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ABSTRACT

In this manuscript, the theory of complex T-spherical dual hesitant uncertain linguistic set is discovered, which is
the mixture of three different ideas like the complex T-spherical fuzzy set, dual hesitant fuzzy set, and uncertain
linguistic set. The complex T-spherical dual hesitant uncertain linguistic set composes the uncertain linguistic
set, truth grade, abstinence grade, and falsity grade. Whose real and imaginary parts are the subset of a unit
interval, and some of their operational laws are also presented. The theory of complex T-spherical dual hesitant
uncertain linguistic Muirhead mean operator, complex T-spherical dual hesitant uncertain linguistic weighted
Muirhead mean operator, complex T-spherical dual hesitant uncertain linguistic dual Muirhead mean operator
and complex T-spherical dual hesitant uncertain linguistic weighted dual Muirhead mean operator are discovered.
Some exceptional cases of the proposed operators are also examined. A multi-attribute decision making technique
is further utilized based on explored operators. Moreover, an enterprise informatization level evaluation issue is
resolved by using the presented operators to verify the proficiency and capability of the discovered approaches.
Finally, some comparative analysis and advantages of the explored works are further developed to express that it is
more flexible and effective than the existing methods.
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CTSDHULS Complex T-spherical dual hesitant uncertain linguistic sets.
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CTSDHULDMM Complex T-spherical dual hesitant uncertain linguistic dual Muirhead mean
operator.

CTSDHULWDMM Complex T-spherical dual hesitant uncertain linguistic weighted dual Muirhead
mean operator.

MADM Multi-attribute decision making.

1 Introduction

Owing to the extensive existence of uncertain information, some practical decision-making
issues are often intractable and complicated, which are very difficult for a decision-maker to cope
with. For managing such kinds of issues, the theory of intuitionistic fuzzy set (IFS) was discovered
by Atanassove [1]. IFS is a modified version of the fuzzy set (FS) [2], composing the grade of
truth and the grade of falsity with a condition that the sum of both grades’ cannot exceed the unit
interval. Numerous scholars have widely explored the application of the IFS theory in different
fields [3–5]. In general, the IFS must hold the limitation that the sum of both grades cannot
exceed the unit interval. However, in awkward realistic decision issues, this limitation cannot
always be held. For example, if a decision-maker provides the pair A = (0.7, 0.6) for the grade
of truth and the grade of falsity. As 0.7+ 0.6= 1.3 > 1, then A cannot be handled by the IFS.
To extend the information space that IFS cannot describe, Yager [6] discovered the Pythagorean
fuzzy set (PyFS) with a constraint that the sum of the squares of both grades is limited in the
interval [0, 1]. Compared to the IFS, the PyFS is more extensively proficient to handle awkward
and vague information in realistic decision issues. However, there is still a problem in PyFS, i.e.,
when a decision-maker provides the pair A = (0.9, 0.8) for the grade of truth and the grade of
falsity, then A cannot be handled by PyFS and IFS as 0.92 + 0.82 = 0.81+ 0.64 = 1.45 > 1. To
extend the PyFS’s information space, Yager [7] then discovered the q-rung orthopair fuzzy set
(QROFS) with a constraint that the sum of the q-powers of both grades cannot exceed from [0,
1]. The QROFS is an useful extension of the PFS and IFS to solve the awkward and uncertain
information in realistic decision issues. At present, Numerous applications of the QROFS have
extensively been utilized in different fields [8–10].

There are no complications that the theory of IFS has an extensive technique to manage
awkward and difficult information in real-life issues, but it still cannot precisely deal with some
voting problems in reality. This category of voting divides into four parts, i.e., the vote in favor,
abstinence, vote against, and refusal. For managing such kinds of problems, the theory of picture
fuzzy set (PFS) was discovered by Cuong et al. [11]. The PFS composes the grade of truth,
abstinence, and falsity with the condition that the sum of all grades shall limit in the unit interval.
Until now, it has received numerous extensions and applications in different fields [12–14]. But,
when a decision-maker provides the pair A = (0.6, 0.5, 0.3) for the grade of truth, the grade of
abstinence, and the grade of falsity, the PFS cannot handle this evaluation as 0.6+ 0.5+ 0.3=
1.4> 1. To overcome this limitation, Mahmood et al. [15] then discovered the spherical fuzzy set
(SFS) with a condition that the sum of the squares of the truth, abstinence, and falsity grades
cannot exceed the unit interval. However, the SFS is useless to deal with the pair A= (0.9, 0.8, 0.7),
wherein 0.9+0.8+0.7= 2.4> 1 and 0.92+0.82+0.72 = 0.81+0.64+0.49= 1.94> 1. To achieve a
broader information space, Mahmood et al. [15] discovered the T-spherical fuzzy set (TSFS) with
a situation that the sum of the q-powers of the truth, abstinence, and falsity grades shall list in
the unit interval. Now the theory of TSFS has been extensively utilized in different areas [16–18].

The theory of complex IFS (CIFS) was discovered by Alkouri et al. [19]. CIFS is a basic
modified version of complex FS (CFS) [20], composed by the grade of truth and falsity in the
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form of a complex number with the condition that the sum of the real part (also for the imaginary
part) of both grades shall not exceed the unit interval. The graphical representation of the unit
circle in a complex plane is discussed in the form of Fig. 1. It has attracted the attention of
many researchers and has been widely utilized in various fields [21–23]. The CIFS must hold the
limitation that the sum of the real part (also for the imaginary part) of both grades cannot exceed
the unit interval. However, in awkward realistic decision issues, this limitation cannot be always
held. Afterward, Ullah et al. [24] presented the complex PFS (CPFS) with a constraint that the
sum of the real part (also for the imaginary part) of the squares of both grades’ cannot exceed
from [0, 1]. Compared with the CIFS, the CPFS is more effective to cope with awkward and
vague information in realistic decision issues. Based on the CPFS, Liu et al. [25,26] developed
the complex QROFS (CQROFS) with the constraint that the sum of the real part (also for the
imaginary part) of the q-powers of both grades cannot exceed from [0, 1] [27–33]. The geometrical
interpretation of the existing notions is discussed with the help of Fig. 2.

Figure 1: Geometrical representation of the unit disc

Figure 2: Graphical representation of the IFS, PFS, and QROFS
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The FS utilizes just one value to express the truth grade, nonetheless, decision-makers are
often hesitant among a few qualities while building up the truth grade in extensive practical
MADM issues. To successfully manage decision-makers high hesitancy, Torra [34] presented the
idea of a hesitant FS (HFS), which permits the truth grade to be signified by a few single
values rather than just one. Inferred from its great capability of finding fuzzy data and decision-
makers hesitancy, HFS has been viewed as one of the most impressive and adaptable techniques
in MADM methodology [35–37]. However, the HFS is coping only with the truth level, whereas
it ignores the grade of falsity. Zhu et al. [38] then presented the dual HFS (DHFS), which
contains the truth grade as well as the falsity grade in the form of subsets of [0, 1]. If compared
with the HFS, the DHFS is more proficient and reliable to cope with complicated and awkward
information in realistic decision issues. Numerous scholars have utilized the theory of DHFS in
different fields [39–41].

In genuine decision-making, there are numerous complexities and difficulties which are hard
to give attribute values by quantitative assessment. Nonetheless, they are anything but difficult
to give the linguistic assessment. Since Zadeh [42] discovered the linguistic variable set (LVS),
the exploration of multi-attribute decision-making issues based on linguistic assessment data has
gotten rich accomplishments. Now and again, decision-makers do not communicate his/her feelings
by choosing linguistic labels, but they can show the data by interval linguistic label, in other
words, by uncertain linguistic variables (ULVs) [43,44]. In certain genuine life troubles, we go over
numerous circumstances where we need to measure the vulnerability existing in the information to
settle on ideal choices. Data measures are significant devices for taking care of unsure data present
in our day-to-day life issues. Different measures of information, such as aggregation operators,
hybrid operators, and inclusion, process the inconsistent information and facilitate us to reach
some conclusion. Recently, these measures have gained much attention from many authors due
to their wide applications in various fields, such as decision making, pattern recognition, and
multi-attribute group decision making. All the prevailing approaches of decision-making, based
on information measures, in picture fuzzy set (PFS), spherical fuzzy set (SFS) and T-spherical
fuzzy sets (T-SFS) theories, deal with only the grades of truth, abstinence and falsity, which
are real-valued. In CTSDHULS theory, truth, abstinence, and falsity grades are complex-valued
and are represented in polar coordinates, with uncertain linguistic terms. The amplitude term
corresponding to truth, abstinence and falsity degrees gives the extent of membership, abstinence,
and non-membership of an object, whose real and unreal parts in the form of the finite subset
of the unit interval. The phase terms are novel parameters of the truth, abstinence, and falsity
degrees and these are the parameters that distinguish the CTSDHULS and traditional T-spherical
dual hesitant uncertain linguistic set (TSDHULS) theories. The TSDHULS theory deals with only
one dimension at a time, which results in information loss in some instances. However, in real
life, we come across complex natural phenomena where it becomes essential to add the second
dimension to the expression of truth, abstinence, and falsity grades. By introducing this second
dimension, the complete information can be projected in one set, and hence, loss of information
can be avoided. To illustrate the significance of the phase term, we give an example. Assume XYZ
organization chooses to set up biometric-based participation gadgets (BBPGs) in the entirety of
its workplaces spread everywhere in the country. For this, the organization counsels a specialist
who gives the data concerning (i) demonstrates of BBPGs and (ii) creation dates of BBPGs. The
organization needs to choose the most ideal model of BBPGs with its creation date all the while.
Here, the issue is two-dimensional, to be specific, the model of BBPGs and the creation date of
BBPGs. This kind of issue cannot be displayed precisely utilizing the conventional TSDHULS
hypothesis as the TSDHULS hypothesis cannot handle both the measurements at the same time.
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The most ideal approach to address the entirety of the data given by the master is by utilizing
the CTSDHULS hypothesis. The sufficiency terms in CTSDHULS might be utilized to give the
organization’s choice regarding the model of BBPGs and the stage terms might be utilized to
address the organization’s judgment concerning the creation date of BBPGs.

Presently, aggregation operator is one of the most important technique which will help
not only in comparing one data entity with other but also show the extent of associa-
tion between them and their direction. Also, CTSDHULSs have a powerful ability to model
the imprecise and ambiguous information in real-world applications than the existing theories
such as TSDHULS, spherical dual hesitant uncertain linguistic sets (SDHULS). Based on the
ULVs, the theory of complex picture dual hesitant uncertain linguistic set (CPDHULS) is
proposed, which is a very proficient technique with a condition that the sum of the supre-
mum of the real part (also for the imaginary part) of the truth, abstinence, and falsity
grades cannot exceed from the unit interval, i.e., max {0.2, 0.3, 0.4} + max {0.02, 0.03, 0.04} +
max {0.1, 0.2, 0.3} = 0.4 + 0.04 + 0.3 = 0.74 ≤ 1 and max {0.1, 0.2, 0.3} + max {0.01, 0.02, 0.03} +
max {0.2, 0.3} = 0.3 + 0.03 + 0.3 = 0.63 ≤ 1. However, there is still a problem, given the
pair

{{0.2, 0.3, 0.7}ei2π{0.1,0.8,0.3}, {0.02, 0.03, 0.07}ei2π{0.01,0.08,0.03}, {0.1, 0.2, 0.4}ei2π{0.2,0.3}}, for the
grade of truth, abstinence, and falsity, then the CPDHULS fails to cope with it. For cop-
ing with such types of issues, the theory of complex spherical dual hesitant uncertain lin-
guistic set (CSDHULS) is a very proficient technique with the condition that the sum of
the square of the supremum of the real part (also for the imaginary part) of the truth,
abstinence, and falsity grades cannot exceed from the unit interval, i.e., (max {0.2, 0.3, 0.7})2 +
(max {0.02, 0.03, 0.07})2+ (max {0.1, 0.2, 0.4})2 = 0.72+0.072+0.42 = 0.49+0.0049+0.16= 0.6549≤
1 and (max {0.1, 0.8, 0.3})2 + (max {0.01, 0.08, 0.03})2 + (max {0.2, 0.3})2 = 0.82 + 0.082 + 0.32 =
0.64+ 0.0064+ 0.09= 0.7364≤ 1. However, there is still a problem, when a decision-maker gives
the pair

{{0.2, 0.3, 0.9}ei2π{0.1,0.8,0.3} + {0.02, 0.03, 0.09}ei2π{0.01,0.08,0.03}, {0.1, 0.2, 0.8}ei2π{0.2,0.7}}, for
the grade of truth, abstinence, and falsity, then the CPDHULS and CSDHULS are not able to
cope with it.

