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ABSTRACT

Turbine blisks are assembled using blades, disks and casings. They can endure complex loads at a high temperature,
high pressure and high speed. The safe operation of assembled structures depends on the reliability of each
component.MonteCarlo (MC) simulation is commonly used to analyze structural reliability, but thismethodneeds
to run thousands of computations. In order to assess the clearance reliability of assembled structures in an efficient
and precise manner, the novel Kriging-based decomposed-coordinated (DC) (DCNK) approach is proposed by
integrating the DC strategy, the Kriging model and the importance sampling-based Markov chain (MCIS) tech-
nique. In this method, the DC strategy is used to decompose a multi-objective problem into many single-objective
problems. The relationships between these many single-objectives and the overall objective are then coordinated.
The Kriging model is applied to establish the limit state functions of the single-objectives and multi-objective
problems, while the MCIS method is used to assess the structural assembled clearance reliability. Moreover, a
highly nonlinear complex compound function is first utilized to verify the DCNK model from a mathematical
perspective. Then, the reliability of an aeroengine high-pressure turbine (HPT) blade-tip radial running clearance
(BTRRC) is analyzed to validate the DCNK approach by considering thermo-structural interaction. The analytical
results show that the reliability is 0.9976 when the allowance value of the BTTRC is 1.7650 × 10−3 m. Compared
with different methodologies (including direct simulation, the classical Kriging model, and the weighted response
surfacemethod (WRSM)), the proposedmethodholds obvious advantages in computing time andprecision, as well
as simulation efficiency and precision. The efforts of this paper provide a useful approach to analyzing assembled
clearance reliability and contribute to the development of structural reliability theory.
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1 Introduction

Assembled structures usually involve many components in accordance with specific principles.
These structures typically suffer from interaction loads between multi-physical fields. For instance,
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an aeroengine high-pressure turbine is assembled by blisks and casings, which enables it to endure
thermal loads and structural loads during operation. Moreover, the overall safety of assembled
structures is determined by the reliability of its components. As for assembled structures, if
a component is not sufficiently reliable, the function of the entire system is affected, and a
catastrophic accident can occur. Therefore, the clearance reliability of assembled structures must
be analyzed by considering the randomness of influencing factors.

A number of direct methods have been proposed to analyze structural reliability. Rezaei
et al. [1] applied Monte Carlo (MC) simulation with statistical learning theory to analyze the
structural reliability of line systems. Zhang et al. [2] discussed the application of MC simulation
for the purpose of analyzing the reliability of crankshafts. MC simulation is commonly applied to
analyzing structural reliability in engineering and is usually regarded as the reference for validating
analytical precision. Although MC simulation is highly precise when used for structural reliability
assessment, it needs to run numerous simulations. In addition, the computational burden with
MC simulation is obviously heavy. As a result, it is hard to analyze the reliability of assembled
structures. Approximate analytic methods are simultaneously developed to address structural relia-
bility estimation, e.g., first-order second-moment (FOSM), second-order second-moment (SOSM),
and so forth. Liu et al. [3] employed the FOSM method to predict the reliability of chatter
vibration in a milling system. Zhou et al. [4] presented a SOSM method for calculating the
reliability index and failure probability of rock slopes. Shadab et al. [5] described a step-by-step
algorithm to calculate the failure probability and safety index using an advanced FOSM (AFOSM)
method. Zhang et al. [6] adopted the AFOSM approach to analyze the reliability of composite
overwrapped cylinders. Lu et al. [7] studied an explicit second-order fourth-moment reliability
index to assess the failure probability of simple and general parabolic approximations. Compared
with MC simulation, the approximate analytic methods hold a certain analytical efficiency and are
usually utilized to accomplish structural reliability evaluation based on the limit state function.
However, these limit state functions are usually unknown for complex structures, and the scope
of application for these techniques is limited in most cases.

In order to overcome the shortcomings of direct methods, indirect approaches (surrogate
models) have been proposed to analyze the reliability of complex structures. Tandjiria et al. [8]
studied the response surface method (RSM) for analyzing the reliability of laterally loaded piles.
Kaymaz et al. [9] proposed the weighted response surface method for analyzing structural reli-
ability. Gaspar et al. [10] analyzed the reliability of complex systems using the Kriging model.
Gano et al. [11] developed a novel Kriging model-based updated strategy for optimizing variable
fidelity. Jiang et al. [12] explored the support vector machine (SVM) in the reliability sensitivity
analysis of mechanical structures. Xi et al. [13] evaluated the fault detection of an aircraft engine
using the least squares SVM. Fei et al. [14] proposed an enhanced network learning model with
an intelligent operator to evaluate the motion reliability of flexible mechanisms. Chang et al. [15]
presented an artificial neural network with dynamic simulation and the FOSM method for analyz-
ing the reliability of steering mechanisms. These efforts focus on single-objective reliability analysis
without considering the effect of multi-objective correlation on structural reliability analysis. Some
scholars investigated the multi-objective correlation reliability analyses of complex structures.
Zhang et al. [16] proposed the multiple RSM and analyzed the reliability of turbine blisks with
multi-failure modes. Fei et al. [17] evaluated probabilistic analyses in terms of their reliability and
sensitivity for multi-component structures using the decomposition coordination strategy. However,
the involved approaches still faced issues with analytical precision and computational efficiency,
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due to the use of the quadratic polynomial and thousands of simulations performed with the MC
method.

