119202614/https://www.infineon.com/dgdl/Infineon-IGBT_or_MOSFET_Choose_Wisely-Article-v01_00-EN.pdf?fileId=5546d462533600a40153574048b73edc
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Table 4: SABER IGBT model (Section 4.2). Parameters. See Fig. 32 and Footnote 20

Parameter Code variable Input Value or unit

High level excess carrier lifetime tauhl 7.1u 7.1× 10−6 s
Temperature exponent for tauhl tauhlexp 1.5 –
Metallurgical base width wb 10m 10× 10−3 cm
Base doping concentration nb 2.0e14 cm−3

Device active area a 0.1 cm2

Gate drain overlap active area agd 0.05 cm2

Emitter electron saturation current isne 10f 10× 10−15A
Temperature exponent for isne isnetexp 0.5 –
MOSFET channel threshold voltage vt 5.0 V
Temperature coefficient for vt vttco −0.009 –
Intrinsic anode series resistance rs 0.01 �

Parameter for transconductance reduction theta 0.01 V−1

due to transverse electric field in MOSFET
Temperature exponent for theta thetatexp 0 –
MOSFET empirical factor representing the ratio of kf 2.0 –
kp in triode region to that in saturation
(=kp, linear/kpt)

Temperature exponent for kf kftexp 0 –
MOSFET channel transconductance in kp 0.25 AV−2

saturation region
Temperature exponent for kp kptexp 1.5 –
Gate to source capacitance cgs 1n 10−9 F
Gate drain oxide capacitance coxd 2n 2× 10−9 F
Gate drain overlap depletion threshold vtd 0 V
Temperature coefficient for vtd vtdtco 0 –
Junction curvature factor bvf 1.0 –
Temperature coefficient for bvf bvftexp 0.35 –
Avalanche multiplication exponent bvn 4.0 –
Temperature coefficient for bvn bvntexp 0 –
Nominal temperature used for parameters tnom 27 deg. C (300◦ K)
Temperature exponent for mobilities alpha 2.54 –
Minimum slope for MOSFET current gmin 1p 10−12 A

Table 5: Full-bridge converter (Section 4.2). Comparison of simulation time. The original model
has 215 unknowns (nodal temperatures). The reduced-order model (ROM) has 51 unknowns
(modes). See Table 6 for the Voltage Regulator Module (VRM)

Simulation model SABER transient analysis Speed-up factor

Full model 1190 s
GFM/WYD 136 s 1190/136 = 8.75
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Figure 34: Full bridge converter (Section 4.2). Output power and temperature vs. time. Full-order
model (left) vs. GFM reduced-order model (right)

Remark 4.2 In power electronics, the meaning of the term “load” could be confusing. It is best
to think of two types of loads: Current load and resistance load. In general, the term “load” is
often used to designate “current load”, which is related to output power. Thus “higher load” often
means “higher current load”, and thus higher output power. Further, with the relation V = RI ,
increasing current load corresponds to decreasing resistance load, under constant voltage.

Remark 4.3 A discrete IGBT can be modeled by a resistor, an inductor, and a DC voltage
source in series, together with a current switch, controlled by a logical signal, gate on g> 0 or gate
off g= 024. In general, for large output voltage, the voltage drop from input to output in IGBT is
small. The reason for a small voltage drop across an IGBT device is because this device is roughly
equivalent to a voltage source (in series with a resistor and an inductor). Smaller voltage drop in
IGBT means larger voltage output which means less power losses. That is why IGBT devices are
usually used in higher power applications.

Remark 4.4 Switched-mode semiconductor devices (i.e., IGBT and MOSFET) are employed
in high-efficiency power converters. When a semiconductor device operates in the off state, its
current is zero and hence its power dissipation is zero. When the semiconductor device operates
in the on (saturated) state, its voltage drop is small and hence its power dissipation is also small.
In either event, the power dissipated by the semiconductor device is low [48].