For coping with such types of issues, based on the work of complex TSFS (CTSFS) [45],
in this paper, we shall develop a new fuzzy tool, called the theory of complex T-spherical dual
hesitant uncertain linguistic set (CTSDHULS), a very proficient technique that can effectively
solve the deficiency of existing methods in describing uncertain information. The summary of the
discovered theory of this manuscript is followed as:

(1) To explore the theory of CTSDHULS and their operational laws.

(2) To develop some aggregation methods for the CTSDHULS, including the CTSDHULMM
operator, CTSDHULWMM operator, CTSDHULDMM operator, and CTSDHULWDMM oper-
ator, and discuss some of their cases.

(3) A MADM technique is utilized on basis of the explored operators. The enterprise informa-
tization level evaluation issue is presented to verify the proficiency and capability of the discovered
approaches.

(4) Finally, the comparative analysis and graphical expressions of the explored works are
further developed to express more extensive and flexibility than the existing methods.

The purpose of this study is organized in the following ways: In Section 2, we recall the
notion of ULSs, DHFSs, CTSFSs, Muirhead mean (MM) operator, Dual Muirhead mean (DMM)
operator and their operational laws. In Section 3, the notion of CTSDHULS and their operational
laws are discovered. In Section 4, we explore the CTSDHULMM operator, CTSDHULWMM
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operator, CTSDHULDMM operator, and CTSDHULWDMM operator. Additionally, the special
cases of the presented work are also discussed. In Section 5, a MADM technique is constructed
and applied to solve the enterprise informatization level evaluation. Finally, a deep comparative
analysis is presented to verify the proficiency and capability of the discovered approaches. The
conclusion of this manuscript is discussed in Section 6.

2 Preliminaries

In this study, we recall the notion of ULSs, DHFSs, CTSFSs, Muirhead mean (MM) operator,
Dual Muirhead means (DMM) operator, and their operational laws which will be used fully in
the next section.

Definition 1: [42] A LTS is initiated by:

L= {L0,L1,L2, . . . ,Lk−1
}

(1)

where k should be odd, which holds the following conditions:

(1) If k> k′, then Lk > Lk′ ;
(2) The negative operator neg (Lk)=Lk′ with a condition k+ k′ = k+ 1;
(3) If k≥ k′, max (Lk,Lk′)=Lk, and if k≤ k′, max (Lk,Lk′)=Lk.

Additionally, L̂ = {Li : i ∈R} denotes the LTSs. A set L = [Li,Lj
]
,Li,Lj ∈ L̂ (i≤ j) is called

ULVs, where Li,Lj represent the upper and lower limits of L, respectively [45].

Definition 2: [38] A DHFS QDH is initiated by:

QDH = {(MQDH (x) ,NQDH (x)
)
: x ∈XUNI

}
(2)

where the symbols MQDH = {MQR−1 ,MQR−2 , . . . ,MQR−n
}
and NQDH = {NQR−1 ,NQR−2, . . . ,

NQR−m
}

express the grade of truth and falsity in the form of a subset of [0, 1], with the

condition: 0 ≤max
(MQDH

)+max
(NQDH

)≤ 1. The pair QDH = (MQDH ,NQDH

)
is called dual

hesitant fuzzy numbers (DHFNs).

Definition 3: [45] A CTSFS QCQ is initiated by:

QCQ =
{(

MQCQ (x) ,AQCQ (x) ,NQCQ (x)
)
: x ∈XUNI

}
(3)

where the symbols MQCQ = MQRPe
i2π

(
MQIP

)
,AQCQ = AQRPe

i2π
(
AQIP

)
and NQCQ =

NQRPe
i2π

(
NQIP

)
represent the grade of truth, abstinence, and falsity with the conditions: 0 ≤

MqSC
QRP

+ AqSC
QRP

+ N qSC
QRP

≤ 1 and 0 ≤ MqSC
QIP

+ AqSC
QIP

+ N qSC
QIP

≤ 1, qSC ≥ 1. Additionally, πQCQ =

πQRPe
i2π

(
πQIP

)
=
(
1−

(
MqSC

QRP
+AqSC

QRP
+N qSC

QRP

)) 1
qSC e

i2π
(
1−
(
MqSC

QIP
+AqSC

QIP
+N qSC

QIP

)) 1
qSC

is called the

refusal grade. The pair QCQ =
(

MQRPe
i2π

(
MQIP

)
,AQRPe

i2π
(
AQIP

)
,NQRPe

i2π
(
NQIP

))
is called

complex T-spherical fuzzy numbers (CTSFNs). For any two CTSFNs

QCQ−1 =
(

MQRP−1e
i2π

(
MQIP−1

)
,AQRP−1e

i2π
(
AQIP−1

)
,NQRP−1e

i2π
(
NQIP−1

))
and
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QCQ−2 =
(

MQRP−2e
i2π

(
MQIP−2

)
,AQRP−2e

i2π
(
AQIP−2

)
,NQRP−2e

i2π
(
NQIP−2

))
,

then we define some operational laws, such that:

QCQ−1⊕QCQ−2

=

⎛
⎜⎝
(
MqSC

QRP−1
+MqSC

QRP−2
−MqSC

QRP−1
MqSC

QRP−2

) 1
qSC e

i2π
(
MqSC

QIP−1
+MqSC

QIP−2
−MqSC

QIP−1
MqSC

QIP−2

) 1
qSC

,

AQRP−1AQRP−2e
i2π

(
AQIP−1

AQIP−2

)
,NQRP−1NQRP−2e

i2π
(
NQIP−1

NQIP−2

)
⎞
⎟⎠

(4)

QCQ−1⊗QCQ−2

=

⎛
⎜⎜⎜⎜⎜⎜⎝

MQRP−1MQRP−2e
i2π

(
MQIP−1

MQIP−2

)
,(

AqSC
QRP−1

+AqSC
QRP−2

−AqSC
QRP−1

AqSC
QRP−2

) 1
qSC e

i2π
(
AqSC

QIP−1
+AqSC

QIP−2
−AqSC

QIP−1
AqSC

QIP−2

) 1
qSC

,(
N qSC

QRP−1
+N qSC

QRP−2
−N qSC

QRP−1
N qSC

QRP−2

) 1
qSC e

i2π
(
N qSC

QIP−1
+N qSC

QIP−2
−N qSC

QIP−1
N qSC

QIP−2

) 1
qSC

⎞
⎟⎟⎟⎟⎟⎟⎠

(5)

ϒSCQCQ−1 =

⎛
⎜⎜⎜⎝
(
1−

(
1−MqSC

QRP−1

)ϒSC) 1
qSC

e
i2π

(
1−
(
1−MqSC

QIP−1

)ϒSC
) 1
qSC

,

AϒSC

QRP−1
e
i2π

(
AϒSC

QIP−1

)
,N ϒSC

QRP−1
e
i2π

(
NϒSC

QIP−1

)

⎞
⎟⎟⎟⎠ (6)

QϒSC

CQ−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

MϒSC

QRP−1
e
i2π

(
MϒSC

QIP−1

)
,
(
1−

(
1−AqSC

QRP−1

)ϒSC) 1
qSC

e
i2π

(
1−
(
1−AqSC

QIP−1

)ϒSC
) 1
qSC

,

(
1−

(
1−N qSC

QRP−1

)ϒSC) 1
qSC

e
i2π

(
1−
(
1−N qSC

QIP−1

)ϒSC
) 1
qSC

⎞
⎟⎟⎟⎟⎟⎟⎠ (7)

Additionally, we introduce the score function (SF) and accuracy function (AF) of the CTSFN
as below:

SSF
(QCQ−1

)=
(MqSC

QRP−1
+MqSC

QIP−1
−AqSC

QRP−1
−AqSC

QIP−1
−N qSC

QRP−1
−N qSC

QIP−1

3

)
(8)

HAF
(QCQ−1

)=
(MqSC

QRP−1
+MqSC

QIP−1
+AqSC

QRP−1
+AqSC

QIP−1
+N qSC

QRP−1
+N qSC

QIP−1

3

)
(9)

The relationship between any two CTSFNs can be cleared with the help of the following
laws:

(1) If SSF
(QCQ−1

)
> SSF

(QCQ−2
)
, then QCQ−1 > QCQ−2;

(2) If SSF
(QCQ−1

)=SSF
(QCQ−2

)
; then
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(1) If HAF
(QCQ−1

)
> HAF

(QCQ−2
)
, then QCQ−1 > QCQ−2;

(2) If HAF
(QCQ−1

)=HAF
(QCQ−2

)
, then QCQ−1 =QCQ−2.

Definition 4: [46] For any QPI−i (i= 1, 2, 3, . . . ,n), then the MM operator is initiated by:

MM� (QPI−1,QPI−2, . . . ,QPI−n)=
⎛
⎝ 1
n!

∑
O∈Rn

n∏
i=1

QλSC−i
PI−O(i)

⎞
⎠

1∑n
i=1 λSC−i

(10)

where � = (
λSC−1,λSC−2, . . . ,λSC−n

) ∈ Rn denotes all possible permutations and O (i) , i =
1, 2, 3, . . . ,n is any one of Rn.

Definition 5: [47] For any QPI−i (i= 1, 2, 3, . . . ,n), then the DMM operator is initiated by:

DMM� (QPI−1,QPI−2, . . . ,QPI−n)= 1∑n
i=1 λSC−i

⎛
⎝ ∏

O∈Rn

n∑
i=1

λSC−iQPI−O(i)

⎞
⎠

1
n!

(11)

where � = (
λSC−1,λSC−2, . . . ,λSC−n

) ∈ Rn expresses all possible permutations and O (i) , i =
1, 2, 3, . . . ,n is any one of Rn.

3 Complex T-Spherical Dual Hesitant Uncertain Linguistic Sets

In this study, we discover the idea of CTSDHULSs and their basic laws which are very helpful
in the next section.