In order to address the aforementioned issues, we develop a surrogate modeling strategy,
namely the novel Kriging-based decomposed-coordinated (DCNK) approach, for the purpose of
assessing structural assembled clearance reliability. In this case, the decomposed-coordinated (DC)
strategy is used to decompose the multi-objective problem into many single-objective problems.
Then, this strategy is used to coordinate the relationships between single-objectives and the overall
objective. Furthermore, the Kriging model is applied to establish the limit state functions of the
single-objective and multi-objective problems, while the importance sampling-based Markov chain
(MCIS) technique is employed to assess structural assembled clearance reliability. In addition, we
select a highly nonlinear compound function and an aeroengine high-pressure turbine (HPT) to
validate the proposed method.

The rest of this paper is outlined as follows. In Section 2, the basic theory of structural
assembled clearance reliability assessment with the DCNK approach is discussed. In Section 3, a
highly nonlinear compound function is used to verify the DCNK approach in terms of predictive
performance. In Section 4, the reliability analysis for the HPT blade-tip radial running clearance
(BTRRC) is derived, so as to validate the analytical precision and computing efficiency of the
DCNK method. Finally, in Section 5, the main conclusions are summarized.

2 Basic Theory

2.1 Assembled Clearance Reliability Assessment Process
In order to analyze the structural reliability of multiple objectives, the DCNK approach is

developed by integrating the Kriging model, the DC strategy, the importance sampling principle
and the Markov chain method. For the DCNK approach, the DC strategy is employed to
decompose a “big” problem into many “small” problems, and to coordinate the “small” problems
to process a “big” problem. Moreover, the Kriging model is used to derive the limit state functions
of the related objectives, while the MCIS technique is adopted to generate samples and assess
structural assembled clearance reliability. The structural assembled clearance reliability assessment
process (including the DCNK approach) is shown in Fig. 1.

As seen in Fig. 1, there are four steps in assessing structural assembled clearance reliability
with the DCNK approach. These are deterministic analysis, sample generation, DCNK modeling,
and reliability assessment. The details are explained as below.

(1) Deterministic analysis—it is necessary to establish finite element (FE) models of objective
structures, set constraints and boundary conditions, and execute the deterministic analysis based
on the established FE models.

(2) Sample generation—it is necessary to determine the study time point depending on the
variation in output response; ensure input parameters and their numerical features; obtain samples
of input parameters using the Latin hypercube sampling (LHS) method [18]; calculate the output
response with regard to the generated samples of input parameters; and subsequently obtain
training and testing samples.

(3) DCNK modeling—it is necessary to establish the DCNK model based on the training
samples and validate the established DCNK model using the testing samples. If the DCNK model
prediction accuracy cannot satisfy the precision requirement, return to Step (2). Otherwise, move
to Step (4).
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(4) Reliability assessment—it is necessary to extract the candidate sampling pool using the
MCIS method; obtain these values for the relevant output responses; and determine the structural
assembled clearance reliability and output analysis results.

Start

Establish FE model of objective structure

Set constraints and boundary conditions

Deterministic analyses based on the 
established FE models

Determine the study time point depended on 
the variation of output response

Ensure input parameters and determine 
their numerical features

Obtain samples of input parameters by the 
Latin hypercube sampling method

Calculate the values of output response

Obtain the training and testing samples

Establish the DCNK model based on the 
training samples

Verify and validate the effectiveness of the 
established DCNK model

Satisfy requirments?

Extract candidate sampling pool using 
MCIS method

Determine structural assembled clearance 
reliability level

Obtain these values of the relevant output 
responses with the derived DCNK model

Output analytical result

End

Deterministic analysis

Samples generation

DCNK modeling

Reliability assessment
Yes

No

Figure 1: Structural multi-objective correlation reliability assessment process with the DCNK
approach

2.2 Efficient Kriging-Based Decomposed-Coordinated Modeling
In this section, we elaborate on the basic theory underpinning the DCNK approach, including

the Kriging model.

2.2.1 The Kriging Model
The Kriging model was first introduced into geostatistics by Krige [19], and is widely used

in various subfields, such as reliability estimation, sensitivity analysis, and optimization design
[20–22], due to its excellent fitting and predictive ability. In the Kriging model, the relationship
between output response y(x) and n-dimensional inputs x ∈Rn [23] is denoted by:

y (x)= f T (x)β +Z (x) (1)

where f (x) = [
f1 (x) , f2 (x) , . . . , fp (x)

]
is the basis functions of a regression model; p is the

number of basis functions; β = [
β1, β2, . . . , βp

]
expresses the regression coefficients of the basis

functions f(x); and Z(x) is a stationary Gaussian random process with an expected value of zero
(i.e., E[Z(x)] = 0). The covariance is defined as:

Cov
[
Z (xi) , Z

(
xj
)]= δ2R

(
θ , xi, xj

)
(2)

where R(·) is the correlation function between input variables xi and xj (i, j= 1, 2,. . ., m) and m

is the number of samples; δ2 represents the variance; θ is the Kriging model hyperparameter; and
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R is the the correlation parameter vector. The Gaussian correlation function is used as the form
of the correlation function, i.e.,

R= (
θ ,xi,xj

)= exp

⎛
⎝−

l∏
k=1

θk
(
xki −xkj

)2⎞⎠ (3)

where l denotes the number of input variables; θk, xki and xkj are the kth component of θ for

input samples xi and xj, respectively. The optimal value of the hyperparameter θ is approximated
by the maximum likelihood function, i.e.,

maxL (θ)=−
(
m ln

(
δ2
)
+ ln |R|

)
(4)

where R is the correlation matrix, which is expressed as:

R=

⎡
⎢⎢⎢⎢⎢⎣

R (θ ,x1,x1) R (θ ,x1,x2) · · · R (θ ,x1,xm)

R (θ ,x2,x1) R (θ ,x2,x2) · · · R (θ ,x2,xm)

...
...