4.3 Simulation of a Voltage Regulator Module (VRM)
The ability to work at lower voltage and higher current is required of modern microproces-

sors to meet the demand of faster and more efficient data processing. Moreover, each modern
processor is packed with increasingly more devices, and operates at increasingly higher frequencies.
Voltage regulator modules (VRMs) are special on-board power supply modules that minimize
the effects of parasitics in interconnections, and can provide highly accurate regulation of supply
voltage, as a centralized power system cannot realize these goals. In microprocessors capable of
operating at lower voltage and higher current, a VRM located near the load on the motherboard

24 See, e.g., ‘IGBT: Implement insulated gate bipolar transistor’, Simscape Electrical version R2020b, Mathworks, Website.

https://www.mathworks.com/help/physmod/sps/powersys/ref/igbt.html
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is required [65]. The DC-to-DC converter in a distributed power system produces an intermediate
voltage appearing at the computer backplane. Locally regulated low voltages are generated by
high-density DC-to-DC converters on each card. Because there is not a lot of space on a crammed
motherboard, it is important that on-board converter modules, such as the VRM, be of high
power density and high efficiency. A serious design challenge is to have the power conversion per-
form at high switching frequency to provide fast transient response and to satisfy the requirements
of high power density and high efficiency. Each Si chip has an operating output-voltage range,
with some tolerance outside of which the chip would fail (blow up). Moreover, there is a voltage
range, inside the operating-voltage range, within which the Si chip would be most efficient. For
these reasons, the regulated voltage is designed to be fixed.

Fig. 35 shows the circuit schematic of a synchronous rectifier buck-converter used as VRM.
The load, represented by the resistor R (i.e., the microprocessor) is powered up from a power
supply with regulated output voltage Vg (or Vin). The circuit simulator SABER with our own
equivalent circuit model for the idealized TO-247 thermal field component shown in Fig. 10b
was employed to simulate the VRM in Fig. 35 [66] with the driving voltage waveforms25 shown
in Fig. 36, and with the operating frequency set at 500 kHz. The major VRM components
were (Fig. 35 from left to right): Input voltage Vin = Vg = 60 V, MOSFET 1 main switch SW-
2XIRF7811, MOSFET 2 synchronous rectifier SR-4XIRF7811, inductor L= 500 nH, output-filter
capacitor C = 100 μF, load resistance R= 15 �26.

Figure 35: Voltage RegulatorModule (VRM) (Section 4.3). Buck converter with synchronous recti-
fier, with MOSFET1 being the main switch, and MOSFET2 the synchronous rectifier. See Fig. 36
for the time histories of the driving voltages for these MOSFETs. The output voltage Vo is across
the resistance R on the right

25 The results for the VRM are simulations designed to show the difference between model with thermal effects and that
without thermal effects. The parameters selected may not be practical. Too small input voltage did not make a significant
difference between the cases with and without thermal effects. We changed these parameters to push the electro-thermal
model to temperature limits. The input voltage 60 V is for the buck-converter circuit as a whole, not only for the MOSFETs.
For more on VRM, see also [67].
26 Shown in Fig. 34 were the junction temperature results using the transformed model. These results were the same for the
full model.
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Figure 36: Voltage Regulator Module (VRM) (Section 4.3). Buck converter, driving voltage wave-
form excitations VSW (Synchronous Switch, MOSFET1, Fig. 35) and VSR (Synchronous Rectifier,
MOSFET2, Fig. 35)

Using the GFM transformed model of the VRM27, the transient simulation time was reduced
by 17 times (i.e., the speed-up factor), compared to that of the full two-dimensional thermal
model, as documented in Table 6.

Table 6: Voltage Regulator Module (VRM) (Section 4.3). Comparison of simulation time. The
original model has 215 unknowns (nodal temperatures). The reduced-order model (ROM) has 51
unknowns (modes). See also Table 5 for the full-bridge converter

Simulation model SABER transient analysis Speed-up factor

Full model 6690 s
GFM/WYD 391 s 6690/391 = 17.11

Remark 4.5 Most published results in the VLSI-CAD literature to demonstrate simulation
speed-up have been in the frequency domain, essentially using methods of the Lanczos type based
on the moment-matching technique. Many widely cited papers (e.g., [29,68]) showed speed-up
ratios essentially restricted to the linear part of the circuit (interconnects). On the other hand, the
way we computed the speed-up ratio is different: We do not restrict the comparison to the reduced
field problem (heat sink) alone, but include the complete field-circuit network in the calculation.
If we restricted our calculation of the speed-up ratio to the heat sink alone, we would obtain a
much higher speed-up ratio (with orders of magnitude in improvement). The speed-up ratio in
our circuit examples, which involved highly nonlinear components (IGBT, MOSFET), was based
on the reduction of total simulation time, and not on just the reduction of simulation time for
the heat sink (field component), as mentioned above.