Definition 6: A CTSDHULS QCD is initiated by:

QCD = {([L�(i),L∇(j)
]
,
(MQCD (x) ,AQCD (x) ,NQCD (x)

))
: x ∈XUNI

}
(12)

where the symbols

MQCQ = {MQRP−1 ,MQRP−2, . . . ,MQRP−n
}
e
i2π

{
MQIP−1

,MQIP−2
,...,MQIP−n

}
,

AQCQ = {AQRP−1 ,AQRP−2, . . . ,AQRP−n
}
e
i2π

{
AQIP−1

,AQIP−2
,...,AQIP−n

}
and

NQCQ = {NQRP−1 ,NQRP−2, . . . ,NQRP−m
}
e
i2π

{
NQIP−1

,NQIP−2
,...,NQIP−m

}
express the grade of truth, abstinence, and falsity, whose real and imaginary parts
are in the form of a subset of [0, 1], with a condition: 0 ≤ (

max
(MQRP−i

))qSC +(
max

(AQRP−i
))qSC + (

max
(NQRP−1

))qSC ≤ 1 and 0 ≤ (
max

(MQIP−i
))qSC + (

max
(AQIP−i

))qSC +(
max

(NQIP−1

))qSC ≤ 1,qSC ≥ 1, with
[L�(i),L∇(j)

] ∈ L̂. Additionally, πQCD = πQRP−i e
i2π

(
πQIP−i

)
=(

1−
(
MqSC

QRP−i +AqSC
QRP−i +N qSC

QRP−i

)) 1
qSC e

i2π
(
1−
(
MqSC

QIP−i+AqSC
QIP−i+N qSC

QIP−i

)) 1
qSC

is called the refusal

grade. The pair QCD = ([L�i ,L∇j
]
.
(MQCD ,AQCD (x) ,NQCD

))
is called the complex T-spherical

dual hesitant uncertain linguistic numbers (CTSDHULNs).
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Definition 7: For any two CTSDHULNs Q1
CD =

([L�1,L∇1

]
.
(
MQ1

CD
,AQ1

CD
,NQ1

CD

))
and

Q2
CD =

([L�2 ,L∇2

]
.
(
MQ2

CD
,AQ2

CD
,NQ2

CD

))
, then some operational laws are defined as follows:

Q1
CD⊕Q2

CD

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[L�1+�2 ,L∇1+∇2

]
,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∐⎛
⎝MQRP−1

∈MQ1
CD

,

MQRP−2
∈MQ2

CD

⎞
⎠
(MqSC

QRP−1
+MqSC

QRP−2

−MqSC
QRP−1

MqSC
QRP−2

) 1
qSC

e

i2π .
∐⎛
⎜⎜⎝
MQIP−1

∈MQ1
CD

,

MQIP−2
∈MQ2

CD

⎞
⎟⎟⎠

⎛
⎝MqSC

QIP−1
+MqSC

QIP−2

−MqSC
QIP−1

MqSC
QIP−2

⎞
⎠

1
qSC

,

∐⎛
⎝AQRP−1

∈AQ1
CD

,

AQRP−2
∈AQ2

CD

⎞
⎠
(
AQRP−1

AQRP−2

)
e

i2π
∐⎛
⎜⎜⎝
AQIP−1

∈AQ1
CD

,

AQIP−2
∈AQ2

CD

⎞
⎟⎟⎠
(
AQIP−1AQIP−2

)

,

∐⎛
⎝NQRP−1

∈NQ1
CD

,

NQRP−2
∈NQ2

CD

⎞
⎠
(
NQRP−1

NQRP−2

)
e

i2π
∐⎛
⎜⎜⎝
NQIP−1

∈NQ1
CD

,

NQIP−2
∈NQ2

CD

⎞
⎟⎟⎠
(
NQIP−1NQIP−2

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(13)

Q1
CD⊗Q2

CD

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[L�1×�2 ,L∇1×∇2

]
,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∐⎛
⎝MQRP−1

∈MQ1
CD

,

MQRP−2
∈MQ2

CD

⎞
⎠
(
MQRP−1

MQRP−2

)
e

i2π
∐⎛
⎜⎜⎝
MQIP−1

∈MQ1
CD

,

MQIP−2
∈MQ2

CD

⎞
⎟⎟⎠
(
MQIP−1MQIP−2

)

,

∐⎛
⎝AQRP−1

∈AQ1
CD

,

AQRP−2
∈AQ2

CD

⎞
⎠
(AqSC

QRP−1
+AqSC

QRP−2

−AqSC
QRP−1

AqSC
QRP−2

) 1
qSC

e

i2π .
∐⎛
⎜⎜⎝
AQRP−1

∈AQ1
CD

,

AQRP−2
∈AQ2

CD

⎞
⎟⎟⎠

⎛
⎝AqSC

QIP−1
+AqSC

QIP−2

−AqSC
QIP−1

AqSC
QIP−2

⎞
⎠

1
qSC

,

∐⎛
⎝NQRP−1

∈NQ1
CD

,

NQRP−2
∈NQ2

CD

⎞
⎠
(N qSC

QRP−1
+N qSC

QRP−2

−N qSC
QRP−1

N qSC
QRP−2

) 1
qSC

e

i2π .
∐⎛
⎜⎜⎝
NQRP−1

∈NQ1
CD

,

NQRP−2
∈NQ2

CD

⎞
⎟⎟⎠

⎛
⎝N qSC

QIP−1
+N qSC

QIP−2

−N qSC
QIP−1

N qSC
QIP−2

⎞
⎠

1
qSC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)
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ϒSCQ1
CD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
LϒSC×�1

,LϒSC×∇1

]
,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∐
MQRP−1∈MQ1

CD

(
1−

(
1−MqSC

QRP−1

)ϒSC
) 1

qSC
e

i2π

⎛
⎜⎝∐MQIP−1

∈MQ1
CD

(
1−
(
1−MqSC

QIP−1

)ϒSC
) 1
qSC

⎞
⎟⎠
,

∐
AQRP−1∈AQ1

CD

AϒSC

QRP−1
e
i2π

(∐
AQIP−1

∈AQ1
CD

AϒSC
QIP−1

)
,

∐
NQRP−1∈NQ1

CD

NϒSC

QRP−1
e
i2π

(∐
NQIP−1

∈NQ1
CD

N ϒSC
QIP−1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)

Q1ϒSC

CD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
L

�ϒSC
1

,L∇ϒSC
1

]
,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∐
MQRP−1∈MQ1

CD

MϒSC

QRP−1
e
i2π

(∐
MQIP−1

∈MQ1
CD

MϒSC
QIP−1

)
,

∐
AQRP−1∈AQ1

CD

(
1−

(
1−AqSC

QRP−1

)ϒSC
) 1

qSC
e

i2π

⎛
⎜⎝∐AQIP−1

∈AQ1
CD

(
1−
(
1−AqSC

QIP−1

)ϒSC
) 1
qSC

⎞
⎟⎠
,

∐
NQRP−1∈NQ1

CD

(
1−

(
1−N qSC

QRP−1

)ϒSC
) 1

qSC
e

i2π

⎛
⎜⎝∐NQIP−1

∈NQ1
CD

(
1−
(
1−N qSC

QIP−1

)ϒSC
) 1
qSC

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(16)

By using any two CTSDHULNs Q1
CD =

⎛
⎝[L1,L2] ,

⎛
⎝ {0.3, 0.9}ei2π{0.2,0.3,0.8},
{0.03, 0.09}ei2π{0.02,0.03,0.08},

{0.2, 0.8}ei2π{0.2,0.3}

⎞
⎠
⎞
⎠ and

Q2
CD =

⎛
⎝[L2,L3] ,

⎛
⎝ {0.31, 0.91}ei2π{0.21,0.31,0.81},
{0.031, 0.091}ei2π{0.021,0.031,0.081},

{0.21, 0.81}ei2π{0.2,0.31}

⎞
⎠
⎞
⎠, for qSC = 6 and ϒSC = 2, then by using

the Eqs. (13)–(16), we get the following results:

Q1
CD⊕Q2

CD =
⎛
⎝[L3,L5] ,

⎛
⎝{0.34256, 0.96299}ei2π{0.23044,0.34256,0.88193},{0.00093, 0.00819}ei2π{0.00042,0.00093,0.00648},

{0.042, 0.648}ei2π{0.042,0.093}

⎞
⎠
⎞
⎠

Q1
CD⊗Q2

CD =
⎛
⎝[L2,L6] ,

⎛
⎝ {0.093, 0.819}ei2π{0.042,0.093,0.648},
{0.03426, 0.10159}ei2π{0.02304,0.03426,0.09037},

{0.23044, 0.88193}ei2π{0.23044,0.34256}

⎞
⎠
⎞
⎠

2 ∗Q1
CD =

⎛
⎝[L2,L4] ,

⎛
⎝{0.33672, 0.95953}ei2π{0.22449,0.33672,0.87719},{0.0009, 0.0081}ei2π{0.0004,0.0009,0.0064},

{0.04, 0.64}ei2π{0.04,0.09}

⎞
⎠
⎞
⎠

Q12
CD =

⎛
⎝[L1,L4] ,

⎛
⎝ {0.09, 0.81}ei2π{0.04,0.09,0.64},
{0.03367, 0.10102}ei2π{0.02245,0.03367,0.0898},

{0.22449, 0.87719}ei2π{0.22449,0.33672}

⎞
⎠
⎞
⎠
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Additionally, we can examine the SF and AF of the CTSDHULN below:

SSF

(
Q1

CD

)
= 1

10
(�1+∇1)×

⎛
⎜⎜⎜⎜⎜⎝
1
n

n∑
i=1

MQRP−i +
1
n

n∑
i=1

MQIP−i −
1
l

l∑
j=1

AQRP−k −
1
l

l∑
j=1

AQIP−k

− 1
m

m∑
j=1

NQRP−j −
1
m

m∑
j=1

NQIP−j

⎞
⎟⎟⎟⎟⎟⎠
(17)

HAF

(
Q1

CD

)
= 1

10
(�1 +∇1)×

⎛
⎜⎜⎜⎜⎜⎝
1
n

n∑
i=1

MQRP−i +
1
n

n∑
i=1

MQIP−i +
1
l

l∑
j=1

AQRP−k +
1
l

l∑
j=1

AQIP−k+

1
m

m∑
j=1

NQRP−j +
1
m

m∑
j=1

NQIP−j

⎞
⎟⎟⎟⎟⎟⎠
(18)

For any two CTSDHULNs, we can examine their relationships with the help of the following
laws:

(1) If SSF
(Q1

CD

)
> SSF

(Q2
CD

)
, then Q1

CD > Q2
CD;

(2) If SSF
(Q1

CD

)=SSF
(Q2

CD

)
; then

1) If HAF
(Q1

CD

)
> HAF

(Q2
CD

)
, then Q1

CD > Q2
CD;

2) If HAF
(Q1

CD

)=HAF
(Q2

CD

)
, then Q1

CD =Q2
CD.

4 Complex T-Spherical Dual Hesitant Uncertain Linguistic Aggregation Operators

In this study, we explore the CTSDHULMM operator, CTSDHULWMM operator, CQROD-
HULDMM operator, CQRODHULWDMM operator, and their cases.

Definition 8: For any family of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n), then the CTSDHULMM

operator is initiated by:

CTSDHULMM�
(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
=
(
1
n!

⊕O∈Rn

(
⊗n
i=1QO(i)λ

SC−i

CD

)) 1∑n
i=1 λSC−i

(19)

where � = (
λSC−1,λSC−2, . . . ,λSC−n

) ∈ Rn represents all possible permutations and O (i) , i =
1, 2, 3, . . . ,n is any one of Rn.
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Theorem1: For any family of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n), let �= (λSC−1,λSC−2, . . . ,

λSC−n
)∈Rn be all possible permutations and O (i) , i= 1, 2, 3, . . . ,n any one of Rn, then

CTSDHULMM�
(
Q1
CD,Q2

CD, . . . ,Qn
CD

)
=⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣L(

1
n!
∑

O∈Rn
∏n
i=1 �λSC−i

O(i)

) 1∑n
i=1 λSC−i

,L(
1
n!
∑

O∈Rn
∏n
i=1∇λSC−i

O(i)

) 1∑n
i=1 λSC−i

⎤
⎥⎦ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∐(
MQRP−O(i)∈MQO(i)

CD

)
⎧⎪⎨
⎪⎩
⎛
⎝1−(∏O∈Rn

(
1−∏n

i=1 MqSCλSC−i
QRP−O(i)

)) 1
n!

⎞
⎠

1
qSC

⎫⎪⎬
⎪⎭

1∑n
i=1 λSC−i

×

e

i2π .

⎛
⎜⎜⎜⎝∐(

MQIP−O(i)
∈M

QO(i)
CD

)
⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝1−(∏O∈Rn

(
1−∏n

i=1 MqSCλSC−i
QIP−O(i)

)) 1
n!