. . .
...

R (θ ,xm,x1) R (θ ,xm,x2) · · · R (θ ,xm,xm)

⎤
⎥⎥⎥⎥⎥⎦ (5)

The estimated variance σ̂ 2 is obtained by:

σ̂ 2 = 1
m

(Y −Fβ)TR−1 (Y −Fβ) (6)

where Y denotes the vector of output responses Y = [y1, y2, . . . , ym]T corresponding to the input
samples; and F = [ f (x1) , f (x2) , . . . , f (xm)]T. The undetermined coefficients β are obtained by:

β =
(
FTR−1F

)−1
FTR−1Y (7)

The stochastic component Z(x∗) at point x∗ is given by:

Z (x∗)= rT (x∗)R−1 (Y −Fβ) (8)

where r (x∗) is the correlation vector between point x∗ and the sample points, i.e.,

r (x∗)= [R (θ ,x∗,x1) ,R (θ ,x∗,x2) , . . . ,R (θ ,x∗,xm)] (9)

2.2.2 Novel Kriging-Based Decomposed-Coordinated Strategy
Although the traditional Kriging model is suitable for general reliability problems, it is unable

to effectively assess the clearance reliability of assembled structures, because this method requires
multiple models to be established. In addition, the DC strategy proposed by Adomian has been
utilized to approximate the complex compound function and performs well [24]. Therefore, the
DC strategy is introduced into the Kriging model to assess the clearance reliability of assembled
structures. From a mathematical perspective, the DCNK approach can be executed as follows:
(1) decompose the overall model for the assembled clearance into many sub-models for the
substructures, (2) establish these sub-models in the form of the Kriging model, and (3) compile
an overall model taking the relationship among the different objectives into account. In order
to illustrate the details of the DCNK modeling, the four layers are treated as an example, as
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shown in Fig. 2. These four layers are the overall model layer, the first sub-model layer, the second
sub-model layer, and the variable layer.

As shown in Fig. 2, the overall model layer presents the clearance function of the assembled
structure; the first sub-model layer denotes the first subfunctions of the components; the second
sub-model layer denotes the second subfunctions of the subcomponents; and the variable layer
expresses the bottom parameters. The output response relationship between the overall model layer
and the first sub-model layer is expressed by g(·); g(u)(·) denotes the output response relationship
between the uth first sub-model layer and vth second sub-model layer; and g(u v)(·) represents the
output response relationship between the vth second sub-model layer of the uth first sub-model
layer and the variable layer. The DCNK modeling process is described as below.

Figure 2: Decomposed and coordinated schematic diagram of the structural assembled clearance
performance function

The assembled structure clearance function is given by:

yDCNK = g (x)= g
(
g(1) (x) ,g(2) (x) , . . . ,g(u) (x)

)
(10)

Eq. (10) can be expressed as:

yDCNK = g
(
yDCNK (1),yDCNK(2), . . . ,yDCNK (u)

)
(11)

where u is the number of output responses in the first sub-model layer; and y(i)
DCNK (i= 1, 2,. . .,

u) is the decomposed subfunctions of the ith first sub-model layer. This is represented by:

y(i)
DCNK = g(i)

(
y(i1)
DCNK ,y

(i2)
DCNK , . . . ,y

(i u)
DCNK

)
(12)
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where v is the number of output responses in the second sub-model layer; and y(i j)
DCNK ( j = 1,

2,. . ., v) indicates the decomposed subfunctions of the jth second sub-model layer in the ith first
sub-model layer. This is represented by:

y(i j)
DCNK = g(i j)

(
x(i j)

)
(13)

where x(i j) is the jth decomposed subfunction in the second sub-model layer of the ith first sub-
model layer.

Based on Eq. (1), the jth decomposed model in the second sub-model layer of the ith first
sub-model layer is denoted by:

Y (i j)
DCNK

(
x(i j)

)= y(i j)
DCNK

(
x(i j)

)+Z
(
x(i j)

)
= a(i j) + b(i j)x(i j) + (

x(i j)
)T c(i j)x(i j) +Z

(
x(i j)

)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(i j) =
(
b(i j)
1 b(i j)

2 · · ·b(i j)
n1

)

c(i j) =

⎛
⎜⎜⎜⎜⎜⎝

c(i j)11 c(i j)12 · · · c(i j)1n1

c(i j)21 c(i j)22 · · · c(i j)2n2
...

...
. . .

...

c(i j)n11 c(i j)n12 · · · c(i j)n1n1

⎞
⎟⎟⎟⎟⎟⎠

x(i j) =
(
x(ij)
1 x(ij)

2 · · ·x(ij)
n1

)T

(14)

where a(i j), b(i j), and c(i j) are the undetermined coefficients of the constant term, line term,
and quadratic term, respectively; and n1 represents the number of input variables in the jth
decomposed model of the second sub-model layer of the ith first sub-model layer.