27 The same results were obtained using the Falk method in its original form.
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4.4 Comparison of CPU Times for Different Methods
In this section, we provide a comparison of the CPU times spent by the full-order models

and by two reduced-order models implemented in the circuit simulator SABER.

For a fair comparison between the full-order model and the 1-D transformed models, we need
to clock the transformation time in MATLAB. Table 7 shows the MATLAB CPU time spent to
generate the transformed 1-D thermal network used in the above simulations. Once the 1-D model
had been generated, it can be reused for other design/redesign applications. Such reuse capability
is especially advantageous for large complex coupled field-circuit systems.

Table 7: Generation of 1-D transformed models (Section 4.4). Mesh 1 has 16 nodes. Mesh 2 has 215
nodes. Comparison of CPU times (s)

Simulation model CPU times (s)

GFM Original falk

Mesh 1: Coordinate transformation 0.03333 0.03333
Mesh 2: Coordinate transformation 141.5 117.3
Mesh 2: Coordinate transformation and reduction 15.58 14.22

The transformation times for a model of the heat sink (field component) with 1,226 dofs
using four different Krylov-based transformation methods considered here, i.e., GFM, original
Falk method, WYD method, and Lanczos method, are given in Table 8. The results clearly show
that the original Falk method and the GFM are more advantageous than the WYD method and
the Lanczos method. The reason is because there is no inversion of the system conductance matrix
K in the Falk method and the GFM, in contrast to the WYD method and the Lanczos method.

Table 8: Generation of 1-D transformed models (Section 4.4). Mesh 3 has 1,226 nodes (dofs).
Comparison of CPU times (s)

CPU times (s)

Simulation model GFM Falk WYD Lanczos
Coordinate transformation 613.33 s 609.71 s 1,854.1 s 1,834.4 s

The results in Fig. 37, obtained from FE Mesh 2 for the buck-converter VRM, show that
there was a significant increase in the bulk-drain total energy dissipation of the MOSFET with
simulation time, for both the full-order model and the GFM model.

The Si-junction temperature rise and the converter regulated output voltage vs. simulation
time are given in Fig. 38. Again, the result without thermal effects is obtained from simulations
where the Si-junction temperature is fixed at the ambient temperature. The regulated voltage
difference increases with time. Such increase also indicates power dissipation due to thermal effects.

The results show that accounting for the field-circuit coupling is essential for accurate sim-
ulations. By applying our proposed model reduction strategies based on the GFM, the speed-up
ratio can go up to about 9 for the full bridge converter example (Table 5) and 17 for the VRM
example (Table 6), which is highly competitive compared to the traditional Lanczos method.
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Figure 37: VRM: Total energy dissipation in MOSFET vs. time, using GFM (Mesh 2)

Figure 38: VRM: Si-junction temperature and output voltage vs. time, using GFM (Mesh 2)

5 Closure

To study truncation effects in the generalized Falk method (GFM) of coordinate transforma-
tion, we introduce the concept of response participation factors αi for the selection of trial vectors
for model reduction, and show that these response participation factors are more effective than
the load participation factors βi traditionally employed. We also compared the simulation times
to generate the trial vectors and the error norm committed on the load representation for various
coordinate-transformation methods. Unlike the Lanczos method, the GFM does not produce
unstable positive poles in circuit simulation, and is more efficient compared to the Lanczos method
and the Arnoldi method in the case where a lumped capacitance matrix is used in electrothermal
simulation, a case study to illustrate the effectiveness of the proposed methodology for general
coupled field-circuit problems, in particular IC interconnects.
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At the end of the combined two-stage model-reduction strategy, we obtain a reduced-order
model with an identity capacitance matrix and a tridiagonal conductance matrix represented by a
simple 1-D equivalent circuit. For the field components in overall coupled field-circuit systems, we
develop simple equivalent field circuit networks, which are then implemented in circuit simulators.