⎞
⎠

1
qSC

⎫⎪⎪⎬
⎪⎪⎭

1∑n
i=1 λSC−i

⎞
⎟⎟⎟⎠
,

∐(
AQRP−O(i)∈AQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩1−

⎛
⎝1−

(
1−∏O∈Rn

(
1−∏n

i=1

(
1−AqSC

QRP−O(i)

)λSC−i
)) 1

n!
⎞
⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎬
⎪⎪⎭

1
qSC

×

e

i2π

⎛
⎜⎜⎜⎜⎜⎝
∐(

AQIP−O(i)
∈AQO(i)

CD

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩1−

⎛
⎜⎜⎝1−

⎛
⎝1−∏O∈Rn

⎛
⎝1−∏n

i=1

(
1−AqSC

QIP−O(i)

)λSC−i
⎞
⎠
⎞
⎠

1
n!

⎞
⎟⎟⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
qSC

⎞
⎟⎟⎟⎟⎟⎠
,

∐(
NQRP−O(i)∈NQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩1−

⎛
⎝1−

(
1−∏O∈Rn

(
1−∏n

i=1

(
1−N qSC

QRP−O(i)

)λSC−i
)) 1

n!
⎞
⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎬
⎪⎪⎭

1
qSC

×

e

i2π

⎛
⎜⎜⎜⎜⎜⎝
∐(

NQIP−O(i)
∈N

QO(i)
CD

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩1−

⎛
⎜⎜⎝1−

⎛
⎝1−∏O∈Rn

⎛
⎝1−∏n

i=1

(
1−N qSC

QIP−O(i)

)λSC−i
⎞
⎠
⎞
⎠

1
n!

⎞
⎟⎟⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
qSC

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(20)

Additionally, it is easy to examine the idempotency, monotonicity, and boundedness of the
explored ideas.

Proposition 1: For any family of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n), if Qi

CD = QCD, i =
1, 2, 3, . . . ,n then

CTSDHULMM�
(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
=QCD (21)

Proposition 2: For any two families of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n) and ¯̄Qi

CD (i= 1,
2, 3, . . ., n), if L� ≤L ¯̄�,L∇ ≤L ¯̄∇ ,MQCD ≤M ¯̄QCD

,AQCD ≥A ¯̄QCD
and NQCD ≥N ¯̄QCD

, then

CTSDHULMM�
(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
≤CTSDHULMM�

( ¯̄Q1
CD,

¯̄Q2
CD, . . . ,

¯̄Qn
CD

)
(22)
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Proposition 3: For any two families of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n), if Q+i

CD =([
L+

�i
,L+

∇i
]
.
(

M+
Qi
CD
,A+

Qi
CD
,N+

Qi
CD

))
and Q−i

CD =
([

L−
�i
,L−

∇i
]
.
(

M−
Qi
CD
,A−

Qi
CD
,N−

Qi
CD

))
, then

Q+i
CD ≤CTSDHULMM�

(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
≤Q−i

CD (23)

Moreover, by using Eq. (20), we discuss some particular cases of the explored approach,
which are very beneficial for quality work. The special cases of the presented approach are
discussed below:

(1) If we choose the value of the parameter �= (1, 0, 0, . . . , 0), then Eq. (20) is converted into
the complex T-spherical dual hesitant uncertain linguistic (CTSDHUL) averaging (CTSDHULA)
operator, we have

CTSDHULMM�
(Q1

CD,Q2
CD, . . . ,Qn

CD

)= 1
n ⊕n

i=1 QO(i)
CD

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
L 1

n
∑n

i=1 �O(i)
,L 1

n
∑n

i=1∇O(i)

]
,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∐(
MQRP−O(i)

∈MQO(i)
CD

)
⎧⎨
⎩
(
1−∏n

i=1

(
1−MqSC

QRP−O(i)

) 1
n
) 1

qSC

⎫⎬
⎭×

e

i2π .

⎛
⎜⎜⎝∐(

MQIP−O(i)
∈MQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝1−∏n

i=1

(
1−MqSC

QIP−O(i)

) 1
n

⎞
⎠

1
qSC

⎫⎪⎪⎬
⎪⎪⎭
⎞
⎟⎟⎠
,∐(

AQRP−O(i)
∈AQO(i)

CD

) {∏n
i=1 A

1
n
QRP−O(i)

}

e

i2π

⎛
⎜⎜⎝∐(

AQIP−O(i)
∈AQO(i)

CD

){∏n
i=1 A

1
n
QIP−O(i)

}⎞⎟⎟⎠
,∐(

NQRP−O(i)
∈NQO(i)

CD

) {∏n
i=1 N

1
n

QRP−O(i)

}

e

i2π

⎛
⎜⎜⎝∐(

NQIP−O(i)
∈NQO(i)

CD

){∏n
i=1 N

1
n

QIP−O(i)

}⎞⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

(2) If we choose the value of the parameter � = (1, 1, 0, 0, . . . , 0), then Eq. (20) is converted
into the CTSDHUL Bonferroni mean (CTSDHULBM) operator:

CTSDHULMM�
(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
=
(

1
n (n− 1)

⊕n
i,j=1;i 
=j

(
QO(i)

CD ⊗QO(j)
CD

)) 1
2

(25)
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(3) Let �=
(

k︷ ︸︸ ︷
1, 1, 1, 1, 1, 1

n−k︷ ︸︸ ︷
0, 0, 0, 0, 0, 0

)
, then Eq. (20) converts into the CTSDHUL Maclau-

rin symmetric mean (CTSDHULMSM) operator:

CTSDHULMM�
(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
=
⎛
⎝⊕1≤j1≤...≤jk≤n

(⊗n
i=1 QO(ji)

CD

)
Ck
n

⎞
⎠

1
K

(26)

(4) Let parameter �= (1, 1, 1, . . . , 1), then Eq. (20) deduces to the CTSDHUL geometric mean
(CTSDHULGM) operator:

CTSDHULMM�
(Q1

CD,Q2
CD, . . . ,Qn

CD

)=⊗n
i=1QO(i)

1
n

CD

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[
L∑n

i=1 �
1
n
O(i)

,L
1
n
∑n

i=1∇
1
n
O(i)

]
,⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∐(
MQRP−O(i)

∈MQO(i)
CD

) {∏n
i=1 M

1
n
QRP−O(i)

}
×

e

i2π .

⎛
⎜⎜⎝∐(

MQIP−O(i)
∈MQO(i)

CD

){∏n
i=1 M

1
n
QIP−O(i)

}⎞⎟⎟⎠
,

∐(
AQRP−O(i)

∈AQO(i)
CD

)
⎧⎨
⎩
(
1−∏n

i=1

(
1−AqSC

QRP−O(i)

) 1
n
) 1

qSC

⎫⎬
⎭

e

i2π

⎛
⎜⎜⎝∐(

AQIP−O(i)
∈AQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝1−∏n

i=1

(
1−AqSC

QIP−O(i)

) 1
n

⎞
⎠

1
qSC

⎫⎪⎪⎬
⎪⎪⎭
⎞
⎟⎟⎠
,

∐(
NQRP−O(i)

∈NQO(i)
CD

)
⎧⎨
⎩
(
1−∏n

i=1

(
1−N qSC

QRP−O(i)

) 1
n
) 1

qSC

⎫⎬
⎭

e

i2π

⎛
⎜⎜⎝∐(

NQIP−O(i)
∈NQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝1−∏n

i=1

(
1−N qSC

QIP−O(i)

) 1
n

⎞
⎠

1
qSC

⎫⎪⎪⎬
⎪⎪⎭
⎞
⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(27)

By choosing the value of qSC = 1, then Eq. (20) is converted into the complex picture dual
hesitant uncertain linguistic Muirhead mean operator. Similarly, let qSC = 2, then Eq. (20) is
converted to the complex spherical dual hesitant uncertain linguistic Muirhead mean operator. If

�=
(
1
n ,

1
n ,

1
n , . . . ,

1
n

)
, then Eq. (20) is converted into Eq. (27).

Definition 9: For any family of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n), then the CTSDHUL-

WMM operator is initiated by

CTSDHULWMM�
(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
=
(
1
n!

⊕O∈Rn

(
n⊗
i=1

(
n�W−iQO(i)

CD

)λSC−i
)) 1∑n

i=1 λSC−i

(28)
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where �= (λSC−1,λSC−2, . . . ,λSC−n
) ∈Rn expresses all possible permutations, and O (i), i= 1, 2,

3, . . ., n is anyone from Rn, and the weight vector is initiated by �W = (�W−1,�W−2, . . . ,�W−n)T
with a condition

∑n
i=1 �W−i = 1.

Theorem 2: For any family of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n), � = (λSC−1,λSC−2, . . . ,

λSC−n
) ∈Rn expresses all possible permutations, and O (i) , i= 1, 2, 3, . . . ,n is any one of Rn, then

CTSDHULWMM�
(
Q1
CD,Q2

CD, . . . ,Qn
CD

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎣L(

1
n!
∑

O∈Rn
∏n
i=1
(
n�W−i�O(i)

)λSC−i) 1∑n
i=1 λSC−i

,L(
1
n!
∑

O∈Rn
∏n
i=1
(
n�W−i∇O(i)

)λSC−i) 1∑n
i=1 λSC−i

⎤
⎥⎥⎦ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∐(
MQRP−O(i)∈MQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩
⎛
⎜⎝1−

(∏
O∈Rn

(
1−∏n

i=1

(
1−

(
1−MqSC

QRP−O(i)

)n�W−i
)λSC−i

)) 1
n!

⎞
⎟⎠

1
qSC

⎫⎪⎪⎬
⎪⎪⎭

1∑n
i=1 λSC−i

×

e

i2π .

⎛
⎜⎜⎜⎜⎜⎜⎝
∐(

MQIP−O(i)
∈MQO(i)

CD

)
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎝1−

⎛
⎜⎝∏O∈Rn

⎛
⎜⎝1−∏n

i=1

(
1−
(
1−MqSC

QIP−O(i)

)n�W−i
)λSC−i

⎞
⎟⎠
⎞
⎟⎠

1
n!
⎞
⎟⎟⎠

1
qSC

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

1∑n
i=1 λSC−i

⎞
⎟⎟⎟⎟⎟⎟⎠
,

∐(
AQRP−O(i)∈AQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩1−

⎛
⎝1−

(∏
O∈Rn

(
1−∏n

i=1

(
1−An�W−iqSC

QRP−O(i)

)λSC−i
)) 1

n!
⎞
⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎬
⎪⎪⎭

1
qSC

×

e

i2π

⎛
⎜⎜⎜⎜⎜⎝
∐(

AQIP−O(i)
∈A

QO(i)
CD

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩1−

⎛
⎜⎜⎝1−

⎛
⎝∏

O∈Rn

⎛
⎝1−∏n

i=1

(
1−An�W−iqSC

QIP−O(i)

)λSC−i
⎞
⎠
⎞
⎠

1
n!

⎞
⎟⎟⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
qSC

⎞
⎟⎟⎟⎟⎟⎠
,

∐(
NQRP−O(i)∈NQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩1−

⎛
⎝1−

(∏
O∈Rn

(
1−∏n

i=1

(
1−N n�W−iqSC

QRP−O(i)

)λSC−i
)) 1

n!
⎞
⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎬
⎪⎪⎭

1
qSC

×

e

i2π

⎛
⎜⎜⎜⎜⎜⎝
∐(

NQIP−O(i)
∈N

QO(i)
CD

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩1−

⎛
⎜⎜⎝1−

⎛
⎝∏

O∈Rn

⎛
⎝1−∏n

i=1

(
1−N n�W−iqSC

QIP−O(i)

)λSC−i
⎞
⎠
⎞
⎠

1
n!

⎞
⎟⎟⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
qSC

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(29)

Definition 10: For any family of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n), then the CTSD-

HULDMM operator is initiated by

CTSDHULDMM�
(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
= 1∑n

i=1 λSC−i
(
⊗O∈Rn

(
⊕n
i=1λ

SC−iQO(i)
CD

)) 1
n!