Y (i j)
DCNK

(
x(i j)

)
is regarded as the input variables of the ith first sub-model layer x(i), i.e.,

x(i) =
{
Y (i j)
DCNK

(
x(i j)

)}
(15)

According to the Kriging model, the ith decomposed model in the first sub-model layer is
given by:

Y (i)
DCNK

(
x(i)

)= y(i)
DCNK

(
x(i)

)+Z
(
x(i)

)
= a(i) + b(i)x(i) + (

x(i)
)T c(i)x(i) +Z

(
x(i)

)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(i) =
(
b(i)
1 b

(i)
2 · · ·b(i)

n2

)

c(i) =

⎛
⎜⎜⎜⎜⎜⎝

c(i)11 c(i)12 · · · c(i)1n2

c(i)21 c(i)22 · · · c(i)2n2
...

...
. . .

...

c(i)n21 c(i)n22 · · · c(i)n2n2

⎞
⎟⎟⎟⎟⎟⎠

x(i) =
(
x(i)
1 x

(i)
2 · · ·x(i)

n2

)T

(16)



1036 CMES, 2021, vol.129, no.2

where a(i j), b(i j), and c(i j) are the undetermined coefficients; and n2 is the number of input
variables in the ith first sub-model layer.

Similarly, Y (i)
DCNK

(
x(i)

)
is treated as the input variables of the overall model layer, i.e.,

x=
{
Y (i)
DCNK

(
x(i)

)}
(17)

The overall model layer is derived in the form of the Kriging model, i.e.,

YDCNK (x)= g
({
Y (i)
DCNK

(
x(i)

)})
= yDCNK (x)+Z (x)= a+ bx+xTcx+Z (x) (18)

Eq. (18) is denoted by:

g (x)= a+ bx+xTcx+Z (x) (19)

where a, b, and c are the undetermined coefficients of the constant term, linear term, and
quadratic term, respectively.

Furthermore, the limit state function of the assembled structure clearance is given by:

G (x)= g (x)− g (x) (20)

where g (x) is the allowable value of the assembled structure clearance.

Through the above analysis, the limit state function of the assembled structure clearance is
decomposed into many subfunctions. Each subfunction is established based on the Kriging model,
and then the overall model of the assembled structure clearance function is derived based on the
relationship between the whole object and its sub-objects.

2.3 Reliability Assessment with the MCIS
In this section, the probabilistic analysis is conducted with the limit state function of the

assembled structure clearance. The candidate sample pool is determined via MCIS simulation. The
prediction values of the limit state function are acquired using the DCNK model.

2.3.1 Importance Sampling-Based Markov Chain Simulation
The Markov chain based on the Metropolis-Hasting algorithm is adopted in order to simulate

the conditional samples of the failure domain, and to improve their efficiency [25]. Conditional
samples are simulated in the failure domain using a Markov Chain [26] by following the steps
outlined below:

(1) Define the stationary distribution of the Markov Chain. According to the analysis results,
the failure probability of the assembled structure clearance is given by:

Pf =P {G (x)≤ 0} =
∫
G(x)≤0

f (x)dx (21)

where the vector x is uncertain input variables; f (x) indicates the joint probability density function
(PDF); G(x) is the limit state function, where G(x) > 0 indicates a safety state and G(x) < 0
presents a failure state; and Pf represents the failure probability of the reliability analysis problem.
The limit distribution of the Markov Chain is defined as the joint PDF q(x |F) in the failure
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domain F , when M conditional samples xFj (j= 1, 2, . . . ,M) in the failure domain F are simulated.

The q (x |F) is expressed as:

q (x | F)= IF (x) f (x) |Pf (22)

where IF (x) is a failure indicator function.

(2) Select the proper proposal distribution. The proposal distribution f ∗ (ε | x) controls the
transition from one state to another in the Markov Chain process. In this paper, the n-dimensional
uniform distribution with symmetry is selected as the proposal distribution. The f ∗ (ε | x) is
denoted by:

f ∗ (ε | x)=

⎧⎪⎨
⎪⎩

1∏n
i=1 li

,
∣∣εi−xi

∣∣≤ li
2

(i=1, 2, . . . , n)

0, otherwise

(23)

where εi and xi are the ith components of the n-dimensional vectors ε and x, respectively; li is the
length of the side in the xi direction of the n-dimensional hyper-polyhedron centered on x. The
choice of li governs the maximum allowable distance that the next sample can depart from the

current one. In this study, li takes an empirical value of li = 6σxiM
− 1
n+4 , where σxi is the variance

of input variables.

(3) Select the initial state of the Markov Chain xF0 . The initial state of the Markov Chain
should follow a limit distribution q (x |F) and can be determined by engineering.

(4) Determine the kth state xFk of the Markov Chain. The kth state xFk is generated based on

the (k − 1)th state xFk−1 and the proposal distribution. The alternative state ε is generated by the
proposal distribution f ∗ (ε | x). The conditional PDF ratio r of the alternate state to the previous
state is calculated in Eq. (24):

r= q (ε | F)

q
(
xFk−1 | F

) (24)

According to the Metropolis-Hasting algorithm, xFk = ε and xFk = xFk−1 are assumed with
probability min(1, r), i.e.,

xFk =
{

ε, min (1,r) > random [0, 1]

xFk−1, min (1, r)≤ random [0, 1]
(25)

where random [0, 1] is a uniformly distributed random number in [0, 1].