Numerical examples of coupled field-circuit problems involving a full-bridge converter with
four IGBTs as switching devices and a Voltage Regulator Module with two MOSFETs showed
a remarkable efficiency of the proposed coordinate-transformation methods and model-reduction
strategies.
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Appendix A. Lanczos method

Lanczos method The Lanczos method [23] was originally proposed as a technique for tridi-
agonalizing matrices. A sequence of trial vectors are formed by repeatedly multiplying the matrix
to be reduced with a starting vector. These trial vectors form a Krylov sequence. Each new trial
vector is orthogonalized with respect to the two previous trial vectors. This orthogonalization
procedure can be shown to be sufficient to obtain orthogonality with all previously calculated
vectors. The coefficients computed from the orthogonalization process are then combined to form
a tridiagonal matrix that theoretically has the same eigenvalues as the original matrix, after all n
(Lanczos) vectors has been calculated, with n being the order of the system.

Lanczos algorithm

(1) Given C , K ∈R
n×n and f ∈R

n×1

(2) Triangularize K =LDLT

(3) Starting vector: randomly generated vector z∗1
C-normalize z∗1 to obtain z1

z1 =
z∗1√

z∗T1 Cz∗1
∈R

n×1 (37)

(4) Solve for additional vectors with b1 = 0 and i= 2, . . . , r, with r≤ n:

Kz∗i =Czi−1 ⇒ z∗i =K−1Czi−1 ∈R
n×1 (38)

ci−1 = z∗
T

i Czi−1 (39)

z∗∗i = z∗i − ci−1zi−1− bi−1zi−2 ∈R
n×1 (C-orthogonalization) (40)

bi =
√
z∗∗Ti Cz∗∗i (41)

zi =
z∗∗i
bi

∈ R
n×1 (C-normalization for zi) (42)

(5) Construct symmetric tridiagonal matrix Tr of reduced order r≤ n:

Tr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c1 b2 0 . . . 0

b2 c2 b3 . . . 0

0 b3 c3 . . . 0

0 . . . br−1 cr−1 br
0 0 . . . br cr

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
r×r

∈R
r×r (43)

(6) Calculate eigenpairs of Tr:

TrY =Y� ∈R
r×r (44)

(7) Approximated eigenpairs of the original system:

X =ZrY ∈R
n×r , ωi = 1

λi
, i= 1, . . . , r, (45)
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with Zr= [z1, . . . , zr] ∈R
n×r and Y ∈R

r×r.

Appendix B. Wilson–Yuan–Dickens (WYD) method

The WYD method, first introduced in [24], has become popular in structural dynamics,
and is based on the direct superposition of a special class of Ritz vectors generated from the
spatial distribution f (s) ∈ R

n×1 of the dynamic load that can be put under the form f (s)g (t),
where g (t) is function of time. This method eliminates the requirement for exact evaluation of
the free vibration frequencies and mode shapes. The WYD approach does not provide a full
uncoupling of the equilibrium equations but has proved to be more efficient than the traditional
eigensolution approach. The sequence of WYD vectors is generated by taking into account the
spatial distribution of the external excitation, which is important information neglected by direct
use of exact mode shapes. The first WYD vector is the steady-state vector obtained from a steady-
state analysis using the spatial distribution f of the dynamic excitation as input. The other vectors
are generated from a recurrence relationship in which the capacitance matrix C is multiplied by
the last WYD vector; the resulting vector is then used as the excitation for the next steady-state
solution.

WYD Algorithm

(1) Given C, K ∈ R
n×n, and f ∈R

n×1

(2) Triangularize K =LDLT

(3) Solve for load-dependent starting vector w∗
1, and C-normalize w∗

1 to obtain w1

Kw∗
1 = f ⇒w∗

1 =K−1f (46)

w1 =
w∗
1√

w∗T
1 Cw∗

1

(47)

(4) Solve for additional vectors i= 2, . . . , r, with r≤ n:

Kw∗
i =Cwi−1 ⇒w∗

i =K−1Cwi−1 (48)

ci,j =wTj Cw
∗
i (49)

w∗∗
i =w∗

i −
i−1∑
j=1

ci,jwj (C-orthogonalization) (50)

bi =
√
w∗∗T
i Cw∗∗

i (51)

wi =
w∗∗
i

bi
(C-normalization to obtain wi) (52)

In the reduced basis of WYD trial vectors, the capacitance matrix C∗
r :=WT

r CWr = Ir ∈R
r×r

is an indentity matrix, whereas the stiffness matrix K∗
r :=WT

r KWr ∈R
r×r is full in general.