(30)
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Theorem 3: For any family of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n), then

CTSDHULDMM�
(
Q1
CD,Q2

CD, . . . ,Qn
CD

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣L

1∑n
i=1 λSC−i

(∏
O∈Rn

∑n
i=1 λSC−i�O(i)

) 1
n!
,L

1∑n
i=1 λSC−i

(∏
O∈Rn

∑n
i=1 λSC−i∇O(i)

) 1
n!

⎤
⎥⎦ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∐(
MQRP−O(i)∈MQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩1−

⎛
⎝1−

(
1−∏O∈Rn

(
1−∏n

i=1

(
1−MqSC

QRP−O(i)

)λSC−i
)) 1

n!
⎞
⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎬
⎪⎪⎭

1
qSC

×

e

i2π .

⎛
⎜⎜⎜⎜⎜⎝
∐(

MQIP−O(i)
∈M

QO(i)
CD

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩1−

⎛
⎜⎜⎝1−

⎛
⎝1−∏O∈Rn

⎛
⎝1−∏n

i=1

(
1−MqSC

QIP−O(i)

)λSC−i
⎞
⎠
⎞
⎠

1
n!

⎞
⎟⎟⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
qSC

⎞
⎟⎟⎟⎟⎟⎠
,

∐(
AQRP−O(i)∈AQO(i)

CD

)
⎧⎪⎨
⎪⎩
⎛
⎝1−(∏O∈Rn

(
1−∏n

i=1 AqSCλSC−i
QRP−O(i)

)) 1
n!

⎞
⎠

1
qSC

⎫⎪⎬
⎪⎭

1∑n
i=1 λSC−i

×

e

i2π

⎛
⎜⎜⎜⎝∐(

AQIP−O(i)
∈A

QO(i)
CD

)
⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝1−(∏O∈Rn

(
1−∏n

i=1 AqSCλSC−i
QIP−O(i)

)) 1
n!

⎞
⎠

1
qSC

⎫⎪⎪⎬
⎪⎪⎭

1∑n
i=1 λSC−i

⎞
⎟⎟⎟⎠
,

∐(
NQRP−O(i)∈NQO(i)

CD

)
⎧⎪⎨
⎪⎩
⎛
⎝1−(∏O∈Rn

(
1−∏n

i=1 N qSCλSC−i
QRP−O(i)

)) 1
n!

⎞
⎠

1
qSC

⎫⎪⎬
⎪⎭

1∑n
i=1 λSC−i

×

e

i2π

⎛
⎜⎜⎜⎝∐(

NQIP−O(i)
∈N

QO(i)
CD

)
⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝1−(∏O∈Rn

(
1−∏n

i=1 N qSCλSC−i
QIP−O(i)

)) 1
n!

⎞
⎠

1
qSC

⎫⎪⎪⎬
⎪⎪⎭

1∑n
i=1 λSC−i

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(31)

Additionally, by using Eq. (31), we can discuss some particular cases of the explored
approach, which are very beneficial for quality work.

(1) If we choose the value of the parameter � = (1, 1, 0, 0, . . . ., 0), then Eq. (31) is converted
into the CTSDHUL geometric Bonferroni mean (CTSDHULGBM) operator:

CTSDHULDMM�
(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
= 1

2

(
⊕n
i,j=1;i 
=j

(
QO(i)

CD ⊗QO(j)
CD

)) 1
n(n−1)

(32)

(2) Let � =
(

k︷ ︸︸ ︷
1, 1, 1, 1, 1, 1

n−k︷ ︸︸ ︷
0, 0, 0, 0, 0, 0

)
, then Eq. (31) deduces to the CTSDHUL dual

Maclaurin symmetric mean (CTSDHULDMSM) operator:

CTSDHULDMM�
(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
= 1
K

(
⊕1≤j1≤....≤jk≤n

(
⊗n
i=1QO(ji)

CD

) 1
Ckn

)
(33)

By choosing the value of qSC = 1, then Eq. (31) is deduced to the complex picture dual
hesitant uncertain linguistic dual Muirhead mean operator. Similarly, if qSC = 2, then Eq. (31)
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is converted for the complex spherical dual hesitant uncertain linguistic dual Muirhead mean

operator. If �=
(
1
n ,

1
n ,

1
n , . . . ,

1
n

)
, then Eq. (31) is converted into Eq. (24).

Definition 11: For any family of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n), then the CTSDHUL-

WDMM operator is initiated by

CTSDHULWDMM�
(
Q1

CD,Q2
CD, . . . ,Qn

CD

)
= 1∑n

i=1 λSC−i
(
⊗O∈Rn

(
⊕n
i=1λ

SC−iQO(i)n�W−i
CD

)) 1
n!

(34)

Theorem4: For any family of CTSDHULNs Qi
CD (i= 1, 2, 3, . . . ,n), let �= (λSC−1,λSC−2, . . . ,

λSC−n
) ∈Rn be all possible permutations, then

CTSDHULWDMM�
(
Q1
CD,Q2

CD, . . . ,Qn
CD

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎣L

1∑n
i=1 λSC−i

(∏
O∈Rn

∑n
i=1 λSC−i�n�W−i

O(i)

) 1
n!
,L

1∑n
i=1 λSC−i

(∏
O∈Rn

∑n
i=1 λSC−i∇n�W−i

O(i)

) 1
n!

⎤
⎥⎦ ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∐(
MQRP−O(i)∈MQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩1−

⎛
⎝1−

(∏
O∈Rn

(
1−∏n

i=1

(
1−Mn�W−iqSC

QRP−O(i)

)λSC−i
)) 1

n!
⎞
⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎬
⎪⎪⎭

1
qSC

×

e

i2π .

⎛
⎜⎜⎜⎜⎜⎝
∐(

MQIP−O(i)
∈MQO(i)

CD

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩1−

⎛
⎜⎜⎝1−

⎛
⎝∏

O∈Rn

⎛
⎝1−∏n

i=1

(
1−Mn�W−iqSC

QIP−O(i)

)λSC−i
⎞
⎠
⎞
⎠

1
n!

⎞
⎟⎟⎠

1∑n
i=1 λSC−i

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1
qSC

⎞
⎟⎟⎟⎟⎟⎠
,

∐(
AQRP−O(i)∈AQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝1−

(∏
O∈Rn

(
1−∏n

i=1

(
1−An�W−iqSC

QRP−O(i)

)λSC−i
)) 1

n!
⎞
⎠

1
qSC

⎫⎪⎪⎬
⎪⎪⎭

1∑n
i=1 λSC−i

×

e

i2π

⎛
⎜⎜⎜⎜⎜⎝
∐(

AQIP−O(i)
∈A

QO(i)
CD

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝1−

⎛
⎝∏

O∈Rn

⎛
⎝1−∏n

i=1

(
1−An�W−iqSC

QIP−O(i)

)λSC−i
⎞
⎠
⎞
⎠

1
n!

⎞
⎟⎟⎠

1
qSC

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1∑n
i=1 λSC−i

⎞
⎟⎟⎟⎟⎟⎠
,

∐(
NQRP−O(i)∈NQO(i)

CD

)
⎧⎪⎪⎨
⎪⎪⎩
⎛
⎝1−

(∏
O∈Rn

(
1−∏n

i=1

(
1−N n�W−iqSC

QRP−O(i)

)λSC−i
)) 1

n!
⎞
⎠

1
qSC

⎫⎪⎪⎬
⎪⎪⎭

1∑n
i=1 λSC−i

×

e

i2π

⎛
⎜⎜⎜⎜⎜⎝
∐(

NQIP−O(i)
∈N

QO(i)
CD

)
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎝1−

⎛
⎝∏

O∈Rn

⎛
⎝1−∏n

i=1

(
1−N n�W−iqSC

QIP−O(i)

)λSC−i
⎞
⎠
⎞
⎠

1
n!

⎞
⎟⎟⎠

1
qSC

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1∑n
i=1 λSC−i

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(35)

By choosing the value of qSC = 1, then Eq. (35) is deduced to the complex picture dual
hesitant uncertain linguistic weighted dual Muirhead mean operator. Similarly, let qSC = 2, then
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the Eq. (35) is converted to the complex spherical dual hesitant uncertain linguistic weighted dual
Muirhead mean operator.

5 MADM Technique Based on CQRODHULNs

The purpose of this section is to analyze the proficient technique of the pro-
posed operator to cope with awkward and complicated information in the form of the
MADM technique. For this, we choose the family of alternatives and their attributes
expressed as X = {X1,X2, . . . ,Xm} and C = {C1,C2, . . . ,Cn}. The weight vector is �W =
(�W−1,�W−2, . . . ,�W−n)T based on the condition

∑n
i=1 �W−i = 1, �W−i ∈ [0, 1]. Additionally,

let L = {L0,L1,L2,L3,L4,L5,L6} be an uncertain linguistic term set defined in the CTSD-

HULS QCD−ij =
([L�ij ,L∇ij

]
.
(
MQCD−ij ,AQCD−ij ,NQCD−ij

))
, i, j= 1, 2, 3, 4. Thus, a CTSDHUL

decision framework is D= (QCD−ij
)
m×n, then the steps of the algorithm are of the form.

5.1 Proposed Method
In this section, we discussed the different cases of the proposed algorithm which are discussed

below.

Step 1: Standardized the decision matrix in the form of CTSDHULNs by using the Eq. (36),
such that

D= (QCD−ij
)
m×n =

⎧⎨
⎩
([L�ij ,L∇ij

]
.
(
MQCD−ij ,NQCD−ij

))
Cj ∈ I1([L�ij ,L∇ij

]
.
(
NQCD−ij ,MQCD−ij

))
Cj ∈ I2

(36)

where the symbols I1 and I2 represent the benefit and cost type criteria, respectively.

Step 2: Utilize the CTSDHULMM operator

Q1
CD−i =CTSDHULMM�

(
Q1

CD−1i,Q2
CD−1i, . . . ,Qn

CD−1i

)
(37)

or CTSDHULWMM operator

Q1
CD−i =CTSDHULWMM�

(
Q1

CD−1i,Q2
CD−1i, . . . ,Qn

CD−1i

)
(38)

or CTSDHULDMM operator

Q1
CD−i =CTSDHULDMM�

(
Q1

CD−1i,Q2
CD−1i, . . . ,Qn

CD−1i

)
(39)

or CTSDHULMM operator

Q1
CD−i =CTSDHULWDMM�

(
Q1

CD−1i,Q2
CD−1i, . . . ,Qn

CD−1i

)
(40)

to calculate the whole evaluation of each alternative.

Step 3: Calculate the score values of the aggregated values of Step 2.

Step 4: Find the ranking values to examine the best alternative.

Step 5: The end.
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5.2 Application in Enterprise Informatization Level Evaluation
Enterprise data development alludes to improving the creation and activity proficiency of

ventures through the organization of PC technology, lessening operational dangers and expenses,
accordingly improving the general management level and the capacity of ceaseless activity. The
principle motivation behind endeavor informatization is to utilize progressed data innovation and
modern executive strategies to improve and streamline the business cycle and the board level
of the undertaking. In the furious homegrown and worldwide rivalry, numerous Chinese orga-
nizations are quickening the movement of informatization development. Before the development
of data innovation, enterprises need to exhaustively assess the current degree of informatization
from various angles. Fundamentally, the assessment of the big business informatization level is
a MADM issue. A gathering needs to assess the data level of its four auxiliaries, which can be
signified as X = {X1,X2,X3,X4}. To make an exact assessment, the organization has welcomed
various senior specialists in the field of big business data development to assess the four potential
options. Considering the business conditions of the organization, the dynamic specialists assess
the informatization level of the four auxiliaries from the accompanying four viewpoints, for
example C1 (endeavor scale level), C2 (extent of speculation for informatization), C3 (institutional
norms development), and C4 (consideration from pioneer). The weight vector of these qualities
is �W = (0.3, 0.1, 0.2, 0.4)T , and L = {L0,L1,L2,L3,L4,L5,L6} is an uncertain linguistic term

set based on CTSDHULSs QCD−ij =
([L�ij ,L∇ij

]
.
(
MQCD−ij ,AQCD−ij ,NQCD−ij

))
, i, j= 1, 2, 3, 4.