(5) Generate M conditional samples following a limit distribution q (x |F). The determined
kth state xFk of the Markov Chain is repeated. M states of the Markov Chain are generated as
the conditional samples within the failure domain following a limit distribution q(x |F).

In summary, the conditional samples xFk (k= 1, 2, . . . ,M) in the failure domain are obtained
with respect to a limit distribution q (x |F). Compared with the samples for the joint PDF values
in the failure domain, the sample for the largest joint PDF value in the failure domain is obtained,
which is used to approximate the most probable point (MPP) [27]. The MPP obtained by the joint
PDF is displayed in Fig. 3.
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MPP

G(x)>0

G(x) = 0
G(x)<0

O x1

x2

x3

Figure 3: MPP obtained using the joint PDF

In Fig. 3, the green face denotes the limit state surface, while the blue points represent the
conditional samples in the failure domain generated by MC simulation. The red point is the MPP,
while x1, x2, and x3 denote the components of x.

The importance sampling PDF is introduced to solve the failure probability [28], i.e.,

Pf =
∫
Rn
IF (x) f (x)dx=

∫
Rn
IF (x)

f (x)
h (x)

h (x)dx (26)

where h (x) is the importance sampling PDF; and Rn is the real number space.

As the MPP is the point with the largest joint PDF value in the failure domain, the impor-
tance sampling PDF is constructed at the MPP, i.e., the optimal importance sampling PDF h(x)
is computed by:

hopt (x)= IF (x) f (x)
Pf

(27)

The MCIS can be used to simulate the failure domain samples without information con-
cerning the true samples, such that it may determine the MPP with the largest joint PDF value
and thus construct the importance sampling PDF. Therefore, the MCIS is suitable for the highly
nonlinear and high-dimensional limit state function.

2.3.2 Reliability Analysis
In order to analyze the reliability of the assembled structure clearance efficiently, the MCIS

and DCNK models are combined. The MCIS is used to construct the importance sampling
PDF hopt(x) and the DCNK model is employed to generate the prediction values instead of the
assembled clearance function values.

The flowchart for analyzing the assembled structure clearance reliability is summarized in
Fig. 3. The specific process is as follows [29,30].

(1) Construct the importance sampling PDF hopt(x) using the MCIS.

(2) Generate the candidate sampling pool SIS using the hopt(x). NIS importance sampling
samples are generated as the candidate samples SIS =

{
x1,x2, . . . ,xNIS

}
.
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(3) Compute the DCNK model Gk(xp) (p = 1, 2,. . ., NIS) based on the candidate training
sample sets SIS and use the DACE toolbox for Kriging [31], where Gk(xp) denotes the limit state
function when the importance sampling samples are xp. The Gaussian is chosen in the correlation
model and the regression model is constant.

(4) Calculate the failure probability Pf using the failure indicator function values IF (xp)
judged by the DCNK model Gk(xp).

IF
(
xq

)=
{
0, Gk

(
xp

)
> 0

1, Gk
(
xp

)≤ 0

(
xp ∈ SIS

)
(28)

P̂f =
NIS∑
p=1

IF
(
xp

)
f
(
xp

)
hopt

(
xp

) (29)

3 Numerical Example

In order to validate the proposed DCNK model by comparing the Kriging model and the
WRSM, a highly nonlinear complex compound function is considered as the case study. All
computations are completed on a 64-bit desk computer with Intel Core i5–10400 of 2.9 GHz
CPU and 32 GB RAM.

3.1 Compound Function Approximation
In the numerical example, y(x) denotes the complex compound function, while the subfunc-

tions are represented by y(1)(x), y(2)(x), and y(3)(x). x = [x1, x2,. . ., x6] denotes the input variables,
which are assumed to be mutually independent and normally distributed as shown in Tab. 1.

Table 1: Distribution parameters of the input variables

Variable Mean Standard deviation

x1 3 0.1
x2 4 0.1
x3 2.5 0.1
x4 5 0.1
x5 0.5 0.1
x6 −0.5 0.1

The output response relationship between the complex compound function and subfunctions
is expressed by g(·), i.e.,
y (x)= g

(
y(1) (x) ,y(2) (x) ,y(3) (x)

)

= 2+ exp

(
−
(
y(1) (x)

)2
10

)
+
(
y(2) (x)

5

)
− (

y(3) (x)
)3
sin

((
y(2) (x)

)2)
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y(1) (x)= 2+ 0.01
(
x2 −x21

)2+ (1−x1)2+ 2 (2−x2)2+ 7 sin (0.5x1) sin ((0.7x1x2))

y(2) (x)=
(
x4− 5.1

4π2x
2
3+

5
π
− 6

)2

+ 10
(
1− 1

8

)
cosx3

y(3) (x)=
(
4− 2.1x25+

1
3
x36

)
x25 +x5x6 −

(
4− 4x26

)
x25

(30)