Thus, a CTSDHUL decision framework can be acquired, shown in Tab. 1.

Table 1: Original decision matrix

C1 C2

X1

⎛
⎝[L3,L4] .

⎛
⎝ {0.3, 0.5}ei2π{0.2,0.3,0.5},
{0.03, 0.05}ei2π{0.02,0.03,0.05},

{0.2, 0.4}ei2π{0.2,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L6] .

⎛
⎝ {0.5, 0.6}ei2π{0.6,0.7},
{0.05, 0.06}ei2π{0.06,0.07},

{0.3, 0.4}ei2π{0.1,0.2}

⎞
⎠
⎞
⎠

X2

⎛
⎝[L1,L3] .

⎛
⎝ {0.2, 0.4, 0.5}ei2π{0.1,0.5},
{0.02, 0.04, 0.05}ei2π{0.01,0.05},

{0.1, 0.3}ei2π{0.1,0.5}

⎞
⎠
⎞
⎠

⎛
⎝[L4,L6] .

⎛
⎝ {0.5, 0.6, 0.7}ei2π{0.1,0.6},
{0.05, 0.06, 0.07}ei2π{0.01,0.06},

{0.1, 0.2, 0.3}ei2π{0.1,0.3}

⎞
⎠
⎞
⎠

X3

⎛
⎝[L2,L4] .

⎛
⎝ {0.3, 0.4}ei2π{0.1,0.3,0.4},
{0.03, 0.04}ei2π{0.01,0.03,0.04},
{0.1, 0.2, 0.3}ei2π{0.1,0.4}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L7] .

⎛
⎝ {0.3, 0.5}ei2π{0.2,0.5},
{0.03, 0.05}ei2π{0.02,0.05},

{0.1, 0.2}ei2π{0.3,0.5}

⎞
⎠
⎞
⎠

X4

⎛
⎝[L2,L4] .

⎛
⎝ {0.3, 0.4}ei2π{0.2,0.4,0.6},
{0.03, 0.04}ei2π{0.02,0.04,0.06},
{0.1, 0.2, 0.3}ei2π{0.1,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L6,L7] .

⎛
⎝ {0.2, 0.6}ei2π{0.3,0.6},
{0.02, 0.06}ei2π{0.03,0.06},
{0.1, 0.3, 0.4}ei2π{0.3,0.4}

⎞
⎠
⎞
⎠

(Continued)
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Table 1 (continued)

C3 C4

X1

⎛
⎝[L1,L3] .

⎛
⎝ {0.2, 0.3, 0.5}ei2π{0.3,0.5},
{0.02, 0.03, 0.05}ei2π{0.03,0.05},

{0.2, 0.3}ei2π{0.2,0.4}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L7] .

⎛
⎝ {0.6, 0.7}ei2π{0.5,0.6},
{0.06, 0.07}ei2π{0.05,0.06},

{0.1, 0.2}ei2π{0.3,0.4}

⎞
⎠
⎞
⎠

X2

⎛
⎝[L2,L3] .

⎛
⎝ {0.1, 0.5}ei2π{0.2,0.4,0.5},
{0.01, 0.05}ei2π{0.02,0.04,0.05},

{0.1, 0.5}ei2π{0.1,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L6,L7] .

⎛
⎝ {0.1, 0.6}ei2π{0.5,0.6,0.7},
{0.01, 0.06}ei2π{0.05,0.06,0.07},

{0.1, 0.3}ei2π{0.1,0.2,0.3}

⎞
⎠
⎞
⎠

X3

⎛
⎝[L2,L3] .

⎛
⎝ {0.1, 0.3, 0.4}ei2π{0.3,0.4},
{0.01, 0.03, 0.04}ei2π{0.03,0.04},

{0.1, 0.4}ei2π{0.1,0.2,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L4,L7] .

⎛
⎝ {0.2, 0.5}ei2π{0.3,0.5},
{0.02, 0.05}ei2π{0.03,0.05},

{0.3, 0.5}ei2π{0.1,0.2}

⎞
⎠
⎞
⎠

X4

⎛
⎝[L2,L4] .

⎛
⎝ {0.2, 0.4, 0.6}ei2π{0.3,0.4},
{0.02, 0.04, 0.06}ei2π{0.03,0.04},

{0.1, 0.3}ei2π{0.1,0.2,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L6] .

⎛
⎝ {0.3, 0.6}ei2π{0.2,0.6},
{0.03, 0.06}ei2π{0.02,0.06}
{0.3, 0.4}ei2π{0.1,0.3,0.4}

⎞
⎠
⎞
⎠

In the following, we utilize the proposed technique to assess the general exhibition of the four
options. The detailed calculation steps are listed as follows:

Step 1: Given that all ascribes are a benefit, the first complex T-spherical dual hesitant
uncertain linguistic should not be standardized.

Step 2: Utilize the CTSDHULWMM operator to total the trait esteems of each option.
Without loss of over-simplification, let �= (1, 1, 1, 1) and qSC = 3. As the thorough assessment of
each option is excessively intricate, we preclude them here to spare space in the form of Tab. 2.

Table 2: Aggregated values of Tab. 1

X1

⎛
⎝[L3.5,L5] .

⎛
⎝ {0.4142, 0.5243, 0.1234} ei2π{0.4142,0.5243,0.1234},
{0.04142, 0.05243, 0.001234} ei2π{0.04142,0.05243,0.001234},

{0.0235, 0.0325} ei2π{0.0235,0.0325}

⎞
⎠
⎞
⎠

X2

⎛
⎝[L3.25,L4.75] .

⎛
⎝ {0.2251, 0.4934, 0.3245}ei2π{0.2251,0.4934,0.3245},
{0.02251, 0.04934, 0.03245}ei2π{0.02251,0.04934,0.03245},

{0.1, 0.1235, 0.0267}ei2π{0.1,0.1235,0.0267}

⎞
⎠
⎞
⎠

X3

⎛
⎝[L3.25,L5.362] .

⎛
⎝ {0.2253, 0.425, 0.1212}ei2π{0.2253,0.425,0.1212},
{0.02253, 0.0425, 0.001212}ei2π{0.02253,0.0425,0.001212},

{0.1532, 0.3253, 0.1212}ei2π{0.1532,0.3253,0.1212}

⎞
⎠
⎞
⎠

X4

⎛
⎝[L3.753,L5.253] .

⎛
⎝ {0.2534, 0.5346, 0.1523}ei2π{0.2534,0.5346,0.1523},
{0.02534, 0.05346, 0.001523}ei2π{0.02534,0.05346,0.001523},

{0.1523, 0.3524, 0.1254}ei2π{0.1523,0.3524,0.1254}

⎞
⎠
⎞
⎠

Step 3: Based on Eq. (17), we calculate the score values of the aggregated values of Step 2,
such that

SSF (X1)= 0.5161,SSF (X2)= 0.3672,SSF (X3)= 0.0606,SSF (X4)= 0.1380.



CMES, 2021, vol.129, no.2 869

Step 4: Find the ranking values to examine the best alternative. Hence, the ranking order
is X1 � X2 � X4 � X3, and the optimal alternative is X1, which also illustrates that X1 has the
highest informatization level.

Step 5: The end.

5.3 Validity of the Explored Approach
To find the proficiency and validity of the explored MADM model with CTSDHULNs,

we choose the information which are in the form of complex spherical dual hesitant uncertain
linguistic numbers and CTSDHULNs, as the complex picture dual hesitant uncertain linguistic
information’s are already discussed in Example 1. The information is discussed in the form of
Tab. 3, and the steps of the algorithm are discussed below:

Step 1: Given that all ascribes are a benefit, the first complex T-spherical hesitant uncertain
linguistic does not need to be standardized.

Table 3: Original decision matrix

C1 C2

X1

⎛
⎝[L3,L4] .

⎛
⎝ {0.3, 0.7}ei2π{0.2,0.3,0.8},
{0.03, 0.07}ei2π{0.02,0.03,0.08},

{0.2, 0.4}ei2π{0.2,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L6] .

⎛
⎝ {0.5, 0.7}ei2π{0.6,0.7},
{0.05, 0.07}ei2π{0.06,0.07},

{0.3, 0.4}ei2π{0.1,0.2}

⎞
⎠
⎞
⎠

X2

⎛
⎝[L1,L3] .

⎛
⎝ {0.2, 0.4, 0.8}ei2π{0.1,0.5},
{0.02, 0.04, 0.08}ei2π{0.01,0.05},

{0.1, 0.3}ei2π{0.1,0.5}

⎞
⎠
⎞
⎠

⎛
⎝[L4,L6] .

⎛
⎝ {0.5, 0.6, 0.7}ei2π{0.1,0.6},
{0.05, 0.06, 0.07}ei2π{0.01,0.06},

{0.1, 0.2, 0.5}ei2π{0.1,0.3}

⎞
⎠
⎞
⎠

X3

⎛
⎝[L2,L4] .

⎛
⎝ {0.3, 0.8}ei2π{0.1,0.3,0.4},
{0.03, 0.08}ei2π{0.01,0.03,0.04},
{0.1, 0.2, 0.3}ei2π{0.1,0.4}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L7] .

⎛
⎝ {0.3, 0.9}ei2π{0.2,0.5},
{0.03, 0.09}ei2π{0.02,0.05},

{0.1, 0.2}ei2π{0.3,0.5}

⎞
⎠
⎞
⎠

X4

⎛
⎝[L2,L4] .

⎛
⎝ {0.3, 0.7}ei2π{0.2,0.4,0.6},
{0.03, 0.07}ei2π{0.02,0.04,0.06},
{0.1, 0.2, 0.3}ei2π{0.1,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L6,L7] .

⎛
⎝ {0.2, 0.8}ei2π{0.3,0.6},
{0.02, 0.08}ei2π{0.03,0.06},
{0.1, 0.3, 0.4}ei2π{0.3,0.4}

⎞
⎠
⎞
⎠

C3 C4

X1

⎛
⎝[L1,L3] .

⎛
⎝ {0.2, 0.3, 0.7}ei2π{0.3,0.5},
{0.02, 0.03, 0.07}ei2π{0.03,0.05},

{0.2, 0.3}ei2π{0.2,0.4}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L7] .

⎛
⎝ {0.6, 0.9}ei2π{0.5,0.6},
{0.06, 0.09}ei2π{0.05,0.06},

{0.1, 0.2}ei2π{0.3,0.4}

⎞
⎠
⎞
⎠

X2

⎛
⎝[L2,L3] .

⎛
⎝ {0.1, 0.6}ei2π{0.2,0.4,0.5},
{0.01, 0.06}ei2π{0.02,0.04,0.05},

{0.1, 0.5}ei2π{0.1,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L6,L7] .

⎛
⎝ {0.1, 0.8}ei2π{0.5,0.6,0.7},
{0.01, 0.08}ei2π{0.05,0.06,0.07},

{0.1, 0.3}ei2π{0.1,0.2,0.3}

⎞
⎠
⎞
⎠

X3

⎛
⎝[L2,L3] .

⎛
⎝ {0.1, 0.3, 0.8}ei2π{0.3,0.4},
{0.01, 0.03, 0.08}ei2π{0.03,0.04},

{0.1, 0.4}ei2π{0.1,0.2,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L4,L7] .

⎛
⎝ {0.2, 0.7}ei2π{0.3,0.5},
{0.02, 0.07}ei2π{0.03,0.05},

{0.3, 0.5}ei2π{0.1,0.2}

⎞
⎠
⎞
⎠

X4

⎛
⎝[L2,L4] .

⎛
⎝ {0.2, 0.4, 0.8}ei2π{0.3,0.4},
{0.02, 0.04, 0.08}ei2π{0.03,0.04},

{0.1, 0.3}ei2π{0.1,0.2,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L6] .