In order to establish the DCNK model, 50 samples are obtained using the LHS method
in accordance with the input variables’ distribution parameters. 30 samples are used as training
samples to establish the DCNK model, while the remaining 20 samples are taken as the testing
samples to verify the performance of the DCNK model. The decomposed and coordinated models
of the subfunctions are given by:

y(1)
DCNK (x)=−0.4981+ 0.4601x1+ 0.5322x2− 0.2015x21− 0.0648x22

y(2)
DCNK (x)= 0.1981− 0.3450x1− 0.1373x2+ 0.1325x21+ 0.0477x22

y(3)
DCNK (x)=−201.6247+ 61.0644x1+ 5.0543x2− 0.7635x21+ 0.8262x22

(31)

Then, y(1)
DCNK (x), y(2)

DCNK (x), and y(3)
DCNK (x) are considered the input variables of the com-

pound function y(x). Based on the Kriging model, yDCNK(x) is structured as:

yDCNK (x)=−0.1715+ 0.0246y(1)
DCNK (x)− 1.0456y(2)

DCNK (x)− 0.0367y(3)
DCNK (x)

−1.9018× 10−4
(
y(1)
DCNK (x)

)2+ 0.2298
(
y(2)
DCNK (x)

)2− 0.0163
(
y(3)
DCNK (x)

)2 (32)

Using these 30 samples as the training samples, a Kriging model ykriging(x) for the complex
compound function y(x) can be constructed as:

ykriging (x)=−0.0387+ 0.017x1+ 0.0026x2+ 1.0163x3+ 0.0865x4− 0.0407x5− 0.0535x6

+0.0185x21+ 0.0546x22+ 0.0053x23− 0.032x34+ 0.0164x25+ 0.0093x26
(33)

Similarly, the WRSM model yWRSM(x) for the complex compound function y(x) is given by:

yWRSM (x)=−5.6775− 4.9893x1− 6.6525x2− 9.859x3+ 11.9686x4− 0.3361x5+ 0.7948x6

+0.8316x21+ 0.8316x22+ 3.9972x23− 1.1069x24+ 0.1991x25+ 0.8124x26
(34)

3.2 Verifying the DCNKModel’s Accuracy
The accuracy of the DCNK model is tested using the remaining 20 samples. Using the true

response for the compound function as a reference, the prediction error of the DCNK model is
calculated by comparing the Kriging model and the WRSM. The prediction errors, including the
absolute error (Ea) and the average absolute error (Eav), are computed by:

Ea (xi)= |y∗ (xi)− ytrue (xi)|

Eav (xi)= 1
m

m∑
i=1

Ea (xi)= 1
m

m∑
i=1

|y∗ (xi)− ytrue (xi)|
(35)
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where y∗ (xi) (i = 1, 2, . . ., m) is the ith prediction response for the surrogate model to the ith
test samples; and ytrue(xi) denotes the true response for the complex compound function against
the ith testing samples.

The input variable x (x1, x2, x3, x4, x5, x6) is shown in Tab. 2. The results of the prediction
analysis from the DCNK model based on the testing samples are shown in Tabs. 3 and 4, and
Fig. 4.

Table 2: The input response for the test samples

x x1 x2 x3 x4 x5 x6

l1 3.3728 3.8552 2.5696 5.0774 0.1710 −0.7201
l2 3.0441 3.8383 2.7297 4.6712 0.1355 −0.6781
l3 3.1817 4.1805 2.3721 5.0593 0.6995 −0.5954
l4 2.8818 4.0135 2.3790 5.3479 0.6187 −0.4723
l5 2.9538 4.1479 2.4430 4.7604 0.5560 −0.1794
l6 2.6504 4.0794 2.6390 4.8726 0.6934 −0.4245
l7 3.0140 4.1872 2.5213 4.7966 0.5135 −0.4188
l8 3.1854 3.5486 2.7251 5.2258 0.5280 −0.3913
l9 2.7884 3.7956 2.3456 4.8887 0.3250 −0.2593
l10 2.9555 3.9656 2.5822 5.1503 0.5019 −0.3839

Table 3: The output response and errors for the test samples

Input
variables

True
value

DCNK Kriging WRSM

x value Ea(xi) Eav(xi) value Ea(xi) Eav(xi) value Ea(xi) Eav(xi)

l1 6.6019 6.6248 0.0229 0.0069 6.2636 0.3382 0.2155 6.7557 0.1539 0.0643
l2 7.1396 7.1367 0.0029 7.5982 0.4586 7.9760 0.8364
l3 4.5041 4.4269 0.0773 5.2464 0.7422 4.5895 0.0853
l4 4.5135 4.4821 0.0314 4.2592 0.2543 4.7365 0.2230
l5 4.8819 4.8751 0.0068 4.4979 0.3840 4.9731 0.0912
l6 6.9529 6.9824 0.0295 6.4689 0.4840 7.1697 0.2169
l7 5.6904 5.6848 0.0056 5.3006 0.3898 5.7460 0.0556
l8 8.5013 8.4855 0.0158 10.0864 1.5851 8.5572 0.0559
l9 4.1692 4.1670 0.0022 5.7383 1.5692 4.2888 0.1196
l10 6.7974 6.8102 0.0128 6.5370 0.2604 6.7070 0.0904

As seen in Tab. 3, the average absolute error of the DCNK model is only 0.0069, which is
far below those of the Kriging model and the WRSM (i.e., 0.2155 and 0.0643). The prediction
accuracy of the DCNK model is 99.3%, which is closer to the true value than those of the Kriging
model and the WRSM. As shown in Tab. 4, the modeling and prediction time of the DCNK
model are smaller than those of the Kriging model and the WRSM. The reason for this is that
the complex compound function is decomposed into the subfunctions using the DC strategy, with



1042 CMES, 2021, vol.129, no.2

the parallel calculation of subfunctions saving substantial time in the modeling and prediction
stages.