⎛
⎝ {0.3, 0.7}ei2π{0.2,0.6},
{0.03, 0.07}ei2π{0.02,0.06},
{0.3, 0.4}ei2π{0.1,0.3,0.4}

⎞
⎠
⎞
⎠
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Step 2: Utilize the CTSDHULWMM operator to total the trait esteems of each option.
Subsequently, general assessment esteem is obtained for every option. Without loss of over-
simplification, let � = (1, 1, 1, 1) and qSC = 3. As the thorough assessment of each option is
excessively intricate, we preclude them here to spare space in the form of Tab. 4.

Table 4: Aggregated values of Tab. 3

X1

⎛
⎝[L3.5,L5] .

⎛
⎝ {0.4142, 0.6243, 0.2234} ei2π{0.4142,0.5243,0.1234},
{0.04142, 0.06243, 0.02234} ei2π{0.04142,0.05243,0.001234},

{0.0235, 0.0325} ei2π{0.0235,0.0325}

⎞
⎠
⎞
⎠

X2

⎛
⎝[L3.25,L4.75] .

⎛
⎝ {0.2251, 0.6934, 0.3784}ei2π{0.2251,0.4934,0.3245},
{0.02251, 0.06934, 0.03784}ei2π{0.02251,0.04934,0.03245},

{0.1, 0.1235, 0.0267}ei2π{0.1,0.1235,0.0267}

⎞
⎠
⎞
⎠

X3

⎛
⎝[L3.25,L5.362] .

⎛
⎝ {0.2253, 0.6647, 0.2}ei2π{0.2253,0.425,0.1212},
{0.02253, 0.06647, 0.02}ei2π{0.02253,0.0425,0.001212},
{0.1532, 0.3253, 0.1212}ei2π{0.1532,0.3253,0.1212}

⎞
⎠
⎞
⎠

X4

⎛
⎝[L3.753,L5.253] .

⎛
⎝ {0.2534, 0.6847, 0.2}ei2π{0.2534,0.5346,0.1523},
{0.02534, 0.06847, 0.02}ei2π{0.02534,0.05346,0.001523},
{0.1523, 0.3524, 0.1254}ei2π{0.1523,0.3524,0.1254}

⎞
⎠
⎞
⎠

Step 3: Based on Eq. (17), we calculate the score values of the aggregated values of Step 2,
such that

SSF (X1)= 0.6118,SSF (X2)= 0.5424,SSF (X3)= 0.3069,SSF (X4)= 0.3281.

Step 4: Find the ranking values to examine the best alternative. Hence, the ranking order is
X1 �X2 �X4 �X3, and the optimal alternative is X1, which also illustrates that X1 has the highest
informatization level.

Step 5: The end.

Additionally, next, we choose the CTSDHULNs in the form of Tab. 5 and resolve it by using
the explored operators. The steps of the algorithm are discussed below.

Step 1: Given that all ascribes are a benefit, the first complex T-spherical hesitant uncertain
linguistic should not be standardized.

Step 2: Utilize the CTSDHULWMM operator to total trait esteems of every other option.
Without loss of over-simplification, let � = (1, 1, 1, 1) and qSC = 6. The aggregation results are
listed in Tab. 6.

Step 3: Based on Eq. (17), we calculate the score values of the aggregated values of Step 2,
such that

SSF (X1)= 0.315,SSF (X2)= 0.2816,SSF (X3)= 0.07383,SSF (X4)= 0.1434.

Step 4: Find the ranking values to examine the best alternative. Hence, the ranking order is
X1 �X2 �X4 �X3, and the optimal alternative is X1, and then X1 has the highest informatization
level.

Step 5: The end.
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Table 5: Original decision matrix

C1 C2

X1

⎛
⎝[L3,L4] .

⎛
⎝ {0.3, 0.9}ei2π{0.2,0.3,0.8},
{0.03, 0.09}ei2π{0.02,0.03,0.08},

{0.2, 0.8}ei2π{0.2,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L6] .

⎛
⎝ {0.5, 0.91}ei2π{0.6,0.7},
{0.05, 0.091}ei2π{0.06,0.07},

{0.3, 0.81}ei2π{0.1,0.2}

⎞
⎠
⎞
⎠

X2

⎛
⎝[L1,L3] .

⎛
⎝ {0.2, 0.9, 0.5}ei2π{0.1,0.5},
{0.02, 0.09, 0.05}ei2π{0.01,0.05},

{0.1, 0.7}ei2π{0.1,0.5}

⎞
⎠
⎞
⎠

⎛
⎝[L4,L6] .

⎛
⎝ {0.5, 0.91, 0.7}ei2π{0.1,0.6},
{0.05, 0.091, 0.07}ei2π{0.01,0.06},

{0.1, 0.71, 0.3}ei2π{0.1,0.3}

⎞
⎠
⎞
⎠

X3

⎛
⎝[L2,L4] .

⎛
⎝ {0.3, 0.8}ei2π{0.1,0.3,0.4},
{0.03, 0.08}ei2π{0.01,0.03,0.04},
{0.1, 0.7, 0.3}ei2π{0.1,0.4}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L7] .

⎛
⎝ {0.3, 0.81}ei2π{0.2,0.5},
{0.03, 0.081}ei2π{0.02,0.05},

{0.1, 0.71}ei2π{0.3,0.5}

⎞
⎠
⎞
⎠

X4

⎛
⎝[L2,L4] .

⎛
⎝ {0.3, 0.9}ei2π{0.2,0.4,0.6},
{0.03, 0.09}ei2π{0.02,0.04,0.06},
{0.1, 0.7, 0.3}ei2π{0.1,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L6,L7] .

⎛
⎝ {0.2, 0.91}ei2π{0.3,0.6},
{0.02, 0.091}ei2π{0.03,0.06},
{0.1, 0.71, 0.4}ei2π{0.3,0.4}

⎞
⎠
⎞
⎠

C3 C4

X1

⎛
⎝[L1,L3] .

⎛
⎝ {0.2, 0.92, 0.5}ei2π{0.3,0.5},
{0.02, 0.092, 0.05}ei2π{0.3,0.5},

{0.2, 0.82}ei2π{0.2,0.4}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L7] .

⎛
⎝ {0.6, 0.93}ei2π{0.5,0.6},
{0.06, 0.093}ei2π{0.05,0.06},

{0.1, 0.83}ei2π{0.3,0.4}

⎞
⎠
⎞
⎠

X2

⎛
⎝[L2,L3] .

⎛
⎝ {0.1, 0.92}ei2π{0.2,0.4,0.5},
{0.01, 0.092}ei2π{0.02,0.04,0.05},

{0.1, 0.72}ei2π{0.1,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L6,L7] .

⎛
⎝ {0.1, 0.93}ei2π{0.5,0.6,0.7},
{0.01, 0.093}ei2π{0.05,0.06,0.07},

{0.1, 0.73}ei2π{0.1,0.2,0.3}

⎞
⎠
⎞
⎠

X3

⎛
⎝[L2,L3] .

⎛
⎝ {0.1, 0.82, 0.4}ei2π{0.3,0.4},
{0.01, 0.082, 0.04}ei2π{0.03,0.04},

{0.1, 0.72}ei2π{0.1,0.2,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L4,L7] .

⎛
⎝ {0.2, 0.83}ei2π{0.3,0.5},
{0.02, 0.083}ei2π{0.03,0.05},

{0.3, 0.73}ei2π{0.1,0.2}

⎞
⎠
⎞
⎠

X4

⎛
⎝[L2,L4] .

⎛
⎝ {0.2, 0.92, 0.6}ei2π{0.3,0.4},
{0.02, 0.092, 0.06}ei2π{0.03,0.04},

{0.1, 0.72}ei2π{0.1,0.2,0.3}

⎞
⎠
⎞
⎠

⎛
⎝[L5,L6] .

⎛
⎝ {0.3, 0.93}ei2π{0.2,0.6},
{0.03, 0.093}ei2π{0.02,0.06},
{0.3, 0.73}ei2π{0.1,0.3,0.4}

⎞
⎠
⎞
⎠

Table 6: Aggregated values of Tab. 5

X1

⎛
⎝[L3.5,L5] .

⎛
⎝ {0.4142, 0.91546, 0.1234} ei2π{0.4142,0.5243,0.1234},
{0.04142, 0.091546, 0.01234} ei2π{0.04142,0.05243,0.001234},

{0.0235, 0.81837} ei2π{0.0235,0.0325}

⎞
⎠
⎞
⎠

X2

⎛
⎝[L3.25,L4.75] .

⎛
⎝ {0.2251, 0.91546, 0.3245}ei2π{0.2251,0.4934,0.3245},
{0.02251, 0.091546, 0.03245}ei2π{0.02251,0.04934,0.03245},

{0.1, 0.7154, 0.0267}ei2π{0.1,0.1235,0.0267}

⎞
⎠
⎞
⎠

X3

⎛
⎝[L3.25,L5.362] .

⎛
⎝ {0.2253, 0.81736, 0.1212}ei2π{0.2253,0.425,0.1212},
{0.02253, 0.081736, 0.001212}ei2π{0.02253,0.0425,0.001212},

{0.1532, 0.7154, 0.1212}ei2π{0.1532,0.3253,0.1212}

⎞
⎠
⎞
⎠

X4

⎛
⎝[L3.753,L5.253] .

⎛
⎝ {0.2534, 0.91546, 0.1523}ei2π{0.2534,0.5346,0.1523},
{0.02534, 0.091546, 0.001523}ei2π{0.02534,0.05346,0.001523},

{0.1523, 0.7154, 0.1254}ei2π{0.1523,0.3524,0.1254}

⎞
⎠
⎞
⎠
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5.4 Effortlessness of the Parameter
We explore the impact of the boundaries on the outcome in this section. To start with, we

study the impact of the boundary qSC on the scores and positioning requests. We use various esti-
mations of qSC in the CTSDHULWMM operator when totaling characteristic quality, the scores
and corresponding ranking orders are listed in Tabs. 7–9. Without loss of over-simplification, here
we expect �= (1, 1, 1, 1).

Table 7: Decision values by using different values of qSC for the information of Tab. 1

Parameter Score values Raking values

qSC = 1 SSF (X1)= 0.5421,SSF (X2)= 0.3977,
SSF (X3)= 0.0901,SSF (X4)= 0.1734

X1 �X2 �X4 �X3

qSC = 2 SSF (X1)= 0.5356,SSF (X2)= 0.3721,
SSF (X3)= 0.0811,SSF (X4)= 0.1578

X1 �X2 �X4 �X3

qSC = 3 SSF (X1)= 0.5161,SSF (X2)= 0.3672,
SSF (X3)= 0.0606,SSF (X4)= 0.1380

X1 �X2 �X4 �X3

qSC = 4 SSF (X1)= 0.5079,SSF (X2)= 0.3537,
SSF (X3)= 0.0521,SSF (X4)= 0.1289

X1 �X2 �X4 �X3

qSC = 5 SSF (X1)= 0.4901,SSF (X2)= 0.3435,
SSF (X3)= 0.0467,SSF (X4)= 0.1167

X1 �X2 �X4 �X3

qSC = 6 SSF (X1)= 0.4829,SSF (X2)= 0.3352,
SSF (X3)= 0.0377,SSF (X4)= 0.1089

X1 �X2 �X4 �X3

Table 8: Decision values by using different values of qSC for the information of Tab. 3