Table 4: Modeling and prediction times for the DCNK model, the Kriging model and the WRSM

Methods Modeling and prediction times

DCNK 0.0829 s
Kriging 0.1077 s
WRSM 15.2695 s

For different test samples, the absolute error curves of the DCNK model, the Kriging model
and the WRSM are shown in Fig. 4. As illustrated in Fig. 4, the absolute error curve of the
DCNK model is smaller than those in the Kriging model and the WRSM.
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Figure 4: The absolute error curves for the DCNK model, the Kriging model and the WRSM

In summary, the DCNK model performs better with regard to the complex compound func-
tion with large-scale parameters for a highly nonlinear problem. It is indicated that the DCNK
model is more robust and stable as a model. Therefore, the DCNK method is used to estimate
the assembled clearance reliability of an aeroengine HTP BTRRC.

4 Modeling and Simulation of the HTP BTRRC

The BTRRC refers to a critical assembly relationship in an aeroengine high-pressure turbine.
Its running clearance seriously affects the performance and reliability of an aeroengine. In this
section, we consider the BTRRC of an aeroengine as the study object for the purpose of verifying
the proposed DCNK approach.

4.1 HTP BTRRC Deterministic Analysis
Aeroengine turbines endure complex loads during operation, such as thermal loads, and

structural loads. In order to analyze the thermo-structural coupling, we simplify the HPT model
by ignoring tenons, pin holes, and cooling holes [32,33]. The climb phase of an aeroengine is
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selected as the study object [34]. The HPT BTRRC analysis is divided into the radial deformation
analysis of the blisks and casings. The FE models are shown in Fig. 5.

(a) (b) (c)

A1

A2

A3

B1

B2
B3

Figure 5: FE models of the turbine blisks and casings (a) 1/46 turbine blisk (b) Whole turbine
blisk (c) Turbine casing

The radial deformations of the blisks and casings are the largest in the climb phase of
aeroengines [35], as shown in Fig. 6.
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Figure 6: Distributions of radial deformations of the blisks and casing (a) Blisk (b) Casing

4.2 DCNKModeling of the HTP BTRRC
The key parameters are selected as random variables in BTRRC analysis [36–38]. The random

variables shown in Tab. 5 are assumed to be mutually independent and normally distributed.
In Tab. 5, ω is the rotor speed, ρ is the material density, T is the temperature, and α is the
surface coefficient of heat transfer. For the blisk variables, the subscripts d1, d2, and d3 of α

represent the areas of B1, B2, and B3, respectively, while the subscripts b1, b2, and b3 of T and α

denote the blade at the blade-tip, upper section, and lower section, respectively. For the casing
variables, the inside and outside temperatures of the casing are represented by Ti and To. The
casing interior is divided into four regions A, B, C, and D, which are indicated by the subscripts
c1, c2, c3, and c4 of α, respectively. The subscript o of α denotes the casing exterior.
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Table 5: The distributions of the random variables

Object Variables Mean Standard deviation

Blisk

Ta1/◦C 540 16.2
Ta2/◦C 210 6.3
Ta3/◦C 200 6.0
Tb1/◦C 245 7.35
Tb2/◦C 320 9.6
αd1/(W·m−2·K−1) 1527 45.81
αd2/(W·m−2·K−1) 1082 32.86
αd3/(W·m−2·K−1) 864 25.92
T1/◦C 1030 31
T2/◦C 980 29.4
T3/◦C 820 24.6
αb1/(W·m−2·K−1) 11756 352.68
αb2/(W·m−2·K−1) 8253 247.59
αb3/(W·m−2·K−1) 6547 196.41
ω/(rad·s−1) 1168 35.04
ρ/(kg·m−3) 8210 0.123

Casing

Ti/◦C 1050 31.5
To/◦C 320 9.6
αc1/(W·m−2·K−1) 6000 180
αc2/(W·m−2·K−1) 5400 162
αc3/(W·m−2·K−1) 4800 144
αc4/(W·m−2·K−1) 4200 126
αo/(W·m−2·K−1) 2600 78
ρ/(kg·m−3) 8400 252

Based on the characteristics of the random variables in Tab. 5, we extracted 282 samples of
random variables using the LHS method. These outputs, which correspond to the related input
samples, are obtained via multiple deterministic analyses. These samples are used to establish the
DCNK models for the radial deformations Yb and Yc of the blisks and casings, i.e.,

Yb=−0.0225+ 0.4493Ta1− 0.0013Ta2+ 0.0303Ta3+ 0.0087Tb1

+0.406Tb2− 2.8902× 10−4αd1 + 0.0246αd2− 0.0088αd3+ 0.0258T1

+0.4330T2+ 0.2712T3+ 6.0628× 10−4αb1+ 0.030αb2− 0.020αb3

+0.7238ω− 8.4782× 10−6ρ + 0.0058T2
a1+ 5.9721× 10−5T2

a2

+7.3754× 10−4T2
a3+ 2.1332× 10−4T2

b1+ 0.0017T2
b2− 4.8474× 10−4α2

d1

−9.9046× 10−4α2
d2+ 2.8033× 10−4α2

d3+ 9.0509× 10−5T2
1

−0.0053T2
2 + 0.0011T2

3 − 5.0349× 10−4α2
b1+ 2.3191× 10−5α2

b2

+1.0088× 10−4α2
b3+ 0.0192ω2+ 5.2763× 10−5ρ2

(36)
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Yc = 0.2757+ 0.4312Ti+ 0.3534To+ 0.0475αc1− 0.0193αc2

+0.0740αc3− 0.0249αc4− 0.3192αo+ 0.0202ρ + 0.1868T2
i

+0.0053T2
o + 0.0734α2

c1− 0.0828α2
c2− 0.0685α2

c3+ 0.1322α2
c4

−0.0583α2
o+ 0.0831ρ2

(37)

The BTRRC coordinated model YBT is obtained by Yc and Yb, such that:

YBT =Yb+Yc (38)

The limit state function of the BTRRC is denoted as:

YL =Yallow−YBT =Yallow− (Yb−Yc) (39)

where Yallow is the allowance value of the BTTRC, which is usually determined by 3 sigma levels.

4.3 Assessing the HTP BTRRC’s Reliability
The convergence analysis of the BTRRC limit state function is performed using different

DCNK approach simulations. The results of the convergence analysis are shown in Fig. 7.
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Figure 7: Convergence analysis with different DCNK approach simulations

As shown in Fig. 7, the BTRRC deformations fluctuate when the number of DCNK approach
simulations is less than 2 × 103. Moreover, the BTRRC deformation gradually converges to
0.0024.

The simulation history and BTRRC deformation distribution histogram are shown in Fig. 8.

As demonstrated in Fig. 8, the BTRRC deformation is normally distributed with a mean of
1.7635 × 10−3 m and a standard variance of 2.1420 × 10−3 m. The allowance value Yallow of the
BTTRC is 1.7650 × 10−3 m which is determined by the 3-sigma principle. Therefore, the failure
probability is 0.0024 and the reliability is 0.9976.

4.4 Simulation Performance Verification
In order to verify the DCNK approach in the BTRRC reliability assessment, the BTRRC

limit state equation is simulated for different times using the four methods (MC simulations, the
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Kriging model, the WRSM, and the DCNK model). The failure probabilities and reliability are
listed in Tab. 6.
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Figure 8: Simulation history and BTRRC deformation distribution (a) Simulation history of the
BTRRC deformation (b) Distribution of the BTRRC deformation

Table 6: The results of the BTRRC probabilistic analysis under the four methods

Sampling
number

Failure probability Reliability Precision (%)

MC WRSM Kriging DCNK MC WRSM Kriging DCNK WRSM Kriging DCNK

100 0 0.01 0.01 0.0035 1 0.99 0.99 0.9965 99 99 99.65
1000 0.002 0.004 0.001 0.0026 0.998 0.996 0.999 0.9974 99.70 99.92 99.96
2000 0.0022 0.003 0.0028 0.0024 0.9978 0.997 0.9972 0.9976 99.92 99.94 99.98
10000 – 0.0031 0.0027 0.0024 – 0.9969 0.9973 0.9976 – – –

As illustrated in Tab. 6, the failure probability and reliability of the DCNK approach converge
to constants when the number of simulations is 2000. The simulations under the DCNK approach
are far less than under the WRSM and the Kriging model. The precision of the DCNK approach
(99.98%) is higher than those of the Kriging model and the WRSM (i.e., 99.92% and 99.94%,
respectively) in the BTRRC reliability assessment. Therefore, the DCNK approach can produce
better simulations for the purpose of the HTP BTRRC analysis, compared to the Kriging model
and the WRSM.

5 Citations

In this paper, a new surrogate model method is proposed for the probabilistic analysis
involving assembled structure clearance with high nonlinearity and hyperparameters. In order
to establish the relationship between the input parameters and output response of the assem-
bled clearance, the DCNK approach is proposed by combining the Kriging model and the DC
strategy. The MCIS method and the DCNK model are used to assess the reliability of the assem-
bled structure clearance. The effectiveness and applicability of the DCNK approach are verified
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numerically and by assessing aeroengine HTP BTRRC reliability. Some conclusions are summa-
rized as follows:

(1) The average absolute error of the DCNK model is 0.0069, which is far less than that of
the Kriging model and the WRSM (i.e., 0.2155 and 0.0643, respectively).

(2) The prediction accuracy of the DCNK model is 99.3%, which is closer to the true value
than that of the Kriging model and the WRSM (78.5% and 93.6%, respectively).

(3) The modeling and prediction time for the DCNK model (0.0829 s) are smaller than those
of the Kriging model (0.1077 s) and the WRSM (15.2695 s).

(4) The failure probability is 0.0024 and reliability is 0.9976 when the allowance value of
the BTTRC is 1.7650 × 10−3 m. The failure probability and reliability of the DCNK approach
converges when the number of samples reaches 2000.

(5) The precision of the DCNK approach (99.98%) is higher than that of the Kriging model
and the WRSM (99.92% and 99.94%).

In summary, compared to the Kriging model and the WRSM, the DCNK approach performs
better for the complex compound function with large-scale parameters for a highly nonlinear
problem, when modeling approximation accuracy (modeling accuracy) and simulation performance
(computational efficiency and precision). The present study offers an effective approach to highly
nonlinear assembled structures, and promising insights for the probabilistic optimal design of the
HPT BTRRC.
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