Parameter Score values Raking values

qSC = 2 SSF (X1)= 0.6224,SSF (X2)= 0.5517,
SSF (X3)= 0.3247,SSF (X4)= 0.3494

X1 �X2 �X4 �X3

qSC = 3 SSF (X1)= 0.6118,SSF (X2)= 0.5424,
SSF (X3)= 0.3069,SSF (X4)= 0.3281

X1 �X2 �X4 �X3

qSC = 4 SSF (X1)= 0.6091,SSF (X2)= 0.5316,
SSF (X3)= 0.2989,SSF (X4)= 0.3171

X1 �X2 �X4 �X3

qSC = 5 SSF (X1)= 0.5971,SSF (X2)= 0.5426,
SSF (X3)= 0.2879,SSF (X4)= 0.3021

X1 �X2 �X4 �X3

qSC = 6 SSF (X1)= 0.5871,SSF (X2)= 0.5243,
SSF (X3)= 0.2746,SSF (X4)= 0.2991

X1 �X2 �X4 �X3

qSC = 7 SSF (X1)= 0.5744,SSF (X2)= 0.5324,
SSF (X3)= 0.2721,SSF (X4)= 0.2873

X1 �X2 �X4 �X3
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Table 9: Decision values by using different values of qSC for the information of Tab. 5

Parameter Score values Raking values

qSC = 6 SSF (X1)= 0.315,SSF (X2)= 0.2816,
SSF (X3)= 0.07383,SSF (X4)= 0.1434

X1 �X2 �X4 �X3

qSC = 7 SSF (X1)= 0.3041,SSF (X2)= 0.2741,
SSF (X3)= 0.0703,SSF (X4)= 0.1322

X1 �X2 �X4 �X3

qSC = 8 SSF (X1)= 0.2937,SSF (X2)= 0.2634,
SSF (X3)= 0.0678,SSF (X4)= 0.1277

X1 �X2 �X4 �X3

qSC = 9 SSF (X1)= 0.2889,SSF (X2)= 0.2537,
SSF (X3)= 0.0537,SSF (X4)= 0.1189

X1 �X2 �X4 �X3

qSC = 10 SSF (X1)= 0.2756,SSF (X2)= 0.2416,
SSF (X3)= 0.0467,SSF (X4)= 0.1091

X1 �X2 �X4 �X3

qSC = 11 SSF (X1)= 0.2611,SSF (X2)= 0.2317,
SSF (X3)= 0.0308,SSF (X4)= 0.0978

X1 �X2 �X4 �X3

The results in Tabs. 7–9 show the same ranking order, i.e., X1 � X2 � X4 � X3 for different
values of the parameter qSC. In the following, we further examine the impact of the boundary
vector � on the outcomes. Moreover, we allocate a distinctive boundary vector to � in the
CTSDHULWMM operators and present the score esteemed in Tabs. 10–12.

Table 10: Decision values by using different values of � for the information of Tab. 1, qSC = 3

Parameter Score values Raking values

�= (1, 1, 1, 1) SSF (X1)= 0.5161,SSF (X2)= 0.3672,
SSF (X3)= 0.0606,SSF (X4)= 0.1380

X1 �X2 �X4 �X3

�= (1, 1, 1, 2) SSF (X1)= 0.5089,SSF (X2)= 0.3578,
SSF (X3)= 0.0582,SSF (X4)= 0.1247

X1 �X2 �X4 �X3

�= (1, 1, 2, 2) SSF (X1)= 0.4992,SSF (X2)= 0.3473,
SSF (X3)= 0.0589,SSF (X4)= 0.1156

X1 �X2 �X4 �X3

�= (1, 2, 2, 3) SSF (X1)= 0.4884,SSF (X2)= 0.3389,
SSF (X3)= 0.0474,SSF (X4)= 0.1078

X1 �X2 �X4 �X3

�= (1, 3, 3, 4) SSF (X1)= 0.4793,SSF (X2)= 0.3267,
SSF (X3)= 0.0396,SSF (X4)= 0.0987

X1 �X2 �X4 �X3

�= (2, 3, 4, 5) SSF (X1)= 0.4689,SSF (X2)= 0.3169,
SSF (X3)= 0.0278,SSF (X4)= 0.0823

X1 �X2 �X4 �X3

5.5 Comparative Analysis
Additionally, to examine the reliability and validity of the presented approaches, we compare

the explored works with some existing notions by using the evaluations of Tabs. 1, 3, and 5.
The information about existing works is discussed as follows: picture dual hesitant uncertain
linguistic aggregation (PDHULA) operator, spherical dual hesitant uncertain linguistic aggrega-
tion (SDHULA) operator, T-spherical dual hesitant uncertain linguistic aggregation (TSDHULA)
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operator, complex picture dual hesitant uncertain linguistic aggregation (CPDHULA) operator,
and complex spherical dual hesitant uncertain linguistic aggregation (CSDHULA) operator. The
comparative analysis for Tabs. 1, 3, and 5 are discussed in the form of Tabs. 13–15.

Table 11: Decision values by using different values of � for the information of Tab. 3, qSC = 3

Parameter Score values Raking values

�= (1, 1, 1, 1) SSF (X1)= 0.6118,SSF (X2)= 0.5424,
SSF (X3)= 0.3069,SSF (X4)= 0.3281

X1 �X2 �X4 �X3

�= (1, 1, 1, 2) SSF (X1)= 0.6014,SSF (X2)= 0.5329,
SSF (X3)= 0.2972,SSF (X4)= 0.3117

X1 �X2 �X4 �X3

�= (1, 1, 2, 2) SSF (X1)= 0.5919,SSF (X2)= 0.5222,
SSF (X3)= 0.2895,SSF (X4)= 0.3077

X1 �X2 �X4 �X3

�= (1, 2, 2, 3) SSF (X1)= 0.5832,SSF (X2)= 0.5134,
SSF (X3)= 0.2784,SSF (X4)= 0.2981

X1 �X2 �X4 �X3

�= (1, 3, 3, 4) SSF (X1)= 0.5734,SSF (X2)= 0.5075,
SSF (X3)= 0.2689,SSF (X4)= 0.2818

X1 �X2 �X4 �X3

�= (2, 3, 4, 5) SSF (X1)= 0.5649,SSF (X2)= 0.5011,
SSF (X3)= 0.2666,SSF (X4)= 0.2729

X1 �X2 �X4 �X3

Table 12: Decision values by using different values of � for the information of Tab. 5, qSC = 6

Parameter Score values Raking values

�= (1, 1, 1, 1) SSF (X1)= 0.315,SSF (X2)= 0.2816,
SSF (X3)= 0.07383,SSF (X4)= 0.1434

X1 �X2 �X4 �X3

�= (1, 1, 1, 2) SSF (X1)= 0.278,SSF (X2)= 0.2746,
SSF (X3)= 0.0689,SSF (X4)= 0.1356

X1 �X2 �X4 �X3

�= (1, 1, 2, 2) SSF (X1)= 0.1894,SSF (X2)= 0.2754,
SSF (X3)= 0.0646,SSF (X4)= 0.1267

X1 �X2 �X4 �X3

�= (1, 2, 2, 3) SSF (X1)= 0.1721,SSF (X2)= 0.2646,
SSF (X3)= 0.0580,SSF (X4)= 0.1187

X1 �X2 �X4 �X3

�= (1, 3, 3, 4) SSF (X1)= 0.1624,SSF (X2)= 0.2537,
SSF (X3)= 0.0424,SSF (X4)= 0.1076

X1 �X2 �X4 �X3

�= (2, 3, 4, 5) SSF (X1)= 0.1591,SSF (X2)= 0.2412,
SSF (X3)= 0.0378,SSF (X4)= 0.1011

X1 �X2 �X4 �X3

From Tabs. 13–15, it is clear that they provide the same results and the best alternative is X1.

5.6 Graphical Interpretations
Additionally, for more simplicity, we discuss the graphical representation of the explored

approach and existing works to improve the quality of the presented works. For this, we choose
the evaluation of Tabs. 13–15, the geometrical interpretation of the presented works is discussed
in the form of Figs. 3–5.
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Table 13: Comparative analysis by using the information of Tab. 1

Methods Year Score values Ranking values

PDHULA Not proposed Cannot be calculated Cannot be calculated
SDHULA Not proposed Cannot be calculated Cannot be calculated
TSDHULA Not proposed Cannot be calculated Cannot be calculated
Eq. (40) for
qSC = 1

2021 SSF (X1)= 0.5421,SSF (X2)= 0.3977,
SSF (X3)= 0.0901,SSF (X4)= 0.1734

X1 �X2 �X4 �X3

Eq. (40) for
qSC = 2

2021 SSF (X1)= 0.5356,SSF (X2)= 0.3721,
SSF (X3)= 0.0811,SSF (X4)= 0.1578

X1 �X2 �X4 �X3

Eq. (40) for
qSC = 3

2021 SSF (X1)= 0.5161,SSF (X2)= 0.3672,
SSF (X3)= 0.0606,SSF (X4)= 0.1380

X1 �X2 �X4 �X3

Table 14: Comparative analysis by using the information of Tab. 3

Methods Year Score values Ranking values

PDHULA Not proposed Cannot be calculated Cannot be calculated
SDHULA Not proposed Cannot be calculated Cannot be calculated
TSDHULA Not proposed Cannot be calculated Cannot be calculated
Eq. (40) for
qSC = 1

2021 Cannot be calculated Cannot be calculated

Eq. (40) for
qSC = 2

2021 SSF (X1)= 0.6224,SSF (X2)= 0.5517,
SSF (X3)= 0.3247,SSF (X4)= 0.3494

X1 �X2 �X4 �X3

Eq. (40) for
qSC = 3

2021 SSF (X1)= 0.6118,SSF (X2)= 0.5424,
SSF (X3)= 0.3069,SSF (X4)= 0.3281

X1 �X2 �X4 �X3

Table 15: Comparative analysis by using the information of Tab. 5

Methods Year Score values Ranking values

PDHULA Not proposed Cannot be calculated Cannot be calculated
SDHULA Not proposed Cannot be calculated Cannot be calculated
TSDHULA Not Proposed Cannot be calculated Cannot be calculated
Eq. (40) for
qSC = 1

2021 Cannot be calculated Cannot be calculated

Eq. (40) for
qSC = 2

2021 Cannot be calculated Cannot be calculated

Eq. (40) for
qSC = 6

2021 SSF (X1)= 0.315,SSF (X2)= 0.2816,
SSF (X3)= 0.07383,SSF (X4)= 0.1434

X1 �X2 �X4 �X3

Figs. 3–5 contain four series which are expressed the family of alternatives and the graphical
representations of the six different methods. For simplicity, we draw the geometrical interpretations
for a reader to find the best alternative is X1. From the above analysis, we can get the result,
when we choose the CPDHUL or CSDHUL to describe decision makers’ preference, the explored
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operators are easily effective. But if we choose the explored kind of information, then the existing
operators are not able to cope with it. Therefore, the presented idea is extensive, proficient, and
more reliable than existing notions which are discussed in Tabs. 13–15.

Figure 3: Geometrical representation by using the information’s of Tab. 13

Figure 4: Geometrical representation by using the information’s of Tab. 14
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Figure 5: Geometrical representation by using the information’s of Tab. 15

6 Conclusion

The theory of complex T-spherical fuzzy set was developed by Ali et al. [45,48] which contains
the grade of truth, abstinence, and falsity in the form of complex numbers belonging to unit disc
in complex plane. However, when a decision maker provides such types of information containing
the triplet, whose real and imaginary parts are in the form of finite sunset of the unit interval
with uncertain linguistic terms, then the existing theories cannot cope with it. For dealing with
the sorts of issues, the main contribution of this manuscript is summarized in the following ways:

(1) To explore the idea of complex T-spherical dual hesitant uncertain linguistic set and their
fundamental laws.

(2) To explore the CTSDHULMM operator, CTSDHULWMM operator, CTSDHULDMM
operator, and CTSDHULWDMM operator are discovered in detail.

(3) A MADM technique with CTSDHULNs information is then utilized based on explored
operators. The enterprise informatization level evaluation issue is provided to verify the proficiency
and capability of the discovered approaches.

(4) Finally, through the comparative analysis and graphical elaboration with the existing
methods, it is verified that the proposed work is extensive, flexible and can effectively overcome
the current drawback.

In our future work, we will extend these approaches to complex neutrosophic sets, complex
neutrosophic hesitant fuzzy sets, T-spherical hesitant fuzzy sets, and other areas [49–52].
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